|
|
Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system |
Hongyan LI1, Yu ZHANG1, Min YANG1( ), Yoichi KAMAGATA2 |
1. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 2. Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan |
|
|
Abstract The effects of hydraulic retention time (HRT) on the nitrification activities and population dynamics of a conventional activated sludge system fed with synthetic inorganic wastewater were investigated over a period of 260 days. When the HRT was gradually decreased from 30 to 5 h, the specific ammonium-oxidizing rates (SAOR) varied between 0.32 and 0.45 kg NH4+-N (kg mixed liquor suspended solids (MLSS)·d)-1, and the specific nitrate-forming rates (SNFR) increased from 0.11 to 0.50 kg NO3--N (kg MLSS·d)-1, showing that the decrease in HRT led to a significant increase in the nitrite oxidation activity. According to fluorescence in situ hybridization (FISH) analysis results, the proportion of ammonia-oxidizing bacteria (AOBs) among the total bacteria decreased from 33% to 15% with the decrease in HRT, whereas the fraction of nitrite-oxidizing bacteria (NOBs), particularly the fast-growing Nitrobacter sp., increased significantly (from 4% to 15% for NOBs and from 1.5% to 10.6% for Nitrobacter sp.) with the decrease in HRT, which was in accordance with the changes in SNFR. A short HRT favored the relative growth of NOBs, particularly the fast-growing Nitrobacter sp., in the conventional activated sludge system.
|
Keywords
ammonia-oxidizing bacteria
hydraulic retention time
nitrification activity
nitrite-oxidizing bacteria
population dynamics
|
Corresponding Author(s):
YANG Min,Email:yangmin@rcees.ac.cn
|
Issue Date: 01 February 2013
|
|
1 |
Campos J L, Garrido-Fernandez J M, Mendez R, Lema J M. Nitrification at high ammonia loading rates in an activated sludge unit. Bioresource Technology , 1999, 68(2): 141-148 doi: 10.1016/S0960-8524(98)00141-2
|
2 |
Carrera J, Baeza J A, Vicent T, Lafuente J. Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system. Water Research , 2003, 37(17): 4211-4221 doi: 10.1016/S0043-1354(03)00338-5 pmid:12946903
|
3 |
Geets J, de Cooman M, Wittebolle L, Heylen K, Vanparys B, de Vos P, Verstraete W, Boon N. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Applied Microbiology and Biotechnology , 2007, 75(1): 211-221 doi: 10.1007/s00253-006-0805-8 pmid:17256118
|
4 |
Okabe S, Satoh H, Watanabe Y. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Applied and Environmental Microbiology , 1999, 65(7): 3182-3191 pmid:10388720
|
5 |
Satoh H, Yamakawa T, Kindaichi T, Ito T, Okabe S. Community structures and activities of nitrifying and denitrifying bacteria in industrial wastewater-treating biofilms. Biotechnology and Bioengineering , 2006, 94(4): 762-772 doi: 10.1002/bit.20894 pmid:16477661
|
6 |
Siripong S, Rittmann B E. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Research , 2007, 41(5): 1110-1120 doi: 10.1016/j.watres.2006.11.050 pmid:17254627
|
7 |
Dionisi H M, Layton A C, Robinson K G, Brown J R, Gregory I R, Parker J J, Sayler G S. Quantification of Nitrosomonas oligotropha and Nitrospira spp. using competitive polymerase chain reaction in bench-scale wastewater treatment reactors operating at different solids retention times. Water Environment Research , 2002, 74(5): 462-469 doi: 10.2175/106143002X144815 pmid:12469950
|
8 |
Grady C P, Daigger G T, Lim H C. Biological Wastewater Treatment. New York: Marcel Dekker Inc, 1999
|
9 |
Qin Y Y, Zhang X W, Ren H Q, Li D T, Yang H. Population dynamics of ammonia-oxidizing bacteria in an aerated submerged biofilm reactor for micropolluted raw water pretreatment. Applied Microbiology and Biotechnology , 2008, 79(1): 135-145 doi: 10.1007/s00253-008-1408-3 pmid:18305935
|
10 |
Satoh H, Okabe S, Yamaguchi Y, Watanabe Y. Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode. Water Research , 2003, 37(9): 2206-2216 doi: 10.1016/S0043-1354(02)00617-6 pmid:12691906
|
11 |
Park H D, Noguera D R. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Research , 2004, 38(14-15): 3275-3286 doi: 10.1016/j.watres.2004.04.047 pmid:15276744
|
12 |
Horz H P, Rotthauwe J H, Lukow T, Liesack W. Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. Journal of Microbiological Methods , 2000, 39(3): 197-204 doi: 10.1016/S0167-7012(99)00119-0 pmid:10670766
|
13 |
You S J, Hsu C L, Chuang S H, Ouyang C F. Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems. Water Research , 2003, 37(10): 2281-2290 doi: 10.1016/S0043-1354(02)00636-X pmid:12727236
|
14 |
Mobarry B K, Wagner M, Urbain V, Rittmann B E, Stahl D A. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Applied and Environmental Microbiology , 1996, 62(6): 2156-2162 pmid:8787412
|
15 |
Brandt K K, Hessels?e M, Roslev P, Henriksen K, S?rensen J. Toxic effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains. Applied and Environmental Microbiology , 2001, 67(6): 2489-2498 doi: 10.1128/AEM.67.6.2489-2498.2001 pmid:11375155
|
16 |
Schramm A. Beer de D, Heuvel van den J C, Ottengraf S, Amann R. Microscal distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Applied and Environmental Microbiology , 1999, 65 (8): 3690-3696 pmid:10427067
|
17 |
Rowan A K, Snape J R, Fearnside D, Barer M R, Curtis T P, Head I M. Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiology Ecology , 2003, 43(2): 195-206 doi: 10.1111/j.1574-6941.2003.tb01059.x pmid:19719680
|
18 |
Yu T, Qi R, Li D, Zhang Y, Yang M. Nitrifier characteristics in submerged membrane bioreactors under different sludge retention times. Water Research , 2010, 44(9): 2823-2830 doi: 10.1016/j.watres.2010.02.021 pmid:20227741
|
19 |
Nogueira R, Melo L F, Purkhold U, Wuertz S, Wagner M. Nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon. Water Research , 2002, 36(2): 469-481 doi: 10.1016/S0043-1354(01)00229-9 pmid:11827353
|
20 |
Li H Y, Zhang Y, Gao F, Yu T, Yang M. Effects of hydraulic retention time (HRT) on nitrification performance and microbial community of conventional activated sludge (CAS). Environmental Science , 2006, 27(9): 1862-1865 (in Chinese) pmid:17117646
|
21 |
Kurisu F, Satoh H, Mino T, Matsuo T. Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone profile method. Water Research , 2002, 36(2): 429-438 doi: 10.1016/S0043-1354(01)00225-1 pmid:11827349
|
22 |
Gao M, Yang M, Li H, Yang Q, Zhang Y. Comparison between a submerged membrane bioreactor and a conventional activated sludge system on treating ammonia-bearing inorganic wastewater. Journal of Biotechnology , 2004, 108(3): 265-269 doi: 10.1016/j.jbiotec.2003.12.002 pmid:15006427
|
23 |
Environmental Protection Bureau. The Standard Methods of Water and Wastewater Monitoring and Analysis of China, 4th ed. Beijing: China Environmental Science Press, 2002
|
24 |
Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews , 1995, 59(1): 143-169 pmid:7535888
|
25 |
Li H Y, Yang M, Zhang Y, Yu T, Kamagata Y. Nitrification performance and microbial community dynamics in a submerged membrane bioreactor with complete sludge retention. Journal of Biotechnology , 2006, 123(1): 60-70 doi: 10.1016/j.jbiotec.2005.10.001 pmid:16310272
|
26 |
Hesselose M, Brandt K K, Sorensen J. Quantification of ammonia oxidizing bacteria in soil using microcolony technique combined with fluorescence in situ hybridization (MCFU-FISH). FEMS Microbiology Ecology , 2001, 38 (2 - 3): 87-95
|
27 |
Persson F, Wik T, S?rensson F, Hermansso M. Distribution and activity of ammonia oxidizing bacteria in a large full-scale trickling filter. Water Research , 2002, 36(6): 1439-1448 doi: 10.1016/S0043-1354(01)00345-1 pmid:11996334
|
28 |
Purkhold U, Pommerening-R?ser A, Juretschko S, Schmid M C, Koops H P, Wagner M. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and Environmental Microbiology , 2000, 66(12): 5368-5382 doi: 10.1128/AEM.66.12.5368-5382.2000 pmid:11097916
|
29 |
Luxmy B S, Nakajima F, Yamamoto K. Analysis of bacterial community in membrane- separation bioreactors by fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques. Water Science and Technology , 2000, 41(10-11): 259-268
|
30 |
Wagner M, Rath G, Koops H-P, Flood J, Amann R. In situ analysis of nitrifying bacteria in sewage treatment plants. Water Science and Technology , 1996, 34(1-2): 237-244 doi: 10.1016/0273-1223(96)00514-8
|
31 |
Wang X, Wen X, Criddle C, Wells G, Zhang J, Zhao Y. Community analysis of ammonia-oxidizing bacteria in activated sludge of eight wastewater treatment systems. Journal of Environmental Sciences (China) , 2010, 22(4): 627-634 doi: 10.1016/S1001-0742(09)60155-8 pmid:20617742
|
32 |
Andrews JH, Harris RF. γ- and k- Selection and microbial ecology. Advances in Microbial Ecology , 1986, 9: 99-147
|
33 |
Schramm A, De Beer D, Gieseke A, Amann R. Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm. Environmental Microbiology , 2000, 2(6): 680-686 doi: 10.1046/j.1462-2920.2000.00150.x pmid:11214800
|
34 |
Stehr G, Bottcher B, Dittberner P, Rath G, Koops H P. The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiology Ecology , 1995, 17 (3): 177-186 doi: 10.1111/j.1574-6941.1995.tb00141.x
|
35 |
Hibiya K, Terada A, Tsuneda S, Hirata A. Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor. Journal of Biotechnology , 2003, 100(1): 23-32 doi: 10.1016/S0168-1656(02)00227-4 pmid:12413783
|
36 |
Copp J B, Murphy K. Estimation of the active nitrifying biomass in activated sludge. Water Research , 1995, 29(8): 1855-1862 doi: 10.1016/0043-1354(94)00347-A
|
37 |
Daims H, Ramsing N B, Schleifer K H, Wagner M. Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization. Applied and Environmental Microbiology , 2001, 67(12): 5810-5818 doi: 10.1128/AEM.67.12.5810-5818.2001 pmid:11722938
|
38 |
Hagopian D S, Riley J G. A closer look at the bacteriology of nitrification. Aquacultural Engineering , 1998, 18(4): 223-244 doi: 10.1016/S0144-8609(98)00032-6
|
39 |
Koop H-P, Pommerening-Roser A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiology Ecology , 2001, 37 (1): 1-9 doi: 10.1111/j.1574-6941.2001.tb00847.x
|
40 |
Manser R. Population dynamics and kinetics of nitrifying bacteria in membrane and conventional activated sludge plants. Dissertation for the Doctoral Degree. Swiss Federal Institute of Technology, Zurich , 2005
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|