Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (1) : 93-102    https://doi.org/10.1007/s11783-014-0704-7
RESEARCH ARTICLE
Effect of lime on speciation of heavy metals during composting of water hyacinth
Jiwan SINGH(),Ajay S. KALAMDHAD
Department of Civil Engineering, Indian Institute of Technology Guwahati (IITG), Guwahati-781039 Assam, India
 Download: PDF(1024 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Composting is attractive and inexpensive method for treatment and biomass disposal of water hyacinth. However, the major disadvantage of water hyacinth composting is the high content of heavy metals in the final compost. Addition of lime sludge significantly reduced most bioavailable fractions (exchangeable and carbonate) of heavy metals. Studies were carried on composting of water hyacinth (Eichhornia crassipes) with cattle manure and sawdust (6:3:1 ratio) and effects of addition of lime (1%, 2% and 3%) on heavy metal speciation were evaluated during 30 days of composting period. The Tessier sequential extraction method was employed to investigate the changes in speciation of heavy metals such as Zinc (Zn), Copper (Cu), Manganese (Mn), Iron (Fe), Lead (Pb), Nickel (Ni), Cadmium (Cd) and Chromium (Cr) during water hyacinth composting. Effects of physicochemical parameters such as temperature, pH and organic matter on speciation of heavy metals were also studied during the process. Results showed that, the total metal content was increased during the composting process. The higher reduction in bioavailability factor (BF) of Cu, Fe, Ni, Cd and Cr was observed in lime 2 treatment about 62.1%, 64.4%, 71.9%, 62.1% and 58.9% respectively; however higher reduction in BF of Zn and Pb was observed in lime 1 treatment during the composting process. Reducible and oxidizable fractions of Ni, Pb and Cd were not observed during the process. Addition of lime was very effective for reduction of bioavailability of heavy metals during composting of water hyacinth with cattle manure and sawdust.

Keywords composting      lime      heavy metals      bioavailability factor      speciation     
Corresponding Author(s): Jiwan SINGH   
Online First Date: 30 April 2014    Issue Date: 03 December 2015
 Cite this article:   
Jiwan SINGH,Ajay S. KALAMDHAD. Effect of lime on speciation of heavy metals during composting of water hyacinth[J]. Front. Environ. Sci. Eng., 2016, 10(1): 93-102.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0704-7
https://academic.hep.com.cn/fese/EN/Y2016/V10/I1/93
Fig.1  Variation of temperature, moisture content, pH, and total organic carbon during composting process
Fig.2  Variation of total heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd and Cr) concentration during the composting process
Days Zn (mg·kg−1 dry matter) Cu (mg·kg−1 dry matter)
F1 F2 F3 F 4 F5 F1 F2 F3 F 4 F5
0 5.19±0.013 6.41±0.41 26.30±0.7 31.0±0.47 44.0±0.68 4.68±0.03 1.88±0.03 0.90±0.10 20.65±4.5 21.65±5.7
30 3.88±0.025 4.50±3.4 40.30±3.4 23.33±0.58 136.45±2.25 2.60±0.10 1.40±0.10 0.80±0.20 15.38±0.02 66.85±15.9
Days Mn (mg·kg−1 dry matter) Fe (mg·kg−1 dry matter)
F1 F2 F3 F 4 F5 F1 F2 F3 F 4 F5
0 36.1±0.68 106.3±0.7 86.9±2.4 78.7±0.39 50.5±4.05 27.7±0.7 21.7±0.7 2789.5±3.5 6260.9±141 1671.0±139
30 30.0±0.38 93.4±0.03 244.2±0.9 45.4±0.30 194.1±4.6 16.3±0.7 9.6±0.4 2123.0±3.0 3725.0±20 8785.0±475
Days Ni (mg·kg−1dry matter) Pb (mg·kg−1 dry matter)
F1 F2 F3 F 4 F5 F1 F2 F3 F 4 F5
0 2.98±0.03 3.25±0.05 ND ND 166.9±6.4 22.9±2.9 9.9±0.4 ND ND 708±2
30 1.43±0.03 2.18±0.08 ND ND 228.9±50.4 11.2±0.7 6.7±0.3 ND ND 1016±21
Days Cd (mg·kg−1dry matter) Cr (mg·kg−1 dry matter)
F1 F2 F3 F 4 F5 F1 F2 F3 F 4 F5
0 0.73±0.03 0.84±0.01 ND ND 45.9±0.4 5.45±0.15 1.33±0.03 1.55±0.05 15.85±0.45 115.8±0.25
30 0.46±0.01 0.58±0.02 ND ND 64.9±4.4 3.65±0.15 1.05±0.05 1.45±0.2 8.85±0.45 160.5±5.95
Tab.1  Speciation of heavy metals in lime 1 treatment during 30 days of composting period
heavy metals(mg·kg−1 dry matter) days lime 2 lime 3
F1 F2 F3 F 4 F5 F1 F2 F3 F 4 F5
Zn 0 7.61±0.49 7.56±1.06 42.07±0.47 24.66±0.64 40.28±0.28 4.46±1.05 3.83±0.48 36.26±0.66 19.28±0.04 59.1±0.04
30 3.02±0.02 4.11±0.51 54.55±0.75 21.62±0.22 109.0±3.0 2.73±0.06 2.48±0.03 42.39±0.02 16.33±0.53 105.4±0.53
Cu 0 6.26±0.05 3.65±0.05 0.65±0.05 15.69±0.5 23.0±0.07 2.82±0.07 2.17±0.07 0.65±0.15 13.48±0.02 24.65±0.7
30 1.99±0.01 1.14±0.07 0.88±0.20 12.41±0.8 64.8±0.04 2.02±0.04 1.67±0.04 1.25±0.05 13.97±0.08 84.57±2.1
Mn 0 13.0±0.2 126.2±0.9 194.2±2.1 58.7±0.6 36.5±5.5 9.4±0.2 92.0±0.5 280.1±6.0 49.2±1.1 56.8±3.8
30 33.2±0.8 97.7±0.7 285.1±2.9 43.1±0.4 189.0±6 22.1±0.27 72.0±3.0 251.7±1.7 33.9±0.8 202.0±48
Fe 0 27.4±0.3 26.9±1.3 2788±20 4477±21 1655±445 21.9±3.3 21.6±0.5 2061.0±2 3569.5±5.5 6791±259
30 13.1±0.5 11.9±0.7 1929±4.5 3741±3.8 13925±625 14.1±0.4 11.1±0.5 1819.5±23 2426.4±1.4 18101±101
Ni 0 2.58±0.03 3.25±0.7 ND ND 210.8±50.8 4.09±0.04 3.48±0.22 ND ND 193±1.3
30 1.15±0.2 1.20±0.06 ND ND 337.8±12.3 3.36±0.05 2.40±0.05 ND ND 300±21.5
Pb 0 24.9±0.4 10.8±1.4 ND ND 803±3 20.6±1.1 12.7±0.4 ND ND 737.5±7.5
30 16.0±0.6 7.5±0.03 ND ND 1153±8 12.9±0.2 8.9±0.2 ND ND 1004.5±10.5
Cd 0 0.94±0.02 1.25±0.25 ND ND 40.85±0.7 0.93±0.03 0.98±0.03 ND ND 44.9±4.6
30 0.48±0.03 0.79±0.07 ND ND 64.8±0.8 0.48±0.03 0.76±0.06 ND ND 66.2±2.4
Cr 0 3.75±0.05 2.29±0.47 1.75±0.05 11.0±2.0 97.9±0.4 4.08±0.13 1.53±0.03 1.50±0.1 7.40±0.05 127.8±0.3
30 1.80±0.05 1.18±0.03 1.15±0.05 7.0±0.20 157.5±26.5 3.15±0.05 1.57±0.04 1.15±0.05 6.07±0.03 164.3±18.3
Tab.2  Speciation of heavy metals in lime 2 and 3 treatments during 30 days of composting period
Fig.3  Speciation of heavy metals in control during the composting process
Fig.4  Changes in bioavailability factor (BF) of heavy metals in control and lime treated composting process
1 Malik A. Environmental challenge vis a vis opportunity: the case of water hyacinth. Environment International, 2007, 33(1): 122–138
https://doi.org/10.1016/j.envint.2006.08.004 pmid: 17010439
2 Rai P K. Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Critical Reviews in Environmental Science and Technology, 2009, 39(9): 697–753
https://doi.org/10.1080/10643380801910058
3 Singh J, Kalamdhad A S. Concentration and speciation of heavy metals during water hyacinth composting. Bioresource Technology, 2012, 124: 169–179
https://doi.org/10.1016/j.biortech.2012.08.043 pmid: 22989643
4 Wong J W C, Selvam A. Speciation of heavy metals during co-composting of sewage sludge with lime. Chemosphere, 2006, 63(6): 980–986
https://doi.org/10.1016/j.chemosphere.2005.08.045 pmid: 16288801
5 Iwegbue C M A, Emuh F N, Isirimah N O, Egun A C. Fractionation, characterization and speciation of heavy metals in composts and compost-amended soils. African Journal of Biotechnology, 2007, 6(2): 67–78
6 Singh J, Kalamdhad A S. Effects of heavy metals on soil, plants, human health and aquatic life. International Journal of Research Chemistry and Environment, 2011, 1(2): 15–21
7 Walter I, Martínez F, Cala V. Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses. Environmental Pollution, 2006, 139(3): 507–514
https://doi.org/10.1016/j.envpol.2005.05.020 pmid: 16112313
8 Tessier A, Campbell P G C, Bisson M. Sequential extraction procedures for the speciation of particulate trace metals. Analytical Chemistry, 1979, 51(7): 844–851
https://doi.org/10.1021/ac50043a017
9 Fang M, Wong J W C. Effects of lime amendment on availability of heavy metals and maturation in sewage sludge composting. Environmental Pollution, 1999, 106(1): 83–89
https://doi.org/10.1016/S0269-7491(99)00056-1 pmid: 15093062
10 Chiang K Y, Huang H J, Chang C N. Enhancement of heavy metal stabilization by different amendments during sewage sludge composting process. Journal of Environmental Economics and Management, 2007, 17(4): 249–256
11 Wang X, Chen L, Xia S, Zhao J. Changes of Cu, Zn, and Ni chemical speciation in sewage sludge co-composted with sodium sulfide and lime. Journal of Environmental Sciences (China), 2008, 20(2): 156–160
https://doi.org/10.1016/S1001-0742(08)60024-8 pmid: 18574954
12 Wong J W C, Fang M. Effects of lime addition on sewage sludge composting process. Water Research, 2000, 34(15): 3691–3698
https://doi.org/10.1016/S0043-1354(00)00116-0
13 Central Pollution Control Board (CPCB) India, Assessment of utilization of industrial solid wastes in cement manufacturing, 2006
14 Carreiro L G, Burke A A, Dubois L. Co-generation of acetylene and hydrogen for a carbide-based fuel system. Fuel Processing Technology, 2010, 91(9): 1028–1032
https://doi.org/10.1016/j.fuproc.2010.03.008
15 Kalamdhad A S, Singh Y K, Ali M, Khwairakpam M, Kazmi A A. Rotary drum composting of vegetable waste and tree leaves. Bioresource Technology, 2009, 100(24): 6442–6450
https://doi.org/10.1016/j.biortech.2009.07.030 pmid: 19679465
16 Singh J, Kalamdhad A S. Bioavailability and leachability of heavy metals during water hyacinth composting. Chemical Speciation and Bioavailability, 2013a, 25(1): 1–14
https://doi.org/10.3184/095422913X13584520294651 pmid: 23612174
17 Zheng G D, Gao D, Chen T B, Luo W. Stabilization of nickel and chromium in sewage sludge during aerobic composting. Journal of Hazardous Materials, 2007, 142(1–2): 216–221
https://doi.org/10.1016/j.jhazmat.2006.08.003 pmid: 16971042
18 Li L, Xu Z, Wu J, Tian G. Bioaccumulation of heavy metals in the earthworm Eisenia fetida in relation to bioavailable metal concentrations in pig manure. Bioresource Technology, 2010, 101(10): 3430–3436
https://doi.org/10.1016/j.biortech.2009.12.085 pmid: 20080399
19 Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Management (New York), 2008, 28(1): 215–225
https://doi.org/10.1016/j.wasman.2006.12.012 pmid: 17320367
20 Cai Q Y, Mo C H, Wu Q T, Zeng Q Y, Katsoyiannis A. Concentration and speciation of heavy metals in six different sewage sludge-composts. Journal of Hazardous Materials, 2007, 147(3): 1063–1072
https://doi.org/10.1016/j.jhazmat.2007.01.142 pmid: 17350165
21 Qiao L, Ho G. The effects of clay amendment and composting on metal speciation in digested sludge. Water Research, 1997, 31(5): 951–964
https://doi.org/10.1016/S0043-1354(96)00290-4
22 Liu S, Wang X, Lu L, Diao S, Zhang J. Competitive complexation of copper and zinc by sequentially extracted humic substances from manure compost. Agricultural Sciences in China, 2008, 7(10): 1253–1259
https://doi.org/10.1016/S1671-2927(08)60172-8
23 Su D C, Wong J W C. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge. Environment International, 2004, 29(7): 895–900
https://doi.org/10.1016/S0160-4120(03)00052-7 pmid: 14592566
24 Haroun M, Idris A, Syed Omar S R. A study of heavy metals and their fate in the composting of tannery sludge. Waste Management (New York), 2007, 27(11): 1541–1550
https://doi.org/10.1016/j.wasman.2006.09.006 pmid: 17113767
25 Hanc A, Tlustos P, Szakova J, Habart J. Changes in cadmium mobility during composting and after soil application. Waste Management (New York), 2009, 29(8): 2282–2288
https://doi.org/10.1016/j.wasman.2009.03.027 pmid: 19398321
26 Singh J, Kalamdhad A S. Effect of rotary drum on speciation of heavy metals during water hyacinth composting. Environmental Engineering Research, 2013b, 18(3): 177–189
https://doi.org/10.4491/eer.2013.18.3.177
27 Singh J, Kalamdhad A S. Effects of lime on bioavailability and leachability of heavy metals during agitated pile composting of water hyacinth. Bioresource Technology, 2013c, 138: 148–155
https://doi.org/10.1016/j.biortech.2013.03.151 pmid: 23612174
28 Smith S R. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment International, 2009, 35(1): 142–156
https://doi.org/10.1016/j.envint.2008.06.009 pmid: 18691760
[1] Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao. Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated soil[J]. Front. Environ. Sci. Eng., 2021, 15(4): 61-.
[2] Fan Lu, Tianyu Hu, Shunyan Wei, Liming Shao, Pinjing He. Bioaerosolization behavior along sewage sludge biostabilization[J]. Front. Environ. Sci. Eng., 2021, 15(3): 45-.
[3] Philippa Douglas, Daniela Fecht, Deborah Jarvis. Characterising populations living close to intensive farming and composting facilities in England[J]. Front. Environ. Sci. Eng., 2021, 15(3): 40-.
[4] Min Gao, Ziye Yang, Yajie Guo, Mo Chen, Tianlei Qiu, Xingbin Sun, Xuming Wang. The size distribution of airborne bacteria and human pathogenic bacteria in a commercial composting plant[J]. Front. Environ. Sci. Eng., 2021, 15(3): 39-.
[5] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[6] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[7] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[8] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[9] Linlin Cai, Xiangyang Sun, Dan Hao, Suyan Li, Xiaoqiang Gong, Hao Ding, Kefei Yu. Sugarcane bagasse amendment improves the quality of green waste vermicompost and the growth of Eisenia fetida[J]. Front. Environ. Sci. Eng., 2020, 14(4): 61-.
[10] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[11] Jing Peng, Ke Wang, Xiangbo Yin, Xiaoqing Yin, Mengfei Du, Yingzhi Gao, Philip Antwi, Nanqi Ren, Aijie Wang. Trophic mode and organics metabolic characteristic of fungal community in swine manure composting[J]. Front. Environ. Sci. Eng., 2019, 13(6): 93-.
[12] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[13] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[14] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
[15] Weiqi Luo, Yanping Ji, Lu Qu, Zhi Dang, Yingying Xie, Chengfang Yang, Xueqin Tao, Jianmin Zhou, Guining Lu. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed