Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (6) : 962-969    https://doi.org/10.1007/s11783-015-0772-3
RESEARCH ARTICLE
Effect of effluent organic matter on ozonation of bezafibrate
Huan HE1,Qian SUI1,3,*(),Shuguang LU1,Wentao ZHAO2,Zhaofu QIU1,Gang YU3
1. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
2. State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
3. School of Environment, THU – VEOLIA Joint Research Center for Advanced Environmental Technology, Tsinghua University, Beijing 100084, China
 Download: PDF(408 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The influence of three effluent organic matter (EfOM) model compounds, humic acid (HA), bovine serum albumin (BSA), and sodium alginate (AGS), on the ozonation of bezafibrate (BF), a typical pharmaceutical and personal care product (PPCP), was investigated. The results show that ozonation efficiently removed BF from aqueous solution with removal efficiencies>95% within 8 min for all conditions. The reaction rate of BF decreased with increasing model compounds concentrations and the influence was more pronounced for HA and BSA, while less pronounced for AGS. Although BF concentration was significantly reduced, the degree of mineralization achieved was only approximately 11%. The addition of HA and BSA improved the mineralization of the solution, while the influence of AGS was minor. The acute toxicity of BF solution during ozonation was determined using the Luminescent bacteria test, and the toxicity exhibited an initial increase and a successive reduction. An overall decreased acute toxicity was observed with an increase of HA. The presence of BSA increased the formation rate of toxicity intermediates and resulted in inhibition peak forward.

Keywords ozonation      bezafibrate      acute toxicity      humic acid      bovine serum albumin      sodium alginate     
Corresponding Author(s): Qian SUI   
Just Accepted Date: 31 December 2014   Online First Date: 21 January 2015    Issue Date: 23 November 2015
 Cite this article:   
Huan HE,Qian SUI,Shuguang LU, et al. Effect of effluent organic matter on ozonation of bezafibrate[J]. Front. Environ. Sci. Eng., 2015, 9(6): 962-969.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0772-3
https://academic.hep.com.cn/fese/EN/Y2015/V9/I6/962
Fig.1  Diagram of ozonation system
Fig.2  Evolution of the concentration of BF (a) and acute toxicity (c), and TOC removal after 25 min (b) during ozonation at different HA concentrations
EfOM TOC/(mg·L−1) kO3 ( × 10−3)/(L·mol−1·s−1) R2
HA 0 10.9±0.67 0.9895
3.0 9.6±0.015 0.9725
7.0 9.2±0.44 0.9655
12.0 7.0±0.13 0.9901
BSA 0 7.0±0.095 0.9856
1.5 5.8±0.13 0.9819
3.0 5.7±0.46 0.9750
6.0 5.4±0.26 0.9667
AGS 0 9.7±0.71 0.9892
0.5 8.8±0.58 0.9979
1.0 8.4±0.18 0.9884
3.0 8.0±0.63 0.9857
Tab.1  Apparent kinetic constants (kO3) of BF ozonation at different EfOM concentrations
solution initial TOC/(mg·L−1) TOC after 25min/(mg·L−1) TOC removal/%
only BF 5.3±0.2 4.7±0.1 11.3±3.2
only HA 12.5±0.4 8.5±0.3 32.1±0.1
only BSA 6.5±0.3 5.4±0.2 16.1±1.5
only AGS 3.2±0.1 2.8±0.1 12.4±2.4
BF+ HA 17.5±0.5 11.0±0.7 37.3±2.3
BF+ BSA 12.7±0.7 7.8±0.6 40.0±2.7
BF+ AGS 8.0±0.1 7.3±0.2 9.4±3.1
Tab.2  Comparison of TOC removal after 25 min of ozonation
Fig.3  Evolution of the concentration of BF (a) and acute toxicity (c), and TOC removal after 25 min (b) during ozonation at different BSA concentrations
Fig.4  Evolution of the concentration of BF (a) and acute toxicity (c), and TOC removal after 25 min (b) during ozonation at different AGS concentrations
1 von Gunten  U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 2003, 37(7): 1443–1467
https://doi.org/10.1016/S0043-1354(02)00457-8 pmid: 12600374
2 Huber  M M, Canonica  S, Park  G Y, von Gunten  U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science & Technology, 2003, 37(5): 1016–1024
https://doi.org/10.1021/es025896h pmid: 12666935
3 Westerhoff  P, Yoon  Y, Snyder  S, Wert  E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science & Technology, 2005, 39(17): 6649–6663
https://doi.org/10.1021/es0484799 pmid: 16190224
4 Ikehata  K, Gamal El-Din  M G, Snyder  S A. Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater. Ozone Science and Engineering, 2008, 30(1): 21–26
https://doi.org/10.1080/01919510701728970
5 Yang  X, Flowers  R C, Weinberg  H S, Singer  P C. Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Research, 2011, 45(16): 5218–5228
https://doi.org/10.1016/j.watres.2011.07.026 pmid: 21864879
6 Sui  Q, Huang  J, Deng  S, Yu  G, Fan  Q. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Research, 2010, 44(2): 417–426
https://doi.org/10.1016/j.watres.2009.07.010 pmid: 19674764
7 Nakada  N, Shinohara  H, Murata  A, Kiri  K, Managaki  S, Sato  N, Takada  H. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Research, 2007, 41(19): 4373–4382
https://doi.org/10.1016/j.watres.2007.06.038 pmid: 17632207
8 Sui  Q, Huang  J, Lu  S G, Deng  S B, Wang  B, Zhao  W T, Qiu  Z F, Yu  G. Removal of pharmaceutical and personal care products by sequential ultraviolet and ozonation process in a full-scale wastewater treatment plant. Frontiers of Environmental Science & Engineering, 2014, 8(1): 62–68
https://doi.org/10.1007/s11783-013-0518-z
9 Lin  A Y C, Lin  C F, Chiou  J M, Hong  P K. O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater. Journal of Hazardous Materials, 2009, 171(1–3): 452–458
https://doi.org/10.1016/j.jhazmat.2009.06.031 pmid: 19589642
10 Garoma  T, Umamaheshwar  S K, Mumper  A. Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation. Chemosphere, 2010, 79(8): 814–820
https://doi.org/10.1016/j.chemosphere.2010.02.060 pmid: 20303138
11 Jung  Y J, Kim  W G, Yoon  Y, Hwang  T M, Kang  J W. pH effect on ozonation of ampicillin: kinetic study and toxicity assessment. Ozone Science and Engineering, 2012, 34(3): 156–162
https://doi.org/10.1080/01919512.2012.662890
12 Yong  E L, Lin  Y P. Kinetics of natural organic matter as the initiator, promoter, and inhibitor, and their influences on the removal of ibuprofen in ozonation. Ozone Science and Engineering, 2013, 35(6): 472–481
https://doi.org/10.1080/01919512.2013.820641
13 Lester  Y, Avisar  D, Mamane  H. Ozone degradation of cyclophosphamide — Effect of alkalinity and key effluent organic matter constituents.  Ozone  Science  and  Engineering,  2013,  35(2):  125–133
https://doi.org/10.1080/01919512.2013.761107
14 Weston  A, Caminada  D, Galicia  H, Fent  K. Effects of lipid-lowering pharmaceuticals bezafibrate and clofibric acid on lipid metabolism in fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry, 2009, 28(12): 2648–2655
https://doi.org/10.1897/09-087.1 pmid: 19522550
15 Regulska  E, Karpińska  J. Investigation of novel material for effective photodegradation of bezafibrate in aqueous samples. Environmental Science and Pollution Research, 2014, 21(7): 5242–5248
16 Isidori  M, Nardelli  A, Pascarella  L, Rubino  M, Parrella  A. Toxic and genotoxic impact of fibrates and their photoproducts on non-target organisms. Environment International, 2007, 33(5): 635–641
https://doi.org/10.1016/j.envint.2007.01.006 pmid: 17320957
17 Dantas  R F, Canterino  M, Marotta  R, Sans  C, Esplugas  S, Andreozzi  R. Bezafibrate removal by means of ozonation: primary intermediates, kinetics, and toxicity assessment. Water Research, 2007, 41(12): 2525–2532
https://doi.org/10.1016/j.watres.2007.03.011 pmid: 17467033
18 Gonçalves  A, Órfão  J J M, Pereira  M F R. Ozonation of bezafibrate promoted by carbon materials. Applied Catalysis B: Environmental, 2013, 140–141: 82–91
19 Manka  J, Rebhun  M, Mandelbaum  A, Bortinger  A. Characterization of organics in secondary effluents. Environmental Science & Technology, 1974, 8(12): 1017–1020
https://doi.org/10.1021/es60097a001
20 Institute of Soil Science, Chinese Academy of Sciences. GB/T 15441–1995, Water Quality–Determination of the Acute Toxicity–Luminescent Bacteria Test. Beijing: China Standards Press, 1996
21 Latifoglu  A, Gurol  M D. The effect of humic acids on nitrobenzene oxidation by ozonation and O3/UV processes. Water Research, 2003, 37(8): 1879–1889
https://doi.org/10.1016/S0043-1354(02)00583-3 pmid: 12697231
22 Xiong  F, Graham  N J D. Removal of atrazine through ozonation in the presence of humic substances. Ozone Science and Engineering, 1992, 14(3): 263–268
https://doi.org/10.1080/01919519208552479
23 Xiong  F, Legube  B. Enhancement of radical chain reactions of ozone in water in the presence of an aquatic fulvic acid. Ozone Science and Engineering, 1991, 13(3): 349–363
24 Miao  H F, Tao  W Y. Ozonation of humic acid in water. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2008, 83(3): 336–344
https://doi.org/10.1002/jctb.1816
25 Buffle  M O, von Gunten  U. Phenols and amine induced HO· generation during the initial phase of natural water ozonation. Environmental Science & Technology, 2006, 40(9): 3057–3063
https://doi.org/10.1021/es052020c pmid: 16719111
[1] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[2] Xinshu Liu, Xiaoman Su, Sijie Tian, Yue Li, Rongfang Yuan. Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 75-.
[3] Xiaojie Shi, Zhuo Chen, Yun Lu, Qi Shi, Yinhu Wu, Hong-Ying Hu. Significant increase of assimilable organic carbon (AOC) levels in MBR effluents followed by coagulation, ozonation and combined treatments: Implications for biostability control of reclaimed water[J]. Front. Environ. Sci. Eng., 2021, 15(4): 68-.
[4] Xuewen Yi, Zhanqi Gao, Lanhua Liu, Qian Zhu, Guanjiu Hu, Xiaohong Zhou. Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 109-.
[5] Bei Ye, Zhuo Chen, Xinzheng Li, Jianan Liu, Qianyuan Wu, Cheng Yang, Hongying Hu, Ronghe Wang. Inhibition of bromate formation by reduced graphene oxide supported cerium dioxide during ozonation of bromide-containing water[J]. Front. Environ. Sci. Eng., 2019, 13(6): 86-.
[6] Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Front. Environ. Sci. Eng., 2019, 13(4): 55-.
[7] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[8] Daoud Ali, Huma Ali, Saud Alifiri, Saad Alkahtani, Abdullah A Alkahtane, Shaik Althaf Huasain. Detection of oxidative stress and DNA damage in freshwater snail Lymnea leuteola exposed to profenofos[J]. Front. Environ. Sci. Eng., 2018, 12(5): 1-.
[9] Tianyi Chen, Wancong Gu, Gen Li, Qiuying Wang, Peng Liang, Xiaoyuan Zhang, Xia Huang. Significant enhancement in catalytic ozonation efficacy: From granular to super-fine powdered activated carbon[J]. Front. Environ. Sci. Eng., 2018, 12(1): 6-.
[10] Shraddha Khamparia,Dipika Kaur Jaspal. Adsorption in combination with ozonation for the treatment of textile waste water: a critical review[J]. Front. Environ. Sci. Eng., 2017, 11(1): 8-.
[11] Jiaxuan YANG, Jun MA, Dan SONG, Xuedong ZHAI, Xiujuan KONG. Impact of preozonation on the bioactivity and biodiversity of subsequent biofilters under low temperature conditions—A pilot study[J]. Front. Environ. Sci. Eng., 2016, 10(4): 5-.
[12] Liangliang WEI,Kun WANG,Xiangjuan KONG,Guangyi LIU,Shuang CUI,Qingliang ZHAO,Fuyi CUI. Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge[J]. Front. Environ. Sci. Eng., 2016, 10(2): 327-335.
[13] Xinwei LI,Hanchang SHI,Kuixiao LI,Liang ZHANG. Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater reuse[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1076-1083.
[14] Rongfang YUAN,Beihai ZHOU,Duo HUA,Chunhong SHI. Effect of metal ion-doping on characteristics and photocatalytic activity of TiO2 nanotubes for removal of humic acid from water[J]. Front. Environ. Sci. Eng., 2015, 9(5): 850-860.
[15] Yuling CAI,Bin LIANG,Zhanqiang FANG,Yingying XIE,Eric Pokeung TSANG. Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling waste liquor[J]. Front. Environ. Sci. Eng., 2015, 9(5): 879-887.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed