Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (2) : 327-335    https://doi.org/10.1007/s11783-014-0763-9
RESEARCH ARTICLE
Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge
Liangliang WEI1,2,Kun WANG2,*(),Xiangjuan KONG3,Guangyi LIU2,Shuang CUI4,Qingliang ZHAO1,2,Fuyi CUI2
1. Key Laboratory of Songliao Aquatic Environment (Ministry of Education), Jilin Jianzhu University, Changchun 130118, China
2. School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
3. Center of Science & Technology of Construction of the Ministry of Housing and Urban Rural Development of P. R. China, Beijing 100835, China
4. Procter & Gamble Company, Guangzhou 510620, China
 Download: PDF(1101 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel method was applied to co-recover proteins and humic acid from the dewatered sewage sludge for liquid fertilizer and animal feed. The proteins in sewage sludge were first extracted using the processes of ultra-sonication and acid precipitation, and then the humic acid was recovered via membrane filtration. The extraction efficiency was 125.9 mg humic acid?g−1VSS volatile suspended solids (VSS) and 123.9 mg proteins?g−1 VSS at the optimal ultrasonic density of 1.5 W?mL−1. FT-IR spectrum results indicated that the recovered proteins and humic acid showed similar chemical characteristic to the natural proteins and humic acid. The acidic solution (pH 2) could be recycled and used more than 10 times during the co-recovery processes. In addition, the dewatered sludge could be easily biodegraded when the humic acid and proteins are extracted, which was essential for further utilization. These findings are of great significance for recovering valuable nutrient from sewage sludge.

Keywords sewage sludge      co-recovery      proteins      humic acid      recycling      biodegradation rate     
Corresponding Author(s): Kun WANG   
Online First Date: 11 December 2014    Issue Date: 01 February 2016
 Cite this article:   
Liangliang WEI,Kun WANG,Xiangjuan KONG, et al. Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge[J]. Front. Environ. Sci. Eng., 2016, 10(2): 327-335.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0763-9
https://academic.hep.com.cn/fese/EN/Y2016/V10/I2/327
Fig.1  Procedures for the co-recovery of proteins and humic acid from sewage sludge
Fig.2  Disintegration efficiency of ultra-sonication for sludge organics under different ultrasonic density and pH conditions
Fig.3  Disintegration rate of ultra-sonication for sludge proteins and humic acid under different pH conditions
Fig.4  Recovered proteins and humic acid from sludge under different ultrasonic density and pH conditions (solid line represent humic acid, and dotted line represent proteins)
Fig.5  Recovered proteins and humic acid from dewatered sludge under different recycle times of acidic supernatant (pH 2)
Fig.6  FT-IR spectra of the recovered proteins and humic acid from dewatered sludge
extracted organics average biodegradation rate/% DOC concentration of sludge organics/(mg?L−1)
pre-biodegradation post-biodegradation
sludge organics 40.2 100 61.9
100 58.0
100 59.6
sludge organics after proteins recovery 62.0 100 37.8
100 40.2
100 35.8
sludge organics after proteins and humic acid recovery 75.7 100 23.4
100 24.9
100 24.7
Tab.1  Biodegradation rate of the extracted organics in the ultra-sonicated sludge
Fig.7  EEM spectrum of the pre- and post-biodegradation of the ultra-sonicated sludge organics (a and b); pre- and post-biodegradation of the post-protein recovery samples (c and d); and pre- and post-biodegradation of the post-humic acid recovery samples (e and f)
1 Sheng  G P, Yu  H Q. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 2006, 40(6): 1233–1239
https://doi.org/10.1016/j.watres.2006.01.023 pmid: 16513156
2 Lin  H J, Xie  K, Mahendran  B, Bagley  D M, Leung  K T, Liss  S N, Liao  B Q. Sludge properties and their effects on membrane fouling in submerged anaerobic membrane bioreactors (SAnMBRs). Water Research, 2009, 43(15): 3827–3837
https://doi.org/10.1016/j.watres.2009.05.025 pmid: 19555989
3 Girones  R, Ferrús  M A, Alonso  J L, Rodriguez-Manzano  J, Calgua  B, Corrêa  A A, Hundesa  A, Carratala  A, Bofill-Mas  S. Molecular detection of pathogens in water—The pros and cons of molecular techniques. Water Research, 2010, 44(15): 4325–4339
https://doi.org/10.1016/j.watres.2010.06.030 pmid: 20619868
4 Petzet  S, Peplinski  B, Cornel  P. On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Research, 2012, 46(12): 3769–3780
https://doi.org/10.1016/j.watres.2012.03.068 pmid: 22579406
5 Hwang  J, Zhang  L, Seo  S, Lee  Y W, Jahng  D. Protein recovery from excess sludge for its use as animal feed. Bioresource Technology, 2008, 99(18): 8949–8954
https://doi.org/10.1016/j.biortech.2008.05.001 pmid: 18554902
6 Zhang  P, Zhang  G, Wang  W. Ultrasonic treatment of biological sludge: floc disintegration, cell lysis and inactivation. Bioresource Technology, 2007, 98(1): 207–210
https://doi.org/10.1016/j.biortech.2005.12.002 pmid: 16427781
7 Wei  L L, Wang  K, Zhao  Q L, Jiang  J Q, Kong  X J, Lee  D J. Fractional, biodegradable and spectral characteristics of extracted and fractionated sludge extracellular polymeric substances. Water Research, 2012, 46(14): 4387–4396
https://doi.org/10.1016/j.watres.2012.05.049 pmid: 22732264
8 Nielsen  P H, Frølund  B, Keiding  K. Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage. Applied Microbiology and Biotechnology, 1996, 44(6): 823–830
https://doi.org/10.1007/BF00178625 pmid: 8867641
9 Wei  L L, Zhao  Q L, Hu  K, Lee  D J, Xie  C M, Jiang  J Q. Extracellular biological organic matters in sewage sludge during mesophilic digestion at reduced hydraulic retention time. Water Research, 2011, 45(3): 1472–1480
https://doi.org/10.1016/j.watres.2010.11.003 pmid: 21126748
10 Ni  B J, Zeng  R J, Fang  F, Xu  J, Sheng  G P, Yu  H Q. A novel approach to evaluate the production kinetics of extracellular polymeric substances (EPS) by activated sludge using weighted nonlinear least-squares analysis. Environmental Science & Technology, 2009, 43(10): 3743–3750
https://doi.org/10.1021/es9001289 pmid: 19544882
11 Fonseca  A C, Summers  R S, Greenberg  A R, Hernandez  M T. Extra-cellular polysaccharides, soluble microbial products, and natural organic matter impact on nanofiltration membranes flux decline. Environmental Science & Technology, 2007, 41(7): 2491–2497
https://doi.org/10.1021/es060792i pmid: 17438805
12 Monique  R, Elisabeth  G N, Etienne  P, Dominique  L. A high yield multi-method extraction protocol for protein quantification in activated sludge. Bioresource Technology, 2008, 99(16): 7464–7471
https://doi.org/10.1016/j.biortech.2008.02.025 pmid: 18396040
13 Jung  J, Xing  X H, Matsumoto  K. Recoverability of protease released from disrupted excess sludge and its potential application to enhanced hydrolysis of proteins in wastewater. Biochemical Engineering Journal, 2002, 10(1): 67–72
https://doi.org/10.1016/S1369-703X(01)00163-2
14 Adebayo  O T, Fagbenro  O A, Jegede  T. Evaluation of Cassia fistula meal as a replacement for soybean meal in practical diets of Oreochromis niloticus fingerlings. Aquaculture Nutrition, 2004, 10(2): 99–104
https://doi.org/10.1111/j.1365-2095.2003.00286.x
15 Jiang  J, Zhao  Q, Wei  L, Wang  K, Lee  D J. Degradation and characteristic changes of organic matter in sewage sludge using microbial fuel cell with ultrasound pretreatment. Bioresource Technology, 2011, 102(1): 272–277
https://doi.org/10.1016/j.biortech.2010.04.066 pmid: 20483596
16 Nakakubo  T, Tokai  A, Ohno  K. Comparative assessment of technological systems for recycling sludge and food waste aimed at greenhouse gas emissions reduction and phosphorus recovery. Journal of Cleaner Production, 2012, 32: 157–172
https://doi.org/10.1016/j.jclepro.2012.03.026
17 Li  H, Jin  Y, Nie  Y. Application of alkaline treatment for sludge decrement and humic acid recovery. Bioresource Technology, 2009, 100(24): 6278–6283
https://doi.org/10.1016/j.biortech.2009.07.022 pmid: 19651507
18 Dignac  M F, Urbain  V, Rybacki  D, Bruchet  A, Snidaro  D, Scribe  P. Chemical description of extracellular polymers: implication on activated sludge floc structure. Water Science and Technology, 1998, 38(8-9): 45–53
https://doi.org/10.1016/S0273-1223(98)00676-3
19 Ni  B J, Fang  F, Xie  W M, Xu  J, Yu  H Q. Formation of distinct soluble microbial products by activated sludge: kinetic analysis and quantitative determination. Environmental Science & Technology, 2012, 46(3): 1667–1674
https://doi.org/10.1021/es202756d pmid: 22185635
20 Souza  T S, Hencklein  F A, Angelis  D F, Gonçalves  R A, Fontanetti  C S. The Allium cepa bioassay to evaluate landfarming soil, before and after the addition of rice hulls to accelerate organic pollutants biodegradation. Ecotoxicology and Environmental Safety, 2009, 72(5): 1363–1368
https://doi.org/10.1016/j.ecoenv.2009.01.009 pmid: 19285726
21 Balba  M T, Al-Awadhi  N, Al-Daher  R, Heitzer  A. Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. Journal of Microbiological Methods, 1998, 32(2): 155–164
https://doi.org/10.1016/S0167-7012(98)00020-7
22 APHA. AWWA, WEF. Standard Methods for the Examination of Water and Wastewater, 21th ed, APHA, Washington, DC, 2005
23 Frølund  B, Griebe  T, Nielsen  P H. Enzymatic activity in the activated-sludge floc matrix. Applied Microbiology and Biotechnology, 1995, 43(4): 755–761
https://doi.org/10.1007/s002530050481 pmid: 7546613
24 Sahinkaya  S. Disintegration of municipal waste activated sludge by simultaneous combination of acid and ultrasonic pretreatment. Process Safety and Environmental Protection, available online <Date>April 18 2014</Date>: 
https://doi.org/10.1016/j.psep.2014.04.002
25 Cheng  J, Xia  A, Su  H B, Song  W L, Zhou  J H, Cen  K F. Promotion of H2 production by microwave-assisted treatment of water hyacinth with dilute H2SO4 through combined dark fermentation and photofermentation. Energy Conversion and Management, 2013, 73: 329–334
https://doi.org/10.1016/j.enconman.2013.05.018
26 Wang  W, Luo  Y X, Qiao  W. Possible solutions for sludge dewatering in China. Frontiers of Environmental Science & Engineering, 2010, 4(1): 102–107
https://doi.org/10.1007/s11783-010-0001-z
27 Wang  Z W, Wu  Z C, Yin  X, Tian  L M. Membrane fouling in a submerged membrane bioreactor (MBR) under subcritical flux operation: membrane foulant and gellayer characterization. Journal of Membrane Science, 2008, 325(1): 238–244
https://doi.org/10.1016/j.memsci.2008.07.035
28 Wei  L L, Zhao  Q L, Xue  S, Chang  C C, Tang  F, Liang  G L, Jia  T. Reduction of trihalomethane precursors of dissolved organic matter in the secondary effluent by advanced treatment processes. Journal of Hazardous Materials, 2009, 169(1-3): 1012–1021
https://doi.org/10.1016/j.jhazmat.2009.04.045 pmid: 19443112
29 Pon-On  W, Charoenphandhu  N, Teerapornpuntakit  J, Thongbunchoo  J, Krishnamra  N, Tang  I M. Physicochemical and biochemical properties of iron-loaded silicon substituted hydroxyapatite (FeSiHAp). Materials Chemistry and Physics, 2013, 141(2-3): 850–860
https://doi.org/10.1016/j.matchemphys.2013.06.014
30 Maity  J P, Kar  S, Lin  C M, Chen  C Y, Chang  Y F, Jean  J S, Kulp  T R. Identification and discrimination of bacteria using Fourier transform infrared spectroscopy. Spectrochimica Acta Part A, 2013, 116: 478–484
https://doi.org/10.1016/j.saa.2013.07.062 pmid: 23973597
31 Filip  Z, Herrmann  S, Kubat  J. FT-IR spectroscopic characteristics of differently cultivated Bacillus subtilis. Microbiological Research, 2004, 159(3): 257–262
https://doi.org/10.1016/j.micres.2004.05.002 pmid: 15462525
32 Aiken  G R. In: Aiken  G R, MeKnight  D M, Wershaw  R L, McCarthy  P, ed. Humic Substances in Soil, Sediment, and Water. New York: John Wiley, 1985: 363
33 Selcuk  H, Bekbolet  M. Photocatalytic and photoelectrocatalytic humic acid removal and selectivity of TiO2 coated photoanode. Chemosphere, 2008, 73(5): 854–858
https://doi.org/10.1016/j.chemosphere.2008.05.069 pmid: 18621411
34 Valdemar  I, Marta  O, Armando  C. Comparative characterization of humic substances from the open ocean, estuarine water and fresh water. Organic Geochemistry, 2009, 40(9): 942–950
https://doi.org/10.1016/j.orggeochem.2009.06.006
35 Wei  L, Wang  K, Zhao  Q, Jiang  J, Xie  C, Qiu  W. Organic matter extracted from activated sludge with ammonium hydroxide and its characterization. Journal of Environmental Sciences (China), 2010, 22(5): 641–647
https://doi.org/10.1016/S1001-0742(09)60157-1 pmid: 20608497
[1] Ting Chen, Yingying Zhao, Xiaopeng Qiu, Xiaoyan Zhu, Xiaojie Liu, Jun Yin, Dongsheng Shen, Huajun Feng. Economics analysis of food waste treatment in China and its influencing factors[J]. Front. Environ. Sci. Eng., 2021, 15(2): 33-.
[2] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[3] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[4] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[5] Wenbing Tan, Dongyu Cui, Xiaohui Zhang, Beidou Xi. Region-gridding recycling of bulk organic waste: Emerging views based on coordinated urban and rural development[J]. Front. Environ. Sci. Eng., 2020, 14(6): 112-.
[6] Jianguo Liu, Shuyao Yu, Yixuan Shang. Toward separation at source: Evolution of Municipal Solid Waste management in China[J]. Front. Environ. Sci. Eng., 2020, 14(2): 36-.
[7] Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Front. Environ. Sci. Eng., 2019, 13(4): 55-.
[8] Bao Yu, Guodi Zheng, Xuedong Wang, Min Wang, Tongbin Chen. Biodegradation of triclosan and triclocarban in sewage sludge during composting under three ventilation strategies[J]. Front. Environ. Sci. Eng., 2019, 13(3): 41-.
[9] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[10] Lin Lin, Ying-yu Li, Xiao-yan Li. Acidogenic sludge fermentation to recover soluble organics as the carbon source for denitrification in wastewater treatment: Comparison of sludge types[J]. Front. Environ. Sci. Eng., 2018, 12(4): 3-.
[11] Hyunhee Kim, Yong-Chul Jang, Yeonjung Hwang, Youngjae Ko, Hyunmyeong Yun. End-of-life batteries management and material flow analysis in South Korea[J]. Front. Environ. Sci. Eng., 2018, 12(3): 3-.
[12] Abhishek Kumar, Veena Choudhary, Rita Khanna, Romina Cayumil, Muhammad Ikram-ul-Haq, Veena Sahajwalla, Shiva Kumar I. Angadi, Ganapathy E. Paruthy, Partha S. Mukherjee, Miles Park. Recycling polymeric waste from electronic and automotive sectors into value added products[J]. Front. Environ. Sci. Eng., 2017, 11(5): 4-.
[13] Mengmeng Wang, Quanyin Tan, Joseph F. Chiang, Jinhui Li. Recovery of rare and precious metals from urban mines—A review[J]. Front. Environ. Sci. Eng., 2017, 11(5): 1-.
[14] Evangelia C. Vouvoudi, Aristea T. Rousi, Dimitris S. Achilias. Thermal degradation characteristics and products obtained after pyrolysis of specific polymers found in Waste Electrical and Electronic Equipment[J]. Front. Environ. Sci. Eng., 2017, 11(5): 9-.
[15] Zebing Wu, Wenyi Yuan, Jinhui Li, Xiaoyan Wang, Lili Liu, Jingwei Wang. A critical review on the recycling of copper and precious metals from waste printed circuit boards using hydrometallurgy[J]. Front. Environ. Sci. Eng., 2017, 11(5): 8-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed