Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (1) : 43-48    https://doi.org/10.1007/s11783-012-0397-8
RESEARCH ARTICLE
Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system
Hongyan LI1, Yu ZHANG1, Min YANG1(), Yoichi KAMAGATA2
1. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 2. Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan
 Download: PDF(168 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effects of hydraulic retention time (HRT) on the nitrification activities and population dynamics of a conventional activated sludge system fed with synthetic inorganic wastewater were investigated over a period of 260 days. When the HRT was gradually decreased from 30 to 5 h, the specific ammonium-oxidizing rates (SAOR) varied between 0.32 and 0.45 kg NH4+-N (kg mixed liquor suspended solids (MLSS)·d)-1, and the specific nitrate-forming rates (SNFR) increased from 0.11 to 0.50 kg NO3--N (kg MLSS·d)-1, showing that the decrease in HRT led to a significant increase in the nitrite oxidation activity. According to fluorescence in situ hybridization (FISH) analysis results, the proportion of ammonia-oxidizing bacteria (AOBs) among the total bacteria decreased from 33% to 15% with the decrease in HRT, whereas the fraction of nitrite-oxidizing bacteria (NOBs), particularly the fast-growing Nitrobacter sp., increased significantly (from 4% to 15% for NOBs and from 1.5% to 10.6% for Nitrobacter sp.) with the decrease in HRT, which was in accordance with the changes in SNFR. A short HRT favored the relative growth of NOBs, particularly the fast-growing Nitrobacter sp., in the conventional activated sludge system.

Keywords ammonia-oxidizing bacteria      hydraulic retention time      nitrification activity      nitrite-oxidizing bacteria      population dynamics     
Corresponding Author(s): YANG Min,Email:yangmin@rcees.ac.cn   
Issue Date: 01 February 2013
 Cite this article:   
Hongyan LI,Yu ZHANG,Min YANG, et al. Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system[J]. Front Envir Sci Eng, 2013, 7(1): 43-48.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0397-8
https://academic.hep.com.cn/fese/EN/Y2013/V7/I1/43
phase/mode of operationHRT/htime/dinfluent NH4+-N/(mg·L-1)VLRa)/(kg NH4+-N·(m3·d)-1)
130305000.38
220905000.60
315305000.72
410301850.44
57401400.48
6540900.43
Tab.1  Operational conditions and influent in a conventional activated sludge system
phase123456
effluent SS/(mg·L-1)57.69.517.721.228.525.4
Tab.2  Average effluent SS values
Fig.1  Changes in SAOR and SNFR
Fig.1  Changes in SAOR and SNFR
Fig.2  Changes in different AOB fractions
Fig.2  Changes in different AOB fractions
Fig.3  Changes in oxidizers across the phases
Fig.3  Changes in oxidizers across the phases
Fig.4  AOB/NOB by FISH analysis and SAOR/SNFR across the phases
Fig.4  AOB/NOB by FISH analysis and SAOR/SNFR across the phases
1 Campos J L, Garrido-Fernandez J M, Mendez R, Lema J M. Nitrification at high ammonia loading rates in an activated sludge unit. Bioresource Technology , 1999, 68(2): 141-148
doi: 10.1016/S0960-8524(98)00141-2
2 Carrera J, Baeza J A, Vicent T, Lafuente J. Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system. Water Research , 2003, 37(17): 4211-4221
doi: 10.1016/S0043-1354(03)00338-5 pmid:12946903
3 Geets J, de Cooman M, Wittebolle L, Heylen K, Vanparys B, de Vos P, Verstraete W, Boon N. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Applied Microbiology and Biotechnology , 2007, 75(1): 211-221
doi: 10.1007/s00253-006-0805-8 pmid:17256118
4 Okabe S, Satoh H, Watanabe Y. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Applied and Environmental Microbiology , 1999, 65(7): 3182-3191
pmid:10388720
5 Satoh H, Yamakawa T, Kindaichi T, Ito T, Okabe S. Community structures and activities of nitrifying and denitrifying bacteria in industrial wastewater-treating biofilms. Biotechnology and Bioengineering , 2006, 94(4): 762-772
doi: 10.1002/bit.20894 pmid:16477661
6 Siripong S, Rittmann B E. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Research , 2007, 41(5): 1110-1120
doi: 10.1016/j.watres.2006.11.050 pmid:17254627
7 Dionisi H M, Layton A C, Robinson K G, Brown J R, Gregory I R, Parker J J, Sayler G S. Quantification of Nitrosomonas oligotropha and Nitrospira spp. using competitive polymerase chain reaction in bench-scale wastewater treatment reactors operating at different solids retention times. Water Environment Research , 2002, 74(5): 462-469
doi: 10.2175/106143002X144815 pmid:12469950
8 Grady C P, Daigger G T, Lim H C. Biological Wastewater Treatment. New York: Marcel Dekker Inc, 1999
9 Qin Y Y, Zhang X W, Ren H Q, Li D T, Yang H. Population dynamics of ammonia-oxidizing bacteria in an aerated submerged biofilm reactor for micropolluted raw water pretreatment. Applied Microbiology and Biotechnology , 2008, 79(1): 135-145
doi: 10.1007/s00253-008-1408-3 pmid:18305935
10 Satoh H, Okabe S, Yamaguchi Y, Watanabe Y. Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode. Water Research , 2003, 37(9): 2206-2216
doi: 10.1016/S0043-1354(02)00617-6 pmid:12691906
11 Park H D, Noguera D R. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Research , 2004, 38(14-15): 3275-3286
doi: 10.1016/j.watres.2004.04.047 pmid:15276744
12 Horz H P, Rotthauwe J H, Lukow T, Liesack W. Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. Journal of Microbiological Methods , 2000, 39(3): 197-204
doi: 10.1016/S0167-7012(99)00119-0 pmid:10670766
13 You S J, Hsu C L, Chuang S H, Ouyang C F. Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems. Water Research , 2003, 37(10): 2281-2290
doi: 10.1016/S0043-1354(02)00636-X pmid:12727236
14 Mobarry B K, Wagner M, Urbain V, Rittmann B E, Stahl D A. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Applied and Environmental Microbiology , 1996, 62(6): 2156-2162
pmid:8787412
15 Brandt K K, Hessels?e M, Roslev P, Henriksen K, S?rensen J. Toxic effects of linear alkylbenzene sulfonate on metabolic activity, growth rate, and microcolony formation of Nitrosomonas and Nitrosospira strains. Applied and Environmental Microbiology , 2001, 67(6): 2489-2498
doi: 10.1128/AEM.67.6.2489-2498.2001 pmid:11375155
16 Schramm A. Beer de D, Heuvel van den J C, Ottengraf S, Amann R. Microscal distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Applied and Environmental Microbiology , 1999, 65 (8): 3690-3696
pmid:10427067
17 Rowan A K, Snape J R, Fearnside D, Barer M R, Curtis T P, Head I M. Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiology Ecology , 2003, 43(2): 195-206
doi: 10.1111/j.1574-6941.2003.tb01059.x pmid:19719680
18 Yu T, Qi R, Li D, Zhang Y, Yang M. Nitrifier characteristics in submerged membrane bioreactors under different sludge retention times. Water Research , 2010, 44(9): 2823-2830
doi: 10.1016/j.watres.2010.02.021 pmid:20227741
19 Nogueira R, Melo L F, Purkhold U, Wuertz S, Wagner M. Nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon. Water Research , 2002, 36(2): 469-481
doi: 10.1016/S0043-1354(01)00229-9 pmid:11827353
20 Li H Y, Zhang Y, Gao F, Yu T, Yang M. Effects of hydraulic retention time (HRT) on nitrification performance and microbial community of conventional activated sludge (CAS). Environmental Science , 2006, 27(9): 1862-1865 (in Chinese)
pmid:17117646
21 Kurisu F, Satoh H, Mino T, Matsuo T. Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone profile method. Water Research , 2002, 36(2): 429-438
doi: 10.1016/S0043-1354(01)00225-1 pmid:11827349
22 Gao M, Yang M, Li H, Yang Q, Zhang Y. Comparison between a submerged membrane bioreactor and a conventional activated sludge system on treating ammonia-bearing inorganic wastewater. Journal of Biotechnology , 2004, 108(3): 265-269
doi: 10.1016/j.jbiotec.2003.12.002 pmid:15006427
23 Environmental Protection Bureau. The Standard Methods of Water and Wastewater Monitoring and Analysis of China, 4th ed. Beijing: China Environmental Science Press, 2002
24 Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews , 1995, 59(1): 143-169
pmid:7535888
25 Li H Y, Yang M, Zhang Y, Yu T, Kamagata Y. Nitrification performance and microbial community dynamics in a submerged membrane bioreactor with complete sludge retention. Journal of Biotechnology , 2006, 123(1): 60-70
doi: 10.1016/j.jbiotec.2005.10.001 pmid:16310272
26 Hesselose M, Brandt K K, Sorensen J. Quantification of ammonia oxidizing bacteria in soil using microcolony technique combined with fluorescence in situ hybridization (MCFU-FISH). FEMS Microbiology Ecology , 2001, 38 (2 - 3): 87-95
27 Persson F, Wik T, S?rensson F, Hermansso M. Distribution and activity of ammonia oxidizing bacteria in a large full-scale trickling filter. Water Research , 2002, 36(6): 1439-1448
doi: 10.1016/S0043-1354(01)00345-1 pmid:11996334
28 Purkhold U, Pommerening-R?ser A, Juretschko S, Schmid M C, Koops H P, Wagner M. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and Environmental Microbiology , 2000, 66(12): 5368-5382
doi: 10.1128/AEM.66.12.5368-5382.2000 pmid:11097916
29 Luxmy B S, Nakajima F, Yamamoto K. Analysis of bacterial community in membrane- separation bioreactors by fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques. Water Science and Technology , 2000, 41(10-11): 259-268
30 Wagner M, Rath G, Koops H-P, Flood J, Amann R. In situ analysis of nitrifying bacteria in sewage treatment plants. Water Science and Technology , 1996, 34(1-2): 237-244
doi: 10.1016/0273-1223(96)00514-8
31 Wang X, Wen X, Criddle C, Wells G, Zhang J, Zhao Y. Community analysis of ammonia-oxidizing bacteria in activated sludge of eight wastewater treatment systems. Journal of Environmental Sciences (China) , 2010, 22(4): 627-634
doi: 10.1016/S1001-0742(09)60155-8 pmid:20617742
32 Andrews JH, Harris RF. γ- and k- Selection and microbial ecology. Advances in Microbial Ecology , 1986, 9: 99-147
33 Schramm A, De Beer D, Gieseke A, Amann R. Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm. Environmental Microbiology , 2000, 2(6): 680-686
doi: 10.1046/j.1462-2920.2000.00150.x pmid:11214800
34 Stehr G, Bottcher B, Dittberner P, Rath G, Koops H P. The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiology Ecology , 1995, 17 (3): 177-186
doi: 10.1111/j.1574-6941.1995.tb00141.x
35 Hibiya K, Terada A, Tsuneda S, Hirata A. Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor. Journal of Biotechnology , 2003, 100(1): 23-32
doi: 10.1016/S0168-1656(02)00227-4 pmid:12413783
36 Copp J B, Murphy K. Estimation of the active nitrifying biomass in activated sludge. Water Research , 1995, 29(8): 1855-1862
doi: 10.1016/0043-1354(94)00347-A
37 Daims H, Ramsing N B, Schleifer K H, Wagner M. Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization. Applied and Environmental Microbiology , 2001, 67(12): 5810-5818
doi: 10.1128/AEM.67.12.5810-5818.2001 pmid:11722938
38 Hagopian D S, Riley J G. A closer look at the bacteriology of nitrification. Aquacultural Engineering , 1998, 18(4): 223-244
doi: 10.1016/S0144-8609(98)00032-6
39 Koop H-P, Pommerening-Roser A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiology Ecology , 2001, 37 (1): 1-9
doi: 10.1111/j.1574-6941.2001.tb00847.x
40 Manser R. Population dynamics and kinetics of nitrifying bacteria in membrane and conventional activated sludge plants. Dissertation for the Doctoral Degree. Swiss Federal Institute of Technology, Zurich , 2005
[1] Dawei Yu, Jianxing Wang, Libin Zheng, Qianwen Sui, Hui Zhong, Meixue Cheng, Yuansong Wei. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(6): 101-.
[2] Yongtao LV,Xuan CHEN,Lei WANG,Kai JU,Xiaoqiang CHEN,Rui MIAO,Xudong WANG. Microprofiles of activated sludge aggregates using microelectrodes in completely autotrophic nitrogen removal over nitrite (CANON) reactor[J]. Front. Environ. Sci. Eng., 2016, 10(2): 390-398.
[3] Kun DING,Xianghua WEN,Liang CHEN,Daishi HUANG,Fan FEI,Yuyang LI. Abundance and distribution of ammonia-oxidizing archaea in Tibetan and Yunnan plateau agricultural soils of China[J]. Front.Environ.Sci.Eng., 2014, 8(5): 693-702.
[4] Xiaohui WANG, Xianghua WEN, Hengjing YAN, Kun DING, Man HU. Community dynamics of ammonia oxidizing bacteria in a full-scale wastewater treatment system with nitrification stability[J]. Front Envir Sci Eng Chin, 2011, 5(1): 92-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed