Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (2) : 390-398    https://doi.org/10.1007/s11783-015-0818-6
RESEARCH ARTICLE
Microprofiles of activated sludge aggregates using microelectrodes in completely autotrophic nitrogen removal over nitrite (CANON) reactor
Yongtao LV1,Xuan CHEN1,Lei WANG1,*(),Kai JU1,Xiaoqiang CHEN2,Rui MIAO1,Xudong WANG1
1. School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2. College of Environment and Resource, Shaanxi University of Science and Technology, Xi’an 710021, China
 Download: PDF(989 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Microsensor measurements and fluorescence in situ hybridization (FISH) analysis were combined to investigate the microbial populations and activities in a laboratory-scale sequencing batch reactor (SBR) for completely autotrophic nitrogen removal over nitrite (CANON). Fed with synthetic wastewater rich in ammonia, the SBR removed 82.5±5.4% of influent nitrogen and a maximum nitrogen-removal rate of 0.52 kgN·m−3·d−1 was achieved. The FISH analysis revealed that aerobic ammonium-oxidizing bacteria (AerAOB) Nitrosomonas and anaerobic ammonium-oxidizing bacteria (AnAOB) dominated the community. To quantify the microbial activities inside the sludge aggregates, microprofiles were measured using pH, dissolved oxygen (DO), NH4+, NO2 and NO3 microelectrodes. In the outer layer of sludge aggregates (0–700 μm), nitrite-oxidizing bacteria (NOB) showed high activity with 4.1 μmol·cm−3·h−1 of maximum nitrate production rate under the condition of DO concentration higher than 3.3 mg·L−1. Maximum AerAOB activity was detected in the middle layer (depths around 1700 μm) where DO concentration was 1.1 mg·L−1. In the inner layer (2200–3500 μm), where DO concentration was below 0.9 mg·L−1, AnAOB activity was detected. We thus showed that information obtained from microscopic views can be helpful in optimizing the SBR performance.

Keywords microelectrodes      CANON      aerobic ammonium-oxidizing bacteria      anaerobic ammonium-oxidizing bacteria      nitrite-oxidizing bacteria     
Corresponding Author(s): Lei WANG   
Online First Date: 09 October 2015    Issue Date: 01 February 2016
 Cite this article:   
Yongtao LV,Xuan CHEN,Lei WANG, et al. Microprofiles of activated sludge aggregates using microelectrodes in completely autotrophic nitrogen removal over nitrite (CANON) reactor[J]. Front. Environ. Sci. Eng., 2016, 10(2): 390-398.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0818-6
https://academic.hep.com.cn/fese/EN/Y2016/V10/I2/390
probe targeted organisms % formamide NaCl /(mmol·L−1) Ref.
Amx820 AnAOB Candidatus “Brocadia anammoxidans” and C. “Kuenenia stuttgartiensis” 40 56 [19]
Nit3 Nitrobacter sp. 40 25 [20]
Ntspa712 most members of the phylum Nitrospirae 50 28 [21]
NSO190 betaproteo bacterial AerAOB 55 25 [22]
NEU653 most of the halophilic and halotolerant Nitrosomonas sp. 40 56 [23]
Tab.1  Targeted organisms and the oligonucleotide probes
Fig.1  Time course of nitrogen removal performance in the SBR system
Fig.2  Particle size and distribution of the biomass
Fig.3  FISH analysis of the microbial community structure on day 85 (a: Phase contrast-micrograph. b: The same section of biomass showing Nitrosomonas-like AerAOB stained with HEX (pink) and AnAOB stained with FITC (green)
Fig.4  Steady-state microprofiles of DO and pH (a), NH 4 + (b), N O 2 (c) and N O 3 (d) inside the sludge aggregates
Fig.5  Variation of net volumetric rates inside the sludge aggregates at different depths (a, b and c correspond to ammonium, nitrate and nitrite)
reactor influent ammonia concentration/(mgN·L−1) sludge morphology DO concentration/(mg·L−1) Ref.
nitrogen-removal biologic filter 50 0.1−0.3 [12]
granular sludge bed reactor 431.7±25.5 granules 0.2−0.8 [31]
continuous reactor 100−1000 granules 1.5 [14]
up-flow biofilter 100−500 6.5 (effluent) [13]
SBR 256−666 granules 6.6 [11]
SBR 130−190 flocs and small-diameter granules <0.9 this study
Tab.2  Comparison of DO concentration in single-stage autotrophic nitrogen-removal system
1 Malik  O A, Hsu  A, Johnson  L A, de Sherbinin  A. A global indicator of wastewater treatment to inform the Sustainable Development Goals (SDGs). Environmental Science & Policy, 2015, 48: 172–185
https://doi.org/10.1016/j.envsci.2015.01.005
2 Hendrickx  T L G, Wang  Y, Kampman  C, Zeeman  G, Temmink  H, Buisman  C J N. Autotrophic nitrogen removal from low strength waste water at low temperature. Water Research, 2012, 46(7): 2187–2193
https://doi.org/10.1016/j.watres.2012.01.037 pmid: 22349000
3 Desmidt  E, Monballiu  A, De Clippeleir  H, Verstraete  W, Meesschaert  B D. Autotrophic nitrogen removal after ureolytic phosphate precipitation to remove both endogenous and exogenous nitrogen. Water Science and Technology, 2013, 67(7): 1425–1433
https://doi.org/10.2166/wst.2013.666 pmid: 23552229
4 Jetten  M S, Strous  M, van de Pas-Schoonen  K T, Schalk  J, van Dongen  U G, van de Graaf  A A, Logemann  S, Muyzer  G, van Loosdrecht  M C, Kuenen  J G. The anaerobic oxidation of ammonium. FEMS Microbiology Reviews, 1998, 22(5): 421–437
https://doi.org/10.1111/j.1574-6976.1998.tb00379.x pmid: 9990725
5 Liang  Y, Li  D, Zhang  X, Zeng  H, Yang  Z, Cui  S, Zhang  J. Stability and nitrite-oxidizing bacteria community structure in different high-rate CANON reactors. Bioresource Technology, 2014, 175C: 189–194
pmid: 25459821
6 Kumar  M, Lin  J G. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal—Strategies and issues. Journal of Hazardous Materials, 2010, 178(1−3): 1–9
https://doi.org/10.1016/j.jhazmat.2010.01.077 pmid: 20138428
7 Third  K A, Sliekers  A O, Kuenen  J G, Jetten  M S M. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. Systematic and Applied Microbiology, 2001, 24(4): 588–596
https://doi.org/10.1078/0723-2020-00077 pmid: 11876366
8 Cho  S, Fujii  N, Lee  T, Okabe  S. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor. Bioresource Technology, 2011, 102(2): 652–659
https://doi.org/10.1016/j.biortech.2010.08.031 pmid: 20817444
9 Zhang  X, Li  D, Liang  Y, Zhang  Y, Fan  D, Zhang  J. Application of membrane bioreactor for completely autotrophic nitrogen removal over nitrite (CANON) process. Chemosphere, 2013, 93(11): 2832–2838
https://doi.org/10.1016/j.chemosphere.2013.09.086 pmid: 24182401
10 Wang  L, Zheng  P, Xing  Y, Li  W, Yang  J, Abbas  G, Liu  S, He  Z, Zhang  J, Zhang  H, Lu  H. Effect of particle size on the performance of autotrophic nitrogen removal in the granular sludge bed reactor and microbiological mechanisms. Bioresource Technology, 2014, 157: 240–246
https://doi.org/10.1016/j.biortech.2014.01.116 pmid: 24561629
11 Vázquez-Padín  J, Mosquera-Corral  A, Campos  J L, Méndez  R, Revsbech  N P. Microbial community distribution and activity dynamics of granular biomass in a CANON reactor. Water Research, 2010, 44(15): 4359–4370
https://doi.org/10.1016/j.watres.2010.05.041 pmid: 20646732
12 Kwak  W, McCarty  P L, Bae  J, Huang  Y T, Lee  P H. Efficient single-stage autotrophic nitrogen removal with dilute wastewater through oxygen supply control. Bioresource Technology, 2012, 123: 400–405
https://doi.org/10.1016/j.biortech.2012.07.076 pmid: 22940348
13 Chang  X, Li  D, Liang  Y, Yang  Z, Cui  S, Liu  T, Zeng  H, Zhang  J. Performance of a completely autotrophic nitrogen removal over nitrite process for treating wastewater with different substrates at ambient temperature. Journal of Environmental Sciences (China), 2013, 25(4): 688–697
https://doi.org/10.1016/S1001-0742(12)60094-1 pmid: 23923777
14 Qiao  S, Tian  T, Duan  X, Zhou  J, Cheng  Y. Novel single-stage autotrophic nitrogen removal via co-immobilizing partial nitrifying and anammox biomass. Chemical Engineering Journal, 2013, 230: 19–26
https://doi.org/10.1016/j.cej.2013.06.048
15 Xiao  Y, Wu  S, Yang  Z H, Wang  Z J, Yan  C Z, Zhao  F. In situ probing the effect of potentials on the microenvironment of heterotrophic denitrification biofilm with microelectrodes. Chemosphere, 2013, 93(7): 1295–1300
https://doi.org/10.1016/j.chemosphere.2013.06.065 pmid: 23880237
16 Li  B, Bishop  P L. Micro-profiles of activated sludge floc determined using microelectrodes. Water Research, 2004, 38(5): 1248–1258
https://doi.org/10.1016/j.watres.2003.11.019 pmid: 14975658
17 Lv  Y, Wang  L, Sun  T, Wang  X, Yang  Y, Wang  Z. Autotrophic nitrogen removal discovered in suspended nitritation system. Chemosphere, 2010, 79(2): 180–185
https://doi.org/10.1016/j.chemosphere.2010.02.007 pmid: 20188394
18 American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 21st ed. American Water Works Association and Water Pollution Control Federation, Washington DC, USA, 2005
19 Schmid  M, Schmitz-Esser  S, Jetten  M, Wagner  M. 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environmental Microbiology, 2001, 3(7): 450–459
https://doi.org/10.1046/j.1462-2920.2001.00211.x pmid: 11553235
20 Vilajeliu-Pons  A, Puig  S, Pous  N, Salcedo-Dávila  I, Bañeras  L, Balaguer  M D, Colprim  J. Microbiome characterization of MFCs used for the treatment of swine manure. Journal of Hazardous Materials, 2015, 288: 60–68
https://doi.org/10.1016/j.jhazmat.2015.02.014 pmid: 25698567
21 Daims  H, Nielsen  J L, Nielsen  P H, Schleifer  K H, Wagner  M. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Applied and Environmental Microbiology, 2001, 67(11): 5273–5284
https://doi.org/10.1128/AEM.67.11.5273-5284.2001 pmid: 11679356
22 Rongsayamanont  C, Limpiyakorn  T, Khan  E. Effects of inoculum type and bulk dissolved oxygen concentration on achieving partial nitrification by entrapped-cell-based reactors. Bioresource Technology, 2014, 164: 254–263
https://doi.org/10.1016/j.biortech.2014.04.094 pmid: 24862001
23 Figueroa  M, Vázquez-Padín  J R, Mosquera-Corral  A, Campos  J L, Méndez  R. Is the CANON reactor an alternative for nitrogen removal from pre-treated swine slurry? Biochemical Engineering Journal, 2012, 65(15): 23–29
https://doi.org/10.1016/j.bej.2012.03.008
24 Wang  L, Lv  Y, Wang  X, Yang  Y, Bai  X. Micro-analysis of nitrogen transport and conversion inside activated sludge flocs using microelectrodes. Frontiers of Environmental Science & Engineering in China, 2011, 5(4): 633–638
https://doi.org/10.1007/s11783-011-0329-z
25 De Beer  D, Schramm  A, Santegoeds  C M, Kühl  M. A nitrite microsensor for profiling environmental biofilms. Applied and Environmental Microbiology, 1997, 63(3): 973–977
pmid: 16535560
26 Ploug  H, Jorgensen  B B. A net-jet flow system for mass transfer and microsensor studies of sinking aggregates. Marine Ecology Progress Series, 1999, 176: 279–290
https://doi.org/10.3354/meps176279
27 Okabe  S, Oshiki  M, Takahashi  Y, Satoh  H. N2O emission from a partial nitrification-anammox process and identification of a key biological process of N2O emission from anammox granules. Water Research, 2011, 45(19): 6461–6470
https://doi.org/10.1016/j.watres.2011.09.040 pmid: 21996609
28 Keluskar  R, Nerurkar  A, Desai  A. Development of a simultaneous partial nitrification, anaerobic ammonia oxidation and denitrification (SNAD) bench scale process for removal of ammonia from effluent of a fertilizer industry. Bioresource Technology, 2013, 130: 390–397
https://doi.org/10.1016/j.biortech.2012.12.066 pmid: 23313684
29 Daverey  A, Hung  N T, Dutta  K, Lin  J G. Ambient temperature SNAD process treating anaerobic digester liquor of swine wastewater. Bioresource Technology, 2013, 141: 191–198
https://doi.org/10.1016/j.biortech.2013.02.045 pmid: 23561955
30 Liang  Y, Li  D, Zhang  X, Zeng  H, Yang  Z, Zhang  J. Microbial characteristics and nitrogen removal of simultaneous partial nitrification, anammox and denitrification (SNAD) process treating low C/N ratio sewage. Bioresource Technology, 2014, 169: 103–109
https://doi.org/10.1016/j.biortech.2014.06.064 pmid: 25036337
31 Wang  L, Zheng  P, Chen  T, Chen  J, Xing  Y, Ji  Q, Zhang  M, Zhang  J. Performance of autotrophic nitrogen removal in the granular sludge bed reactor. Bioresource Technology, 2012, 123: 78–85
https://doi.org/10.1016/j.biortech.2012.07.112 pmid: 22940302
[1] Youfang Chen, Yimin Zhou, Xinyi Zhao. PM2.5 over North China based on MODIS AOD and effect of meteorological elements during 2003‒2015[J]. Front. Environ. Sci. Eng., 2020, 14(2): 23-.
[2] Yao Zhang, Yayi Wang, Yuan Yan, Haicheng Han, Min Wu. Characterization of CANON reactor performance and microbial community shifts with elevated COD/N ratios under a continuous aeration mode[J]. Front. Environ. Sci. Eng., 2019, 13(1): 7-.
[3] Hongyan LI, Yu ZHANG, Min YANG, Yoichi KAMAGATA. Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system[J]. Front Envir Sci Eng, 2013, 7(1): 43-48.
[4] Lei WANG, Yongtao LV, Xudong WANG, Yongzhe YANG, Xiaorong BAI. Micro-analysis of nitrogen transport and conversion inside activated sludge flocs using microelectrodes[J]. Front Envir Sci Eng Chin, 2011, 5(4): 633-638.
[5] Pinjing HE, Na YANG, Wenjuan FANG, Fan Lü, Liming SHAO. Interaction and independence on methane oxidation of landfill cover soil among three impact factors: water, oxygen and ammonium[J]. Front Envir Sci Eng Chin, 2011, 5(2): 175-185.
[6] Qingmei YAN, Xuxiang ZHANG, Tong ZHANG, Herbert H P FANG. Seasonal microbial community shift in a saline sewage treatment plant[J]. Front Envir Sci Eng Chin, 2011, 5(1): 40-47.
[7] GUO Jinsong, YANG Guohong, FANG Fang, QIN Yu. Performance of completely autotrophic nitrogen removal over nitrite process under different aeration modes and dissolved oxygen[J]. Front.Environ.Sci.Eng., 2008, 2(4): 439-445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed