Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2014, Vol. 8 Issue (6) : 895-904    https://doi.org/10.1007/s11783-014-0736-z
RESEARCH ARTICLE
Assessment of temporal and spatial variations in water quality using multivariate statistical methods: a case study of the Xin'anjiang River, China
Xue LI1,Pengjing LI1,Dong WANG2,Yuqiu WANG1,*()
1. College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
2. Chinese Academy for Environmental Planning, Water Environment Institute, Beijing 100012, China
 Download: PDF(501 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study evaluated the temporal and spatial variations of water quality data sets for the Xin'anjiang River through the use of multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), correlation analysis, and principal component analysis (PCA). The water samples, measured by ten parameters, were collected every month for three years (2008–2010) from eight sampling stations located along the river. The hierarchical CA classified the 12 months into three periods (First, Second and Third Period) and the eight sampling sites into three groups (Groups 1, 2 and 3) based on seasonal differences and various pollution levels caused by physicochemical properties and anthropogenic activities. DA identified three significant parameters (temperature, pH and E.coli) to distinguish temporal groups with close to 76% correct assignment. The DA also discovered five parameters (temperature, electricity conductivity, total nitrogen, chemical oxygen demand and total phosphorus) for spatial variation analysis, with 80.56% correct assignment. The non–parametric correlation coefficient (Spearman R) explained the relationship between the water quality parameters and the basin characteristics, and the GIS made the results visual and direct. The PCA identified four PCs for Groups 1 and 2, and three PCs for Group 3. These PCs captured 68.94%, 67.48% and 70.35% of the total variance of Groups 1, 2 and 3, respectively. Although natural pollution affects the Xin'anjiang River, the main sources of pollution included agricultural activities, industrial waste, and domestic wastewater.

Keywords Xin'anjiang River      multivariable statistical analysis      temporal variation      spatial variation      water quality     
Corresponding Author(s): Yuqiu WANG   
Issue Date: 17 November 2014
 Cite this article:   
Xue LI,Pengjing LI,Dong WANG, et al. Assessment of temporal and spatial variations in water quality using multivariate statistical methods: a case study of the Xin'anjiang River, China[J]. Front. Environ. Sci. Eng., 2014, 8(6): 895-904.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0736-z
https://academic.hep.com.cn/fese/EN/Y2014/V8/I6/895
Fig.1  Study area and eight monitoring sites
parameters HSLX HJDQ HKD HDD YL PK NYK JK
Temp range 5.4–31.5 5.6–32.5 5.5–34 5.6–34.2 4.4–29.9 5.3–30.1 3.5–31 4.2–32
mean 17.67 17.92 18.33 18.59 18.39 18.53 18.64 19.74
SE 1.31 1.33 1.36 1.34 1.30 1.27 1.27 1.30
SD 7.83 7.96 8.15 8.01 7.82 7.61 7.62 7.79
pH range 7.13–8.51 7.1–8.88 6.86–8.92 7.08–8.7 6.88–8.47 6.89–8.51 6.82–8.78 7.05–8.88
mean 7.74 7.72 7.69 7.74 7.70 7.73 7.67 7.68
SE 0.06 0.07 0.08 0.07 0.06 0.06 0.06 0.07
SD 0.37 0.41 0.48 0.39 0.35 0.34 0.38 0.39
EC range 3.1–18.6 4.2–37.7 4.2–22 4.52–22.5 15.1–69.5 13–64.2 8.6–31.8 7.8–24.9
mean 7.02 22.78 12.13 12.81 32.42 29.20 17.18 13.76
SE 0.49 1.39 0.81 0.71 2.40 2.18 0.95 0.60
SD 2.93 8.37 4.85 4.24 14.40 13.08 5.71 3.59
DO range 7.0–14.0 6.1–14.6 7.2–14.4 7.3–16.3 5.5–15.2 6.1–15.5 5.7–13.7 6.1–80.2
mean 9.35 9.51 9.38 10.02 9.06 9.69 9.24 11.10
SE 0.28 0.33 0.34 0.36 0.32 0.37 0.31 2.00
SD 1.68 1.99 2.02 2.17 1.94 2.23 1.83 11.97
CODMn range 0.6–3.8 1–5.8 1.3–3.8 1.0–3.0 1.7–5.7 1.5–4.2 1–3.8 1–3.2
mean 1.59 2.34 2.16 2.06 3.31 2.87 2.33 1.88
SE 0.10 0.15 0.10 0.09 0.17 0.11 0.11 0.09
SD 0.59 0.90 0.57 0.53 1.00 0.64 0.67 0.52
N H 4 + - N range 0.066–0.659 0.077–0.863 0.049–0.832 0.071–0.927 0.148–0.992 0.142–0.902 0.048–0.806 0.064–0.704
mean 0.24 0.30 0.31 0.36 0.53 0.43 0.30 0.18
SE 0.03 0.03 0.04 0.04 0.05 0.04 0.04 0.02
SD 0.15 0.18 0.22 0.24 0.28 0.26 0.21 0.12
CODCr range 0–9 0–17 2.2–12 0–18 5.8–19 5.0–16.0 0–16 0–10
mean 4.31 7.92 7.38 7.38 11.16 9.88 7.93 6.06
SE 0.40 0.48 0.34 0.57 0.56 0.40 0.50 0.41
SD 2.39 2.86 2.04 3.42 3.38 2.39 3.00 2.49
TN range 0.35–1.9 0.48–2.52 0.56–1.86 0.9–2.12 0.94–4.58 0.98–4.34 0.95–2.44 0.082–1.82
mean 0.96 1.21 1.17 1.44 2.50 2.26 1.61 1.28
SE 0.06 0.07 0.05 0.06 0.14 0.13 0.07 0.05
SD 0.34 0.40 0.32 0.36 0.85 0.79 0.42 0.31
TP range 0.02–0.15 0.03–0.18 0–0.14 0.03–0.14 0.04–0.2 0.04–0.18 0.02–0.16 0.008–0.09
mean 0.06 0.07 0.06 0.08 0.11 0.08 0.07 0.04
SE 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00
SD 0.03 0.03 0.03 0.03 0.04 0.04 0.03 0.02
E.coli range 170–2400 220–3500 430–5400 430–3500 330–5400 490–5400 230–5400 220–3500
mean 599.44 835.56 1174.08 1025.42 1523.06 1523.33 1121.11 832.50
SE 93.36 139.51 164.46 115.06 191.65 197.10 207.12 148.25
SD 560.17 837.03 986.75 690.38 1149.93 1182.61 1242.74 889.51
Tab.1  Water quality parameters with range, mean value, standard error of mean and standard deviation of Xin'anjiang River system
Fig.2  (a) landscape characteristic gradients, (b) trends of temperature, precipitation, slope, population density and flow
Fig.3  Dendrogram showing temporal similarities of monitoring periods
parameters standard forward backward
period 1 period 2 period 3 period 1 period 2 period 3 period 1 period 2 period 3
Temp -0.06 -0.10 0.71 -0.09 -0.13 0.69 -0.32 -0.32 0.51
pH 59.92 58.55 56.24 57.52 56.21 53.97 56.59 55.46 53.26
EC -0.17 -0.22 -0.22 0.04 -0.02 -0.03
DO 0.43 0.40 0.28 0.46 0.43 0.31
CODMn -6.12 -4.78 -4.53 -4.34 -3.05 -2.84
N H 4 + - N 9.20 8.57 7.24 17.58 16.74 15.21
CODCr 0.079 0.023 0.063 0.092 0.036 0.075
TN 9.59 9.35 9.11
TP -0.17 -0.17 -0.16
E.coli 0.006 0.005 0.005 0.007 0.006 0.006 0.007 0.006 0.006
constant -244.53 -232.29 -229.38 -233.19 -221.49 -219.17 -225.57 -215.45 -214.49
%correct 53.62 73.33 99.15 53.62 71.11 99.14 34.72 79.17 98.33
Tab.2  Classification functions for discriminant analysis of temporal variation
Fig.4  Dendrogram showing sampling site clusters
parameters standard forward backward
group 1 group 2 group 3 group 1 group 2 group 3 group 1 group 2 group 3
Temp 0.68 0.71 0.85 0.52 0.54 0.70 0.54 0.58 0.75
pH 56.05 55.86 56.03
EC -0.17 -0.11 0.04 0.14 0.19 0.34 0.19 0.26 0.42
DO 0.28 0.25 0.25
CODMn -4.71 -4.36 -4.05 -0.11 0.29 0.52
N H 4 + - N 4.30 5.06 3.72
CODCr 0.62 0.78 0.95 0.79 0.96 1.11
TN 11.76 11.95 15.46 5.14 5.43 8.77 5.81 6.44 9.98
TP -0.19 -0.17 -0.19
E.coli 0.004 0.005 0.005 0.0004 0.0007 0.0007
constant -225.31 -227.00 -242.44 -12.82 -15.28 -30.28 -10.64 -12.51 -26.67
%correct 47.22 91.67 66.67 45.83 93.06 66.67 26.39 91.67 69.44
Tab.3  Classification functions for discriminant analysis of spatial variation
parameters group 1 group 2 group 3
F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3
Temp 0.71 0.34 0.09 -0.21 -0.89 0.05 -0.15 -0.18 -0.82 -0.30 -0.16
pH 0.32 0.01 0.55 0.10 0.14 0.07 -0.84 0.13 0.44 0.11 -0.70
EC 0.16 0.12 -0.74 0.34 0.32 0.00 0.03 0.82 0.44 0.68 0.07
DO -0.02 0.00 0.07 0.82 0.67 -0.36 -0.26 -0.03 0.92 -0.24 -0.01
CODMn 0.89 -0.31 0.04 0.08 -0.12 0.81 -0.17 -0.16 -0.05 0.91 0.10
N H 4 + - N -0.06 -0.85 0.18 0.05 0.58 0.53 0.19 0.03 0.46 0.57 0.50
CODCr 0.90 0.06 -0.07 0.07 -0.01 0.86 -0.13 0.01 -0.03 0.90 -0.19
TN 0.17 -0.66 -0.50 0.17 0.43 0.38 0.49 0.16 0.55 0.37 0.49
TP -0.09 -0.66 0.32 -0.40 0.52 0.19 0.13 -0.65 0.12 -0.04 0.53
E.coli 0.02 0.15 -0.63 -0.31 0.12 -0.16 0.49 0.04 0.15 0.08 0.72
eigenvalue 2.29 1.96 1.56 1.09 2.18 2.01 1.37 1.19 3.62 1.85 1.56
% total variance 22.92 19.57 15.60 10.85 23.73 19.97 12.94 10.84 36.21 18.51 15.63
cumulative % variance 22.92 42.49 58.09 68.94 23.73 43.70 56.64 67.48 36.21 54.72 70.35
Tab.4  Loadings of 10 experimental variables on factor analysis parameters for three spatial clusters
1 Liu J, Diamond J. China’s environment in a globalizing world. Nature, 2005, 435(7046): 1179–1186
https://doi.org/10.1038/4351179a pmid: 15988514
2 Liu J, Yang W. Water management. Water sustainability for China and beyond. Science, 2012, 337(6095): 649–650
https://doi.org/10.1126/science.1219471 pmid: 22879488
3 Yu C, Gong P, Yin Y. China’s water crisis needs more than words. Nature, 2011, 470(7334): 307–307
https://doi.org/10.1038/470307a pmid: 21331001
4 Ma X, Ortolano L. Environmental regulation in China: Institutions, enforcement, and compliance. Washington, DC: Rowman & Littlefield, 2000
5 Christophersen N, Hooper R P. Multivariate analysis of stream water chemical data: The use of principal components analysis for the end‐member mixing problem. Water Resources Research, 1992, 28(1): 99–107
https://doi.org/10.1029/91WR02518
6 Burns D A, McDonnell J J, Hooper R P, Peters N E, Freer J E, Kendall C, Beven K. Quantifying contributions to storm runoff through end‐member mixing analysis and hydrologic measurements at the Panola Mountain Research Watershed (Georgia, USA). Hydrological Processes, 2001, 15(10): 1903–1924
https://doi.org/10.1002/hyp.246
7 Huang J, Li Q, Pontius R G Jr, Klemas V, Hong H. Detecting the dynamic linkage between landscape characteristics and water quality in a subtropical coastal watershed, Southeast China. Environmental Management, 2013, 51(1): 32–44
https://doi.org/10.1007/s00267–011–9793–2 pmid: 22120882
8 Palma P, Ledo L, Soares S, Barbosa I R, Alvarenga P. Spatial and temporal variability of the water and sediments quality in the Alqueva reservoir (Guadiana Basin; southern Portugal). Science of the Total Environment, 2014, 470–471: 780–790
https://doi.org/10.1016/j.scitotenv.2013.10.035 pmid: 24184750
9 Wang Y B, Liu C W, Liao P Y, Lee J J. Spatial pattern assessment of river water quality: implications of reducing the number of monitoring stations and chemical parameters. Environmental Monitoring and Assessment, 2014, 186(3): 1781–1792
https://doi.org/10.1007/s10661–013–3492–9 pmid: 24242081
10 Mostafaei A. Application of multivariate statistical methods and water-quality index to evaluation of water quality in the Kashkan River. Environmental Management, 2014, 53(4): 865–881
https://doi.org/10.1007/s00267–014–0238–6 pmid: 24510183
11 Shi W, Zeng W.Application of k-means clustering to environmental risk zoning of the chemical industrial area. Frontiers of Environmental Science & Engineering, 2014, 8(1): 117–127
12 Li Q, Song J, Wei A, Zhang B. Changes in major factors affecting the ecosystem health of the Weihe River in Shaanxi Province, China. Frontiers of Environmental Science & Engineering, 2013, 7(6): 875–885
https://doi.org/10.1007/s11783–013–0568–2
13 Wang X, Cai Q, Ye L, Qu X. Evaluation of spatial and temporal variation in stream water quality by multivariate statistical techniques: A case study of the Xiangxi River basin, China. Quaternary International, 2012, 282: 137–144
https://doi.org/10.1016/j.quaint.2012.05.015
14 Wang Y, Zhang J, Feeley K, Jiang P, Ding P. Life‐history traits associated with fragmentation vulnerability of lizards in the Thousand Island Lake, China. Animal Conservation, 2009, 12(4): 329–337
https://doi.org/10.1111/j.1469–1795.2009.00257.x
15 Wang Y, Chen S, Ding P. Testing multiple assembly rule models in avian communities on islands of an inundated lake, Zhejiang Province, China. Journal of Biogeography, 2011, 38(7): 1330–1344
https://doi.org/10.1111/j.1365–2699.2011.02502.x
16 Singh K P, Malik A, Mohan D, Sinha S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 2004, 38(18): 3980–3992
https://doi.org/10.1016/j.watres.2004.06.011 pmid: 15380988
17 Zhang Y, Guo F, Meng W, Wang X Q. Water quality assessment and source identification of Daliao River Basin using multivariate statistical methods. Environmental Monitoring and Assessment, 2009, 152(1–4): 105–121
https://doi.org/10.1007/s10661–008–0300–z pmid: 18523854
18 Sundaray S K. Application of multivariate statistical techniques in hydrogeochemical studies—a case study: Brahmani–Koel River (India). Environmental Monitoring and Assessment, 2010, 164(1–4): 297–310
https://doi.org/10.1007/s10661–009–0893–x pmid: 19396558
19 Alberto W D, María del Pilar D, María Valeria A, Fabiana P S, Cecilia H A, María de los ángeles B. Marrí del Pilar D a, Marrí Valeria A, Fabiana P S, Cecilia H A, Marrí de los ángeles B. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquía A River Basin (Córdoba–Argentina). Water Research, 2001, 35(12): 2881–2894
https://doi.org/10.1016/S0043–1354(00)00592–3 pmid: 11471688
20 Awadallah A G, Yousry M. Identifying homogeneous water quality regions in the Nile River using multivariate statistical analysis. Water Resources Management, 2012, 26(7): 2039–2055
https://doi.org/10.1007/s11269–012–9997–0
21 Guo L, Zhao Y, Wang P. Determination of the principal factors of river water quality through cluster analysis method and its prediction. Frontiers of Environmental Science & Engineering, 2012, 6(2): 238–245
https://doi.org/10.1007/s11783–011–0382–7
22 Singh K P, Malik A, Sinha S. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—a case study. Analytica Chimica Acta, 2005, 538(1): 355–374
https://doi.org/10.1016/j.aca.2005.02.006
23 Sultana J, Farooqi A, Ali U. Arsenic concentration variability, health risk assessment, and source identification using multivariate analysis in selected villages of public water system, Lahore, Pakistan. Environmental Monitoring and Assessment, 2014, 186(2): 1241–1251
https://doi.org/10.1007/s10661–013–3453–3 pmid: 24197557
24 Gomes A I, Pires J C, Figueiredo S A, Boaventura R A. Optimization of river water quality surveys by multivariate analysis of physicochemical, bacteriological and ecotoxicological data. Water Resources Management, 2014, 28: 1345–1361
25 Heckler C E. Applied multivariate statistical analysis. Technometrics, 2005, 47(4): 517–517
https://doi.org/10.1198/tech.2005.s319
26 Juahir H, Zain S M, Yusoff M K, Hanidza T I, Armi A S, Toriman M E, Mokhtar M. Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environmental Monitoring and Assessment, 2011, 173(1–4): 625–641
https://doi.org/10.1007/s10661–010–1411–x pmid: 20339961
27 Wang L, Wang Y, Zhang W, Xu C, An Z. Multivariate statistical techniques for evaluating and identifying the environmental significance of heavy metal contamination in sediments of the Yangtze River, China. Environmental Earth Sciences, 2014, 71(3): 1183–1193
https://doi.org/10.1007/s12665–013–2522–9
28 Jang C S, Chen J S, Lin Y B, Liu C W. Characterizing hydrochemical properties of springs in Taiwan based on their geological origins. Environmental Monitoring and Assessment, 2012, 184(1): 63–75
https://doi.org/10.1007/s10661–011–1947–4 pmid: 21374046
29 Vega M, Pardo R, Barrado E, Debán L. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 1998, 32(12): 3581–3592
https://doi.org/10.1016/S0043–1354(98)00138–9
30 Filik Iscen C, Emiroglu O, Ilhan S, Arslan N, Yilmaz V, Ahiska S. Application of multivariate statistical techniques in the assessment of surface water quality in Uluabat Lake, Turkey. Environmental Monitoring and Assessment, 2008, 144(1–3): 269–276
https://doi.org/10.1007/s10661–007–9989–3 pmid: 17929181
31 Li Y, Tang C, Yu Z, Acharya K. Correlations between algae and water quality: factors driving eutrophication in Lake Taihu, China. International Journal of Environmental Science and Technology, 2014, 11(1): 169–182
https://doi.org/10.1007/s13762–013–0436–4
32 Frenzel S A, Couvillion C S. Fecal‐indicator bacteria in streams along a gradient of residential development. Journal of the American Water Resources Association, 2002, 38(1): 265–273
https://doi.org/10.1111/j.1752–1688.2002.tb01550.x
33 Zhou F, Huang G H, Guo H, Zhang W, Hao Z. Spatio–temporal patterns and source apportionment of coastal water pollution in eastern Hong Kong. Water Research, 2007, 41(15): 3429–3439
https://doi.org/10.1016/j.watres.2007.04.022 pmid: 17572471
34 Shrestha S, Kazama F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling & Software, 2007, 22(4): 464–475
https://doi.org/10.1016/j.envsoft.2006.02.001
35 Simeonov V, Stratis J A, Samara C, Zachariadis G, Voutsa D, Anthemidis A, Sofoniou M, Kouimtzis T. Assessment of the surface water quality in Northern Greece. Water Research, 2003, 37(17): 4119–4124
https://doi.org/10.1016/S0043–1354(03)00398–1 pmid: 12946893
[1] Ziyue Yin, Qing Lin, Shaohui Xu. Using hydrochemical signatures to characterize the long-period evolution of groundwater information in the Dagu River Basin, China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 105-.
[2] Haiyan Yang, Shangping Xu, Derek E. Chitwood, Yin Wang. Ceramic water filter for point-of-use water treatment in developing countries: Principles, challenges and opportunities[J]. Front. Environ. Sci. Eng., 2020, 14(5): 79-.
[3] Isam Alyaseri, Jianpeng Zhou, Susan M. Morgan, Andrew Bartlett. Initial impacts of rain gardens’ application on water quality and quantity in combined sewer: field-scale experiment[J]. Front. Environ. Sci. Eng., 2017, 11(4): 19-.
[4] Yuan XU,Ruqin XIE,Yuqiu WANG,Jian SHA. Spatio-temporal variations of water quality in Yuqiao Reservoir Basin, North China[J]. Front. Environ. Sci. Eng., 2015, 9(4): 649-664.
[5] Xiaofeng ZHANG,Xu ZHANG,Guanghe LI. The effect of texture and irrigation on the soil moisture vertical-temporal variability in an urban artificial landscape: a case study of Olympic Forest Park in Beijing[J]. Front. Environ. Sci. Eng., 2015, 9(2): 269-278.
[6] Wendong WANG,Qinghai FAN,Zixia QIAO,Qin YANG,Yabo WANG,Xiaochang WANG. Effects of water quality on the coagulation performances of humic acids irradiated with UV light[J]. Front. Environ. Sci. Eng., 2015, 9(1): 147-154.
[7] Xiaomao WANG,Hongwei YANG,Zhenyu LI,Shaoxia YANG,Yuefeng XIE. Pilot study for the treatment of sodium and fluoride-contaminated groundwater by using high-pressure membrane systems[J]. Front. Environ. Sci. Eng., 2015, 9(1): 155-163.
[8] Hong CHEN,Feng XIAO,Zhe BI,Ping XIAO,Dongsheng WANG,Ming YANG. Practical evaluation for water utilities in China by using analytic hierarchy process[J]. Front. Environ. Sci. Eng., 2015, 9(1): 131-137.
[9] Jun YANG,Mei LEI,Tongbin CHEN,Ding GAO,Guodi ZHENG,Guanghui GUO,Duujong LEE. Current status and developing trends of the contents of heavy metals in sewage sludges in China[J]. Front.Environ.Sci.Eng., 2014, 8(5): 719-728.
[10] Juan XIE,Xinyu ZHANG,Zhiwei XU,Guofu YUAN,Xinzhai TANG,Xiaomin SUN,D.J. BALLANTINE. Total phosphorus concentrations in surface water of typical agro- and forest ecosystems in China, 2004–2010[J]. Front.Environ.Sci.Eng., 2014, 8(4): 561-569.
[11] ZHANG Xiaojian,MI Zilong,WANG Yang,LIU Shuming,NIU Zhangbin,LU Pinpin,WANG Jun,GU Junnong,CHEN Chao. A red water occurrence in drinking water distribution systems caused by changes in water source in Beijing, China: mechanism analysis and control measures[J]. Front.Environ.Sci.Eng., 2014, 8(3): 417-426.
[12] SUN Daolin,YU Jianwei,YANG Min,AN Wei,ZHAO Yunyun,LU Ning,YUAN Shengguang,ZHANG Dongqing. Occurrence of odor problems in drinking water of major cities across China[J]. Front.Environ.Sci.Eng., 2014, 8(3): 411-416.
[13] Xiaoliu YANG, Jian XU, Jean-Fran?ois DONZIER, Coralie NOEL. A comparison of the water management systems in France and China[J]. Front Envir Sci Eng, 2013, 7(5): 721-734.
[14] Sen DING, Yuan ZHANG, Bin LIU, Weijing KONG, Wei MENG. Effects of riparian land use on water quality and fish communities in the headwater stream of the Taizi River in China[J]. Front Envir Sci Eng, 2013, 7(5): 699-708.
[15] Zhuo CHEN, Huu Hao NGO, Wenshan GUO, Xiaochang WANG. Analysis of Sydney’s recycled water schemes[J]. Front Envir Sci Eng, 2013, 7(4): 608-615.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed