Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (3) : 4    https://doi.org/10.1007/s11783-018-1026-y
RESEARCH ARTICLE
Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals
Weiqi Luo1, Yanping Ji1, Lu Qu1, Zhi Dang1,2, Yingying Xie1, Chengfang Yang1, Xueqin Tao3, Jianmin Zhou4, Guining Lu1,5()
1. School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
2. The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
3. School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
4. South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
5. Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou 510006, China
 Download: PDF(467 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The eggshell was used to remediate the contaminated soil by heavy metals.

The eggshell addition decreased the available state of the heavy metals.

The available calcium in the soil increased due to eggshell addition.

The efficiency was investigated in different moisture conditions.

In this study, effects of water conditions (flooded, wet, or dry) and eggshell dosages (0, 0.1, 1.0, and 10.0 g/kg soil, respectively) on pH variation, content of unavailable state of heavy metals, form of heavy metals, and available nutritious element calcium (Ca) in acid soils contaminated with heavy metals were investigated, respectively. The soil samples were continuously cultivated indoors and analyzed by toxicity characteristic leaching procedure and community bureau of reference (BCR) sequential extraction procedure. The results showed that the addition of eggshell could effectively improve the pH of acid soil and increase it to neutral level. Moreover, the contents of unavailable state of heavy metals Cu, Zn, and Cd increased significantly. Furthermore, when the soil was cultivated under the flooded condition with 1.0 g/kg eggshell, the unavailable state of Cu, Zn, and Cd increased the most, and these heavy metals were transformed into residual state. On the other hand, the amount of available state of Ca increased to 432.19 from 73.34 mg/kg with the addition of 1.0 g/kg eggshell, which indicated that the addition of eggshell dramatically improved the available state of Ca. Therefore, eggshell could ameliorate the soil environment as it led to the decrease of available heavy metals and improvement of fertilization effectively. In a word, this study indicates that the addition of eggshell would be a new potential method for remediation of acid field soils contaminated with heavy metals.

Keywords Heavy metals      Eggshell      Acid soil remediation      BCR sequential extraction     
Corresponding Author(s): Guining Lu   
Issue Date: 01 March 2018
 Cite this article:   
Weiqi Luo,Yanping Ji,Lu Qu, et al. Effects of eggshell addition on calcium-deficient acid soils contaminated with heavy metals[J]. Front. Environ. Sci. Eng., 2018, 12(3): 4.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1026-y
https://academic.hep.com.cn/fese/EN/Y2018/V12/I3/4
Chemical compositions Wt (%)
CaCO3 91.99
MgO 6.79
Na2O 0.51
P2O5 0.33
Al2O3 0.14
SiO2 0.13
K2O 0.07
Fe2O3 0.04
MnO 0.003
TiO2 0.003
Tab.1  Chemical compositions of eggshell waste
Properties and contents Soil sample Standarda) Background valueb)
pH 4.67 6.5 4.8
TOMc) (g/kg) 29.47 3.28
Pb (mg/kg) 128.33 250 34.28
Cu (mg/kg) 185.61 50 14.38
Zn (mg/kg) 245.79 200 48.75
Cr (mg/kg) 31.34 250 43.25
Ni (mg/kg) 0.94 40 13.00
Cd (mg/kg) 0.64 0.30 0.03
Ca (mg/kg) 427.81
Tab.2  Properties and heavy metal contents of the tested soils
Fig.1  Effect of eggshell addition in soil on pH variation with different water condition
Fig.2  Effect on unavailable form of heavy metals after the application of eggshell in soil: (a) Cu; (b) Zn; (c) Cd
Fig.3  Effect on Cu fractionation percentage after the application of eggshell in soil by sequential extraction: (a) Dry; (b) Wet; (c) Flooding (R1: exchangeable soluble fraction; R2: reducible fraction; R3: oxidizable fraction; R4: residual fraction)
Fig.4  Effect on Zn fractionation percentage after the application of eggshell in soil by sequential extraction: (a) Dry; (b) Wet; (c) Flooding (R1: exchangeable form; R2: reducible form; R3: oxidizable form; R4: residual form)
Fig.5  Effect on Cd fractionation percentage after the application of eggshell in soil by sequential extraction: (a) Dry; (b) Wet; (c) Flooding (R1: weak acid soluble fraction; R2: reducible fraction; R3: oxidizable fraction; R4: Residual fraction)
Fig.6  Effect on Ca fractionation content after the application of eggshell in soil by sequential extraction: (a) Dry; (b) Wet; (c) Flooding (F1: soluble calcium form; F2: exchangeable calcium form; F3: acid-soluble calcium form; F4: bound to organic form; F5: residual calcium form)
1 Xie L H, Tang  S Q, Wei  X J, Shao  G N, Jiao  G A, Sheng  Z H, Luo  J, Hu P S. The cadmium and lead content of the grain produced by leading Chinese rice cultivars. Food Chemistry, 2017, 217: 217–224 
https://doi.org/10.1016/j.foodchem.2016.08.099 pmid: 27664629
2 França F C S S,  Albuuerque A M A,  Almeida A C,  Silveira P B,  Filho C A,  Hazin C A,  Honorato E V. Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brazil. Food Chemistry, 2017, 215: 171–176
https://doi.org/10.1016/j.foodchem.2016.07.168 pmid: 27542464
3 Li B, Wang  Y, Jiang Y,  Li G, Cui  J, Wang Y,  Zhang H,  Wang S, Xu  S, Wang R. The accumulation and health risk of heavy metals in vegetables around a zinc smelter in northeastern China. Environmental Science and Pollution Research International, 2016, 23(24): 25114–25126
https://doi.org/10.1007/s11356-016-7342-5 pmid: 27679998
4 Yin H, Tan  N, Liu C,  Wang J, Liang  X, Qu M,  Feng X, Qiu  G, Tan W,  Liu F. The associations of heavy metals with crystalline iron oxides in the polluted soils around the mining areas in Guangdong Province, China. Chemosphere, 2016, 161: 181–189
https://doi.org/10.1016/j.chemosphere.2016.07.018 pmid: 27427775
5 Yang C F, Lu  G N, Chen  M Q, Xie  Y Y, Guo  C L, Reinfelder  J, Yi X Y,  Wang H, Dang  Z. Spatial and temporal distributions of sulfur species in paddy soils affected by acid mine drainage in Dabaoshan sulfide mining area, South China. Geoderma, 2016, 281: 21–29
https://doi.org/10.1016/j.geoderma.2016.06.032
6 Zalamea M, Gonzalez  G, Lodge DJ. Physical, chemical, and biological properties of soil under decaying wood in a tropical wet forest in Puerto Rico. Forests, 2016, 7(8): 168
https://doi.org/10.3390/f7080168
7 Cadmus P, Clements  W H, Williamson  J L, Ranville  J F, Meyer  J S, Ginés  M J G. The use of field and mesocosm experiments to quantify effects of physical and chemical stressors in mining-contaminated streams. Environmental Science & Technology, 2016, 50(14): 7825–7833
https://doi.org/10.1021/acs.est.6b01911 pmid: 27362637
8 Zhu R B, Ma  G J, Cai  Y S, Chen  Y X, Yang  T, Duan B Y,  Xue Z L. Ceramic tiles with black pigment made from stainless steel plant dust: Physical properties and long-term leaching behavior of heavy metals. Journal of the Air & Waste Management Association (1995), 2016, 66(4): 402–411
https://doi.org/10.1080/10962247.2016.1140096 pmid: 26757095
9 Xu Y, Zhou  N Y. Microbial remediation of aromatics-contaminated soil. Frontiers of Environmental Science & Engineering, 2017, 11(2): 1 
https://doi.org/doi.org/10.1007/s11783-017-0894-x
10 Bolan N, Kunhikrishnan  A, Thangarajan R,  Kumpiene J,  Park J, Makino  T, Kirkham M B,  Scheckel K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? Journal of Hazardous Materials, 2014, 266: 141–166 
https://doi.org/10.1016/j.jhazmat.2013.12.018 pmid: 24394669
11 Theodoratos P, Papassiopi  N, Xenidis A. Evaluation of monobasic calcium phosphate for the immobilization of heavy metals in contaminated soils from Lavrion. Journal of Hazardous Materials, 2002, 94(2): 135–146
https://doi.org/10.1016/S0304-3894(02)00061-4 pmid: 12169417
12 Wessolek G, Fahrenhorst  C. Immobilization of heavy metals in a polluted soil of a sewage farm by application of a modified aluminosilicate: a laboratory and numerical displacement study. Soil Technology, 1994, 7(3): 221–232
https://doi.org/10.1016/0933-3630(94)90023-X
13 13. Sun Y B,  Zhao D, Xu  Y Y, Wang  L, Liang X F,  Shen Y. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation. Frontiers of Environmental Science & Engineering, 2016, 10(1): 85–92 
https://doi.org/doi.org/10.1007/s11783-014-0689-2
14 Singh B R, Oste  L. In situ immobilization of metals in contaminated or naturally metal-rich soils. Environmental Review, 2001, 9(2): 81–97 
https://doi.org/10.1139/a01-002
15 Chi T, Zuo  J, Liu F L. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar.  Frontiers of Environmental Science & Engineering, 2017, 11(2): 15 
https://doi.org/doi.org/10.1007/s11783-017-0921-y
16 Hong C O, Lee  D K, Chung  D Y, Kim  P J. Liming effects on cadmium stabilization in upland soil affected by gold mining activity. Archives of Environmental Contamination and Toxicology, 2007, 52(4): 496–502
https://doi.org/10.1007/s00244-006-0097-0 pmid: 17253095
17 Seshadri B, Bolan  N S, Wijesekara  H, Kunhikrishnan A,  Thangarajan R,  Qi F, Matheyarasu  R, Rocco C,  Mbene K,  Naidu R. Phosphorus-cadmium interactions in paddy soils. Geoderma, 2016, 270: 43–59 
https://doi.org/10.1016/j.geoderma.2015.11.029
18 Yun S W, Park  C G, Jeon  J H, Darnault  C J, Baveye  P C, Yu  C. Dissolution behavior of As and Cd in submerged paddy soil after treatment with stabilizing agents. Geoderma, 2016, 270: 10–20
https://doi.org/10.1016/j.geoderma.2015.11.036
19 Adcock K G, Gartrell  J W, Brennan  R F. Calcium deficiency of wheat grown in acidic sandy soil from Southwestern Australia. Journal of Plant Nutrition, 2001, 24(8): 1217–1227
https://doi.org/10.1081/PLN-100106977
20 Lee S S, Lim  J E, El-Azeem  S A M A, Choi  B, Oh S E,  Moon D H,  Ok Y S. Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue. Environmental Science and Pollution Research International, 2013, 20(3): 1719–1726
https://doi.org/10.1007/s11356-012-1104-9 pmid: 22864756
21 Mittal A, Teotia  M, Soni R K,  Mittal J. Applications of egg shell and egg shell membrane as adsorbents: a review. Journal of Molecular Liquids, 2016, 223: 376–387
https://doi.org/10.1016/j.molliq.2016.08.065
22 Rauret G, López-Sánchez  J F, Sahuquillo  A, Barahona E,  Lachica M,  Ure A M,  Davidson C M,  Gomez A,  Lück D,  Bacon J,  Yli-Halla M,  Muntau H,  Quevauviller P. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. Journal of Environmental Monitoring, 2000, 2(3): 228–233
https://doi.org/10.1039/b001496f pmid: 11256704
23 Charrier M, Marie  A, Guillaume D,  Bédouet L,  Le Lannic J,  Roiland C,  Berland S,  Pierre J S,  Le Floch M,  Frenot Y,  Lebouvier M. Soil calcium availability influences shell ecophenotype formation in the sub-antarctic land snail, Notodiscus hookeri. PLoS One, 2013, 8(12): e84527 
https://doi.org/10.1371/journal.pone.0084527 pmid: 24376821
24 Janoš P, Vávrová  J, Herzogová L,  Pilařová V. Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: A sequential extraction study. Geoderma, 2010, 159(3–4): 335–341
https://doi.org/10.1016/j.geoderma.2010.08.009
25 Sungur A, Soylak  M, Ozcan H. Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability. Chemical Speciation and Bioavailability, 2014, 26(4): 219–230
https://doi.org/10.3184/095422914X14147781158674
26 Ministry of Environmental Protection of the People’s Republic of China. Environmental quality standard for soil (15618–1995). Beijing: Standards Press of China, 1995 (in Chinese)
27 Nobuntou W, Parkpian  P, Oanh N T K,  Noomhorm A,  Delaune R D,  Jugsujinda A. Lead distribution and its potential risk to the environment: lesson learned from environmental monitoring of abandon mine. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2010, 45(13): 1702–1714 
https://doi.org/10.1080/10934529.2010.513232 pmid: 20853202
28 Zhuang P, McBride  M B, Xia  H, Li N,  Li Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. The Science of the Total Environment, 2009, 407(5): 1551–1561 
https://doi.org/10.1016/j.scitotenv.2008.10.061 pmid: 19068266
29 Ok Y S, Lee  S S, Jeon  W T, Oh  S E, Usman  A R, Moon  D H. Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil. Environmental Geochemistry and Health, 2011, 33(S1): 31–39
https://doi.org/10.1007/s10653-010-9362-2 pmid: 21063750
30 Nur Aini I N,  Ezrin M H,  Aimrun W. Relationship between soil apparent electrical conductivity and pH value of Jawa series in oil palm plantation. Agriculture and Agricultural Science Procedia, 2014, 2: 199–206 
https://doi.org/10.1016/j.aaspro.2014.11.028
31 Oh C, Han  Y S, Park  J H, Bok  S, Cheong Y,  Yim G, Ji  S. Field application of selective precipitation for recovering Cu and Zn in drainage discharged from an operating mine. The Science of the Total Environment, 2016, 557– 558: 212–220
https://doi.org/10.1016/j.scitotenv.2016.02.209 pmid: 26994808
32 Pontoni L, Van Hullebusch  E D, Pechaud  Y, Fabbricino M,  Esposito G,  Pirozzi F. Colloidal mobilization and fate of trace heavy metals in semi-saturated artificial soil (OECD) irrigated with treated wastewater. Sustainability, 2016, 8(12): 1257
https://doi.org/10.3390/su8121257
33 Bangira C, Loeppert  R H, Moore  T J, Hons  F M, Shahandeh  H. Relative effectiveness of CaCO3 and Ca (OH)2 in minimizing metals solubility in contaminated sediment. Journal of Soils and Sediments, 2017, 17(6): 1796–1805 
https://doi.org/10.1007/s11368-016-1641-9
34 Kumpiene J, Lagerkvist  A, Maurice C.Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–A review. Waste Management, 2008, 28(1): 215–225
35 Cao X, Ma  L Q. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environmental Pollution (Barking, Essex: 1987), 2004, 132(3): 435–442
https://doi.org/10.1016/j.envpol.2004.05.019 pmid: 15325459
36 Zeng L, Zhu  T, Gao Y,  Wang Y, Ning  C, Björn L O,  Chen D, Li  S. Effects of Ca addition on the uptake, translocation, and distribution of Cd in Arabidopsis thaliana. Ecotoxicology and Environmental Safety, 2017, 139: 228–237
https://doi.org/10.1016/j.ecoenv.2017.01.023 pmid: 28152404
37 Prasad M N V. Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany, 1995, 35(4): 525–545 
https://doi.org/10.1016/0098-8472(95)00024-0
[1] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[2] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[3] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[4] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[5] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[6] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[7] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[8] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
[9] Jie Ren, Zhuo Zhang, Mei Wang, Guanlin Guo, Ping Du, Fasheng Li. Phosphate-induced differences in stabilization efficiency for soils contaminated with lead, zinc, and cadmium[J]. Front. Environ. Sci. Eng., 2018, 12(2): 10-.
[10] Teza Mwamulima, Xiaolin Zhang, Yongmei Wang, Shaoxian Song, Changsheng Peng. Novel approach to control adsorbent aggregation: iron fixed bentonite-fly ash for Lead (Pb) and Cadmium (Cd) removal from aqueous media[J]. Front. Environ. Sci. Eng., 2018, 12(2): 2-.
[11] Tong Chi, Jiane Zuo, Fenglin Liu. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar[J]. Front. Environ. Sci. Eng., 2017, 11(2): 15-.
[12] Sheng Huang, Xin Zhao, Yanqiu Sun, Jianli Ma, Xiaofeng Gao, Tian Xie, Dongsheng Xu, Yi Yu, Youcai Zhao. Pollution of hazardous substances in industrial construction and demolition wastes and their multi-path risk within an abandoned pesticide manufacturing plant[J]. Front. Environ. Sci. Eng., 2017, 11(1): 12-.
[13] Boran WU, Dongyang WANG, Xiaoli CHAI, Fumitake TAKAHASHI, Takayuki SHIMAOKA. Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal solid waste incinerators as cement additives[J]. Front. Environ. Sci. Eng., 2016, 10(4): 8-.
[14] Md. Lutfor RAHMAN,Shaheen M. SARKAR,Mashitah Mohd YUSOFF. Efficient removal of heavy metals from electroplating wastewater using polymer ligands[J]. Front. Environ. Sci. Eng., 2016, 10(2): 352-361.
[15] Jiwan SINGH,Ajay S. KALAMDHAD. Effect of lime on speciation of heavy metals during composting of water hyacinth[J]. Front. Environ. Sci. Eng., 2016, 10(1): 93-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed