Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (2) : 22    https://doi.org/10.1007/s11783-020-1314-1
RESEARCH ARTICLE
Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality
Xianke Lin1,2, Xiaohong Chen1, Sichang Li1, Yangmei Chen1, Zebin Wei1, Qitang Wu1()
1. Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
2. Key Laboratory of the Pearl River Estuarine Dynamics and Associated Process Regulation, Ministry of Water Resources, Pearl River Hydraulic Research Institute, Pearl River Water Resource Commission, Guangzhou 510611, China
 Download: PDF(685 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Indirect use of sludge in ditches alongside plants was tested in field experiments.

• The dried and stabilized sludge in ditches was recovered with heavy metals.

• Cd, Pb, Cu and Zn in the planted soil were all in a safe range.

• The indirect use of sludge increased plant yield, soil N content and C storage.

The treatment and disposal of municipal sewage sludge (MSS) is an urgent problem to be resolved in many countries. Safely using the nutrients within MSS to increase crop yield and enhance the fertility of poor soil could contribute to achieving sustainable development. An indirect use of MSS in ditches alongside Pennisetum hybridum plants was studied in field plots for 30 months and the contents of heavy metals and macronutrients were monitored in soil, sludge and plant samples. We found that the yield of P. hybridum was significantly increased by 2.39 to 2.80 times and the treated plants had higher N content compared with no sludge. In addition, the organic matter (OM) and N contents in the planted soil increased significantly compared with the initial soil. The OM content in the planted soil of the MSS treatment was 2.9 to 5.2 times higher than that with no sludge, and N increased by 2.0 to 3.8 times. However, MSS had no significant effect on the N, P and K contents in the soil at the bottom of the MSS ditch, and the content of heavy metals (Cd, Pb, Cu and Zn) were also within the safe range. Moreover, the moisture content and phytotoxicity of MSS after this indirect use were reduced and the heavy metal contents changed little, which is favorable to the further disposal of recovered MSS. Therefore, this indirect use of MSS is beneficial to agricultural production, soil quality and environmental sustainability.

Keywords Municipal sewage sludge      Indirect use      Heavy metals      Macronutrients      Pennisetum hybridum     
Corresponding Author(s): Qitang Wu   
Issue Date: 26 August 2020
 Cite this article:   
Xianke Lin,Xiaohong Chen,Sichang Li, et al. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1314-1
https://academic.hep.com.cn/fese/EN/Y2021/V15/I2/22
First MSS Second MSS Third MSS Fourth MSS Fifth MSS Soil
pH 5.21±0.21a 5.49±0.11 5.60±0.01 5.20±0.10 4.89±0.09 5.92±0.16
Cd (mg/kg) 2.75±0.15 2.6±0.19 2.35±0.72 2.41±0.13 1.15±0.01 0.09±0.02
Pb (mg/kg) 95.79±2.04 81.17±1.52 65.42±8.44 95.08±5.4 69.9±2.77 48.19±4.14
Cu (mg/kg) 175.1±6.1 169.3±4.2 122.0±1.4 157.0±10.4 131.9±3.2 30.1±6.7
Zn (mg/kg) 808.4±23.2 747.6±15.4 376.4±35.8 627.8±106.7 304.5±42.5 29.1±2.5
OM (g/kg) 208.7±9.7 210.1±9.7 229.3±14.7 205.5±16.1 225.7±4.4 2.4±0.2
N (g/kg) 18.65±0.56 11.74±0.57 17.98±1.06 13.14±1.01 19.52±0.65 0.68±0.04
P (g/kg) 11.06±0.09 11.35±0.02 9.52±0.01 11.93±0.68 7.92±0.2 0.81±0.05
K (g/kg) 19.13±0.70 14.08±1.24 12.73±1.41 11.31±3.21 10.01±3.86 7.34±0.5
Tab.1  Main properties of the soil and the five municipal sewage sludges (MSSs) used in the five consecutive experiments
Fig.1  Municipal sewage sludge (MSS) ditch and P. hybridum planting arrangement. (a) Surface layout of 4 treatments (MSS ditch without planting, P. hybridum without MSS ditch, P. hybridum + MSS ditch, P. hybridum + MSS ditch covered by plastic film); (b) Profile schematic diagram.
Fig.2  Cumulative yields of P. hybridum dry biomass for three sludge treatments (CK: no sewage sludge control; SS: sewage sludge ditch treatment; SSC: sewage sludge ditch covered by plastic film. Different letters indicate that the difference in total biomass was significant between the treatments according to LSD test).
Months Cd (mg/kg) Pb(mg/kg) b MAI
a CK SS SSC CK SS SSC CK SS SSC
2 0.066±0.022a 0.069±0.021a 0.131±0.035b 0.90±0.16b 0.68±0.03a 0.66±0.08a 4.27 12.24 6.17
4 0.160±0.058a 0.083±0.030a 0.138±0.007a 0.71±0.14a 0.54±0.03a 0.59±0.15a 3.89 11.78 11.73
6 0.176±0.059a 0.105±0.026a 0.240±0.115a 1.20±0.24a 1.27±0.22a 1.24±0.14a 4.02 5.80 5.32
8 0.169±0.036a 0.165±0.016a 0.202±0.015a 2.90±0.58b 2.73±0.36b 2.07±1.22a 4.87 9.07 7.46
10 0.125±0.024a 0.169±0.045a 0.176±0.069a 1.11±0.31a 1.09±0.21a 0.97±0.08a 4.44 4.55 7.69
12 0.067±0.009a 0.150±0.071a 0.109±0.028a 1.04±0.46a 0.63±0.18a 0.70±0.05a 4.92 2.83 8.90
15 0.078±0.013a 0.079±0.016a 0.091±0.002a 1.03±0.17a 0.94±0.15a 0.80±0.07a 6.16 5.73 32.87
17 0.085±0.024a 0.072±0.009a 0.090±0.022a 0.94±0.14a 0.73±0.07a 0.87±0.19a 5.02 8.86 4.32
21 0.220±0.072a 0.167±0.029a 0.153±0.023a 0.78±0.04a 1.10±0.50a 0.80±0.06a 12.26 4.01 9.67
23 0.086±0.009a 0.210±0.079b 0.145±0.039ab 0.43±0.06a 0.30±0.06a 0.38±0.12a 7.97 3.73 3.40
24 0.152±0.019a 0.241±0.072a 0.172±0.064a 0.20±0.07a 0.42±0.13b 0.18±0.06a 5.38 3.32 2.74
26 0.033±0.021a 0.124±0.007b 0.060±0.012a 0.51±0.12a 0.8±0.29a 0.67±0.09a 2.86 10.34 6.23
28 0.090±0.015b 0.063±0.021ab 0.053±0.008a 0.70±0.23a 0.48±0.08a 0.70±0.17a 4.59 4.50 5.25
30 0.113±0.033a 0.148±0.042a 0.137±0.030a 0.72±0.06a 0.62±0.07a 0.62±0.07a 7.71 6.27 6.75
cFeed standard ≤1.0 ≤30
Tab.2  The contents of Cd and Pb in aerial parts of P. hybridum and the Metal Accumulation Index (MAI)
Months N (g/kg) P(g/kg) K(g/kg)
aCK SS SSC CK SS SSC CK SS SSC
8 b24.79±2.50a 27.06±1.47a 26.33±1.35a 2.92±0.43a 3.71±0.76a 4.51±1.21a 48.06±3.22b 40.15±2.40a 43.73±4.78ab
10 21.36±3.10a 21.69±1.48a 20.59±1.64a 2.90±0.30a 3.12±0.35a 3.30±0.73a 33.27±1.62a 36.13±2.02a 32.50±4.05a
12 10.73±3.72a 17.12±1.42b 18.58±0.31b 1.17±0.29a 2.93±0.95b 2.43±0.42b 15.82±2.74a 22.44±1.46b 19.44±2.02ab
15 20.28±0.51a 48.61±0.08c 44.95±2.28b 1.80±0.89a 3.24±1.15a 3.22±1.33a 19.6±5.90a 25.93±6.1ab 33.25±2.67b
17 33.43±4.93a 39.84±3.06a 38.97±2.08a 1.95±0.22a 2.36±0.89a 2.28±0.42a 29.00±5.62a 28.07±2.93a 26.77±2.43a
21 16.06±0.01a 24.48±0.95b 22.91±1.45b 1.87±0.56a 6.08±0.83b 3.03±1.62ab 28.16±7.91a 39.82±2.70b 30.37±4.34ab
23 19.91±2.17a 21.81±1.36ab 23.26±0.05b 3.11±1.34a 3.69±0.47a 3.02±0.92a 21.70±5.32a 26.85±1.51a 25.42±7.68a
24 12.79±1.69a 19.24±4.30b 20.74±1.80b 2.32±0.24a 4.71±0.98b 3.70±0.92ab 25.40±3.65a 26.10±4.34a 27.43±4.82a
26 7.02±0.77a 24.13±4.21b 25.05±2.10b 1.24±0.36a 3.09±1.03a 3.01±1.28a 8.90±1.88a 19.44±6.38a 19.37±8.09a
28 19.04±2.89a 20.26±2.40a 23.57±3.98a 1.81±0.53a 1.55±0.20a 1.54±0.16a 19.88±9.00a 14.81±1.91a 16.50±5.05a
30 20.36±5.01a 35.09±4.95b 25.89±4.53ab 2.17±0.59a 2.60±0.65a 2.64±0.46a 28.50±8.53a 22.92±2.53a 24.11±7.58a
Tab.3  Contents of N, P and K in the aerial parts of P. hybridum during the experiment
Initial After planting aSoil nutrient classification
bCK SS SSC abundant high medium Low lack very lack
OM c2.39±0.17 7.16±3.31a 27.97±10.57b 44.6±13.92b >40 30–40 20–30 10–20 6–10 <6
N 0.68±0.04 0.48±0.07a 1.46±0.43b 2.31±0.21c >2 1.5–2.0 1.0–1.5 0.75–1 0.5–0.75 <0.5
P 0.81±0.05 0.30±0.05a 0.53±0.21a 0.55±0.17a >1 0.8–1 0.6–0.8 0.4–0.6 0.2–0.4 <0.2
K 7.34±0.50 7.15±0.93b 6.23±0.61ab 5.55±0.83a >25 20–25 15–20 10–15 5–10 <5
Tab.4  Nutrients in the planted soil after 30 months of planting (g/kg)
Contents Cd Pb Cu Zn pH
Initial d0.09±0.02a 48.19±4.14a 30.08±6.67ab 29.12±2.48a 5.92±0.16a
aCK 0.11±0.07a 50.15±9.35a 24.74±3.54a 33.84±6.96a 5.86±0.10a
SS 0.12±0.04a 42.91±6.13a 27.11±1.95ab 47.19±9.88b 5.90±0.20a
SSC 0.19±0.07a 51.03±6.75a 36.98±7.07b 75.16±6.63c 5.99±0.17a
bSoil standard 0.3 90 50 200
cBCF
CK 1.01 0.014 0.32 1.89
SS 1.27 0.014 0.31 1.90
SSC 0.71 0.012 0.30 1.04
Tab.5  Heavy metal contents (mg/kg) and pH in the planted soils and bioconcentration factors (BCF) of P. hybridum plants after 30 months of experiments
Treatment pH Cd (mg/kg) Pb (mg/kg) Cu (mg/kg) Zn (mg/kg) OM (g/kg) N (g/kg) P (g/kg) K (g/kg)
Initial c5.92±0.16a 0.09±0.02a 48.19±4.14a 30.08±6.67a 29.12±2.48a 2.39±0.17a 0.68±0.04a 0.81±0.05a 7.34±0.5a
aSS 5.73±0.53a 0.14±0.02a 56.32±9.31ab 30.88±5.98a 75.13±11.10b 8.95±1.94b 0.75±0.13a 0.87±0.24a 8.15±3.64a
aSSC 5.59±0.91a 0.10±0.05a 61.63±3.13b 31.35±3.25a 61.29±13.36b 8.05±1.27b 0.66±0.12a 0.79±0.17a 7.44±1.4a
bSoil standard 0.3 90 50 200
Tab.6  Contents of heavy metals and nutrients in the soil at the bottom of the sewage sludge ditches after 30 months of experiments
Month Treatment Moisture content aGI pH Cd (mg/kg) Pb (mg/kg) Cu (mg/kg) Zn (mg/kg) OM (g/kg) aTotal nutrients (g/kg)
Jun. Initial e82.71±1.25 0.12±0.14 4.85±0.05 1.146±0.011 69.90±2.77 131.9±3.2 304.5±42.5 225.7±4.4 49.68±4.48
Aug. bCK1 75.42±1.46a 0.53±0.21a 5.18±0.14a 1.163±0.106a 73.71±3.48a 137.6±6.8a 260.6±13.6a 229.6±10.8a 48.88±0.72a
SS 74.61±3.27a 0.53±0.12a 4.60±0.26b 1.181±0.205a 77.03±2.86a 141.7±4.4a 264.0±15.6a 202.6±6.2b 49.33±2.52a
SSC 64.5±4.86b 0.56±0.02a 5.12±0.28a 1.061±0.089a 72.46±5.75a 135.2±12.0a 260.4±18.3a 198.6±13.3b 45.95±4.11a
Oct. CK1 73.63±5.67a 0.54±0.23a 4.16±0.27a 1.060±0.084a 72.55±2.37a 136.6±7.7a 262.2±45.5a 210.1±10.4a 44.67±5.16
SS 68.02±6.02a 0.48±0.10a 4.36±0.08ab 1.081±0.061a 77.31±4.32a 144.0±5.5a 275.7±16.4a 215.4±13.5a 50.00±1.82a
SSC 69.98±6.86a 0.75±0.18a 4.61±0.131b 1.089±0.023a 75.4±0.35a 142.3±2.0a 274.8±25.4a 211.0±6.2a 48.31±1.28a
Dec. CK1 56.42±9.40a 1.03±0.02a 4.99±0.48a 1.161±0.023a 77.67±0.84a 155.1±1.0a 273.5±11.7a 218.7±7.2a 48.75±1.14a
SS 49.36±4.92a 0.87±0.14b 5.08±0.11a 1.279±0.013a 75.81±1.45a 152.6±2.0a 271.4±10.8a 212.2±6.0a 44.91±1.31a
SSC 51.75±5.75a 1.16±0.15a 5.60±0.27a 1.194±0.029a 74.11±1.81a 153.5±2.7a 283.9±7.2a 217.6±3.8a 46.6±1.73a
Standard1 c <60 5.5–8.5 <3 <300 <500 <1200 >200
Standard2 d <30 5.5–8.5 <3 <50 >450 >50
Tab.7  Properties of sewage sludge in different months during planting
1 M Akbar, M F S Khan, L Qian, L Qian, H Wang (2020). Degradation of Polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration. Frontiers of Environmental Science & Engineering, 14(6), 98
https://doi.org/10.1007/s11783-020-1277-2
2 J Antonkiewicz, B Kołodziej, E J Bielińska, A Popławska (2019). The possibility of using sewage sludge for energy crop cultivation exemplified by reed canary grass and giant miscanthus. Soil Science Annual, 70(1): 21–33
https://doi.org/10.2478/ssa-2019-0003
3 J Antonkiewicz, A Poplawska, B Kolodziej, K Ciarkowska, F Gambus, M Bryk, J Babula (2020). Application of ash and municipal sewage sludge as macronutrient sources in sustainable plant biomass production. Journal of Environmental Management, 264: 110450
https://doi.org/10.1016/j.jenvman.2020.110450
4 V Breton, Y Crosaz, F Rey (2016). Effects of wood chip amendments on the revegetation performance of plant species on eroded marly terrains in a Mediterranean mountainous climate (Southern Alps, France). Solid Earth, 7(2): 599–610
https://doi.org/10.5194/se-7-599-2016
5 Z T Gong, Z C Chen, X Z Shi, G L Zhang, J M Zhang, W J Zhao (1999) Chinese soil taxonomy: Theory, methodology and practice. Beijing: Science Press (in Chinese)
6 K Grönman, J Ypya, Y Virtanen, S Kurppa, R Soukka, P Seuri, A Finer, L Linnanen (2016). Nutrient footprint as a tool to evaluate the nutrient balance of a food chain. Journal of Cleaner Production, 112: 2429–2440
https://doi.org/10.1016/j.jclepro.2015.09.129
7 L Hei, C C Lee, H Wang, X Y Lin, X H Chen, Q T Wu (2016). Using a high biomass plant Pennisetum hydridum to phyto-treat fresh municipal sewage sludge. Bioresource Technology, 217: 252–256
https://doi.org/10.1016/j.biortech.2016.02.025
8 H Herzel, O Kruger, L Hermann, C Adam (2016). Sewage sludge ash–A promising secondary phosphorus source for fertilizer production. Science of the Total Environment, 542(Pt B): 1136–1143
9 Y Kuzyakov, R Bol (2006). Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar. Soil Biology & Biochemistry, 38(4): 747–758
https://doi.org/10.1016/j.soilbio.2005.06.025
10 A S Liu, S J Liu, Y G He, S Q Zhu, B Q Li (1993). Guangdong Soils. Beijing: Science Press
11 S Liu (2012). Safe recycling municipal sewage sludge in agriculture and forestry with sludge phyto-treatment. Dissertation for the Doctoral Degree. Guangzhou: South China Agricultural University
12 S Liu, T Xu, Q Wu, H Lv, X Lin, Y Li (2012). Selection of vegetable seeds native in China instead of the cress seed for evaluating the maturity of biosolids. Acta Ecologica Sinica, 32(5): 1510–1518
https://doi.org/10.5846/stxb201101220112
13 Y J Liu, Y G Zhu, H Ding (2007). Lead and cadmium in leaves of deciduous trees in Beijing, China: Development of a metal accumulation index (MAI). Environmental Pollution, 145(2): 387–390
https://doi.org/10.1016/j.envpol.2006.05.010
14 R K Lu (2000). Analytical Methods of Soil and Agricultural Chemistry. Beijing: China Agricultural Science and Technology Press
15 C Ma, H Ming, C Lin, R Naidu, N Bolan (2016). Phytoextraction of heavy metal from tailing waste using Napier grass. Catena, 136: 74–83
https://doi.org/10.1016/j.catena.2015.08.001
16 C Ma, R Naidu, F Liu, C Lin, H Ming (2012). Influence of hybrid giant Napier grass on salt and nutrient distributions with depth in a saline soil. Biodegradation, 23(6): 907–916
https://doi.org/10.1007/s10532-012-9583-4
17 A I Mamedov, B Bar-Yosef, I Levkovich, R Rosenberg, A Silber, P Fine, G J Levy (2016). Amending soil with sludge, manure, humic acid, orthophosphate and phytic acid: Effects on infiltration, runoff and sediment loss. Land Degradation & Development, 27(6): 1629–1639
https://doi.org/10.1002/ldr.2474
18 X Z Meng, A K Venkatesan, Y L Ni, J C Steele, L L Wu, A Bignert, A Bergman, R U Halden (2016). Organic contaminants in Chinese sewage sludge: A meta-analysis of the literature of the past 30 years. Environmental Science & Technology, 50(11): 5454–5466
https://doi.org/10.1021/acs.est.5b05583
19 B Mohamed, K Mounia, A Aziz, H Ahmed, B Rachid, A Lotfi (2018). Sewage sludge used as organic manure in Moroccan sunflower culture: Effects on certain soil properties, growth and yield components. Science of the Total Environment, 627: 681–688
https://doi.org/10.1016/j.scitotenv.2018.01.258
20 E Moreno-Jiménez, J M Fernández, M Puschenreiter, P N Williams, C Plaza (2016). Availability and transfer to grain of As, Cd, Cu, Ni, Pb and Zn in a barley agri-system: Impact of biochar, organic and mineral fertilizers. Agriculture, Ecosystems & Environment, 219: 171–178
https://doi.org/10.1016/j.agee.2015.12.001
21 U Riaz, G Murtaza, M Saifullah, Farooq (2018). Influence of different sewage sludges and composts on growth, yield, and trace elements accumulation in rice and wheat. Land Degradation & Development, 29(5): 1343–1352
https://doi.org/10.1002/ldr.2925
22 B E Rittmann, B Mayer, P Westerhoff, M Edwards (2011). Capturing the lost phosphorus. Chemosphere, 84(6): 846–853
https://doi.org/10.1016/j.chemosphere.2011.02.001
23 Y Sun, B Jin, W Wu, W Zuo, Y Zhang, Y Zhang, Y Huang (2015). Effects of temperature and composite alumina on pyrolysis of sewage sludge. Journal of Environmental Sciences (China), 30(04): 1–8
https://doi.org/10.1016/j.jes.2014.10.010
24 M Tejada, C Benítez (2014). Effects of crushed maize straw residues on soil biological properties and soil restoration. Land Degradation & Development, 25(5): 501–509
https://doi.org/10.1002/ldr.2316
25 T Tontti, H Poutiainen, H Heinonen-Tanski (2017). Efficiently treated sewage sludge supplemented with nitrogen and potassium is a good fertilizer for cereals. Land Degradation & Development, 28(2): 742–751
https://doi.org/10.1002/ldr.2528
26 M Urbaniak, A Wyrwicka, W Toloczko, L Serwecinska, M Zielinski (2017). The effect of sewage sludge application on soil properties and willow (Salix sp.) cultivation. Science of the Total Environment, 586: 66–75
https://doi.org/10.1016/j.scitotenv.2017.02.012
27 USEPA (1994). A Plain English Guide to the EPA Part 503 Biosolids Rule. EPA-832/R-93/003, 57–79. Environmental Protection Agency, Office of Wastewater Management, Washington, DC, US. September 1994
28 D Wu, S Chu, C Lai, Q Mo, D F Jacobs, X Chen, S Zeng (2017). Application rate and plant species affect the ecological safety of sewage sludge as a landscape soil amendment. Urban Forestry & Urban Greening, 27: 138–147
https://doi.org/10.1016/j.ufug.2017.07.003
29 A Wyrwicka, M Urbaniak (2018). The biochemical response of willow plants (Salix viminalis L.) to the use of sewage sludge from various sizes of wastewater treatment plant. Science of the Total Environment, 615: 882–894
https://doi.org/10.1016/j.scitotenv.2017.10.005
30 T F Xu, J R Qiu, Q T Wu, X F Guo, Z B Wei, F W Xie, J W C Wong (2013). Fate of heavy metals and major nutrients in a sludge-soil-plant-leachate system during the sludge phyto-treatment process. Environmental Technology, 34(15): 2221–2229
https://doi.org/10.1080/09593330.2012.744472
31 Y Yang, H Li (2016). Recovering humic substances from the dewatering effluent of thermally treated sludge and its performance as an organic fertilizer. Frontiers of Environmental Science & Engineering, 10(3): 578–584
https://doi.org/10.1007/s11783-015-0827-5
32 B Yu, G Zheng, X Wang, M Wang, T Chen (2019). Biodegradation of triclosan and triclocarban in sewage sludge during composting under three ventilation strategies. Frontiers of Environmental Science & Engineering, 13(1), 41 doi:10.1007/s11783-019-1125-4
33 H Zhang, L Xu, Y Zhang, M Jiang (2016). The transformation of PAHs in the sewage sludge incineration treatment. Frontiers of Environmental Science & Engineering, 10(2): 336–340
https://doi.org/10.1007/s11783-014-0766-6
34 Y Zhu, Y Zhao (2011). Stabilization process within a sewage sludge landfill determined through both particle size distribution and content of humic substances as well as by FT-IR analysis. Waste Management & Research, 29(4): 379–385
https://doi.org/10.1177/0734242X10384309
[1] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[2] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[3] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[4] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[5] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[6] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[7] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
[8] Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4-.
[9] Jie Ren, Zhuo Zhang, Mei Wang, Guanlin Guo, Ping Du, Fasheng Li. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium[J]. Front. Environ. Sci. Eng., 2018, 12(2): 10-.
[10] Teza Mwamulima, Xiaolin Zhang, Yongmei Wang, Shaoxian Song, Changsheng Peng. Novel approach to control adsorbent aggregation: iron fixed bentonite-fly ash for Lead (Pb) and Cadmium (Cd) removal from aqueous media[J]. Front. Environ. Sci. Eng., 2018, 12(2): 2-.
[11] Tong Chi, Jiane Zuo, Fenglin Liu. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar[J]. Front. Environ. Sci. Eng., 2017, 11(2): 15-.
[12] Sheng Huang, Xin Zhao, Yanqiu Sun, Jianli Ma, Xiaofeng Gao, Tian Xie, Dongsheng Xu, Yi Yu, Youcai Zhao. Pollution of hazardous substances in industrial construction and demolition wastes and their multi-path risk within an abandoned pesticide manufacturing plant[J]. Front. Environ. Sci. Eng., 2017, 11(1): 12-.
[13] Boran WU, Dongyang WANG, Xiaoli CHAI, Fumitake TAKAHASHI, Takayuki SHIMAOKA. Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal solid waste incinerators as cement additives[J]. Front. Environ. Sci. Eng., 2016, 10(4): 8-.
[14] Md. Lutfor RAHMAN,Shaheen M. SARKAR,Mashitah Mohd YUSOFF. Efficient removal of heavy metals from electroplating wastewater using polymer ligands[J]. Front. Environ. Sci. Eng., 2016, 10(2): 352-361.
[15] Jiwan SINGH,Ajay S. KALAMDHAD. Effect of lime on speciation of heavy metals during composting of water hyacinth[J]. Front. Environ. Sci. Eng., 2016, 10(1): 93-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed