Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (1) : 4    https://doi.org/10.1007/s11783-017-0977-8
RESEARCH ARTICLE
Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite
Fenghe Lv1,2, Hua Wang1,2,3(), Zhangliang Li3, Qi Zhang1,4, Xuan Liu1,4, Yan Su4()
1. School of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
2. Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture, Dalian 116023, China
3. Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian 351100, China
4. Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China
 Download: PDF(301 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Deposition Au nanoparticles on both TiO2 and RGO to fabricate Au/TiO2/RGO.

Au/TiO2/RGO displayed a high H2O2 and •OH production in photocatalytic process.

RGO is a good collector to transfer electrons from TiO2 to Au.

A new type of Au/TiO2/reduced graphene oxide (RGO) nanocomposite was fabricated by the hydrothermal synthesis of TiO2 on graphene oxide followed by the photodeposition of Au nanoparticles. Transmission electron microscopy images showed that Au nanoparticles were loaded onto the surface of both TiO2 and RGO. Au/TiO2/RGO had a better photocatalytic activity than Au/TiO2 for the degradation of phenol. Electrochemical measurements indicated that Au/TiO2/RGO had an improved charge transfer capability. Meanwhile, chemiluminescent analysis and electron spin resonance spectroscopy revealed that Au/TiO2/RGO displayed high production of hydrogen peroxide and hydroxyl radicals in the photocatalytic process. This high photocatalytic performance was achieved via the addition of RGO in Au/TiO2/RGO, where RGO served not only as a catalyst support to provide more sites for the deposition of Au nanoparticles but also as a collector to accept electrons from TiO2 to effectively reduce photogenerated charge recombination.

Keywords Reduced graphene oxide      Au      TiO2      Nanocomposite      Photocatalysis     
Corresponding Author(s): Hua Wang,Yan Su   
Issue Date: 01 August 2017
 Cite this article:   
Fenghe Lv,Hua Wang,Zhangliang Li, et al. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0977-8
https://academic.hep.com.cn/fese/EN/Y2018/V12/I1/4
Fig.1  A schematic mechanism of photogenerated electrons migrating in the Au/TiO2/graphene nanocomposite
Fig.2  TEM images of TiO2/RGO before (a) and after (b) the deposition of Au nanoparticles. (c) A higher magnification TEM image of Au/TiO2/RGO
Fig.3  XRD patterns of TiO2/RGO and Au/TiO2/RGO
Fig.4  Raman spectra of Au/TiO2 and Au/TiO2/RGO
Fig.5  Evaluation of phenol degradation under UV light (0.75 mW·cm2) irradiation for no catalyst, TiO2, Au/TiO2, Au/TiO2/0.5RGO, Au/TiO2/1.0RGO and Au/TiO2/1.5RGO
Fig.6  Electrochemical impedance spectroscopy plots of Au/TiO2 and Au/TiO2/RGO both in the dark and under UV light (0.75 mW·cm2) irradiation
Fig.7  The formation of H2O2 for no photocatalyst, TiO2, Au/TiO2, and Au/TiO2/RGO under UV light (0.75 mW·cm2) irradiation for 4 h
Fig.8   ESR spectra of TiO2, Au/TiO2, and Au/TiO2/RGO both in the dark and under UV light irradiation
1 Hoffmann M R, Martin  S T, Choi  W, Bahnemannt D W . Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69–96
https://doi.org/10.1021/cr00033a004
2 Nakata K, Fujishima  A. TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169–189
https://doi.org/10.1016/j.jphotochemrev.2012.06.001
3 Wang H, Quan  X, Yu H T ,  Chen S. Fabrication of a TiO2/carbon nanowall heterojunction and its photocatalytic ability. Carbon, 2008, 46(8): 1126–1132
https://doi.org/10.1016/j.carbon.2008.04.016
4 Hashimoto K, Irie  H, Fujishima A . TiO2 photocatalysis: a historical overview and future prospects. Japanese Journal of Applied Physics, 2005, 44(12): 8269–8285
https://doi.org/10.1143/JJAP.44.8269
5 Mor G K, Shankar  K, Paulose M ,  Varghese O K ,  Grimes C A . Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters, 2006, 6(2): 215–218
https://doi.org/10.1021/nl052099j pmid: 16464037
6 Ge M, Guo  C, Zhu X ,  Ma L, Han  Z, Hu W ,  Wang Y. Photocatalytic degradation of methyl orange using ZnO/TiO2 composites. Frontiers of Environmental Science & Engineering, 2009, 3(3): 271–280
https://doi.org/10.1007/s11783-009-0035-2
7 Wang S, Wang  K, Jehng J ,  Liu L. Preparation of TiO2/MCM-41 by plasma enhanced chemical vapor deposition method and its photocatalytic activity. Frontiers of Environmental Science & Engineering, 2012, 6(3): 304–312
https://doi.org/10.1007/s11783-010-0297-8
8 Tian Y, Tatsuma  T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society, 2005, 127(20): 7632–7637
https://doi.org/10.1021/ja042192u pmid: 15898815
9 Méndez-Medrano M G ,  Kowalska E ,  Lehoux A ,  Herissan A ,  Ohtani B ,  Rau S, Colbeau-Justin  C, Rodríguez-López  J L, Remita  H. Surface modification of TiO2 with Au nanoclusters for efficient water treatment and hydrogen generation under visible light. Journal of Physical Chemistry C, 2016, 120(43): 25010–25022
https://doi.org/10.1021/acs.jpcc.6b06854
10 Gołąbiewska A ,  Malankowska A ,  Jarek M ,  Lisowski W ,  Nowaczyk G ,  Jurga S ,  Zaleska-Medynska A . The effect of gold shape and size on the properties and visible light-induced photoactivity of Au-TiO2. Applied Catalysis B: Environmental, 2016, 196: 27–40
https://doi.org/10.1016/j.apcatb.2016.05.013
11 Stankovich S, Dikin  D A, Dommett  G H B, Kohlhaas  K M, Zimney  E J, Stach  E A, Piner  R D, Nguyen  S T, Ruoff  R S. Graphene-based composite materials. Nature, 2006, 442(7100): 282–286
https://doi.org/10.1038/nature04969 pmid: 16855586
12 Perreault F, Fonseca de Faria  A, Elimelech M . Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 2015, 44(16): 5861–5896
https://doi.org/10.1039/C5CS00021A pmid: 25812036
13 Zhang N, Yang  M Q, Liu  S, Sun Y ,  Xu Y J . Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chemical Reviews, 2015, 115(18): 10307–10377
https://doi.org/10.1021/acs.chemrev.5b00267 pmid: 26395240
14 Zhang H, Lv  X, Li Y ,  Wang Y, Li  J. P25-graphene composite as a high performance photocatalyst. ACS Nano, 2010, 4(1): 380–386
https://doi.org/10.1021/nn901221k pmid: 20041631
15 Zhang N, Zhang  Y, Xu Y J . Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale, 2012, 4(19): 5792–5813
https://doi.org/10.1039/c2nr31480k pmid: 22907128
16 Tu W, Zhou  Y, Zou Z . Versatile graphene-promoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications. Advanced Functional Materials, 2013, 23(40): 4996–5008
https://doi.org/10.1002/adfm.201203547
17 Xiang Q, Yu  J, Jaroniec M . Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. Journal of the American Chemical Society, 2012, 134(15): 6575–6578
https://doi.org/10.1021/ja302846n pmid: 22458309
18 Liu Y, Yu  H, Wang H ,  Chen S, Quan  X, Efficient H . 2 production over Au/graphene/TiO2 induced by surface plasmon resonance of Au and band-gap excitation of TiO2. Materials Research Bulletin, 2014, 59: 111–116
https://doi.org/10.1016/j.materresbull.2014.07.013
19 Yuan J, Shiller  A M. Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection. Analytical Chemistry, 1999, 71(10): 1975–1980
https://doi.org/10.1021/ac981357c
20 Wang H, Zhang  X, Su Y ,  Yu H, Chen  S, Quan X ,  Yang F. Photoelectrocatalytic oxidation of aqueous ammonia using TiO2 nanotube arrays. Applied Surface Science, 2014, 311: 851–857
https://doi.org/10.1016/j.apsusc.2014.05.195
21 Kotal M, Bhowmick  A K. Multifunctional hybrid materials based on carbon nanotube chemically bonded to reduced graphene oxide. Journal of Physical Chemistry C, 2013, 117(48): 25865–25875
https://doi.org/10.1021/jp4097265
22 Wang H, Su  Y, Zhao H ,  Yu H, Chen  S, Zhang Y ,  Quan X. Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4. Environmental Science & Technology, 2014, 48(20): 11984–11990
https://doi.org/10.1021/es503073z pmid: 25232664
23 Yu H, Ma  B, Chen S ,  Zhao Q, Quan  X, Afzal S . Electrocatalytic debromination of BDE-47 at palladized graphene electrode. Frontiers of Environmental Science & Engineering, 2014, 8(2): 180–187
https://doi.org/10.1007/s11783-013-0552-x
[1] Chenchen Li, Lijie Yan, Yiming Li, Dan Zhang, Mutai Bao, Limei Dong. TiO2@palygorskite composite for the efficient remediation of oil spills via a dispersion-photodegradation synergy[J]. Front. Environ. Sci. Eng., 2021, 15(4): 72-.
[2] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[3] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[4] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[5] Reza Katal, Mohammad Tanhaei, Jiangyong Hu. Photocatalytic degradation of the acetaminophen by nanocrystal-engineered TiO2 thin film in batch and continuous system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 27-.
[6] Yingdan Zhang, Na Liu, Wei Wang, Jianteng Sun, Lizhong Zhu. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(6): 103-.
[7] Dawei Yu, Jianxing Wang, Libin Zheng, Qianwen Sui, Hui Zhong, Meixue Cheng, Yuansong Wei. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(6): 101-.
[8] Zhen Bi, Deqing Wanyan, Xiang Li, Yong Huang. Biological conversion pathways of sulfate reduction ammonium oxidation in anammox consortia[J]. Front. Environ. Sci. Eng., 2020, 14(3): 38-.
[9] Jian Wang, Qun Wang, Xueli Gao, Xinxia Tian, Yangyang Wei, Zhen Cao, Chungang Guo, Huifeng Zhang, Zhun Ma, Yushan Zhang. Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes[J]. Front. Environ. Sci. Eng., 2020, 14(1): 6-.
[10] Xuemin Hao, Guanlong Wang, Shuo Chen, Hongtao Yu, Xie Quan. Enhanced activation of peroxymonosulfate by CNT-TiO2 under UV-light assistance for efficient degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2019, 13(5): 77-.
[11] Zhan Wang, Chongyang Shen, Yichun Du, Yulong Zhang, Baoguo Li. Influence of phosphate on deposition and detachment of TiO2 nanoparticles in soil[J]. Front. Environ. Sci. Eng., 2019, 13(5): 79-.
[12] Abdul Ghaffar Memon, Xiaohong Zhou, Yunpeng Xing, Ruoyu Wang, Lanhua Liu, Mohsin Khan, Miao He. Label-free colorimetric nanosensor with improved sensitivity for Pb2+ in water by using a truncated 8–17 DNAzyme[J]. Front. Environ. Sci. Eng., 2019, 13(1): 12-.
[13] Yanqing Duan, Aijuan Zhou, Kaili Wen, Zhihong Liu, Wenzong Liu, Aijie Wang, Xiuping Yue. Upgrading VFAs bioproduction from waste activated sludge via co-fermentation with soy sauce residue[J]. Front. Environ. Sci. Eng., 2019, 13(1): 3-.
[14] Ying Xu, Ning-Yi Zhou. Microbial remediation of aromatics-contaminated soil[J]. Front. Environ. Sci. Eng., 2017, 11(2): 1-.
[15] Xuebiao Nie, Wenjun Liu, Mo Chen, Minmin Liu, Lu Ao. Flow cytometric assessment of the effects of chlorine, chloramine, and UV on bacteria by using nucleic acid stains and 5-cyano-2,3-ditolyltetrazolium chloride[J]. Front. Environ. Sci. Eng., 2016, 10(6): 12-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed