Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (3) : 8    https://doi.org/10.1007/s11783-018-1032-0
RESEARCH ARTICLE
Photolysis and photooxidation of typical gaseous VOCs by UV Irradiation: Removal performance and mechanisms
In-Sun Kang, Jinying Xi(), Hong-Ying Hu
Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(892 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

UV photodegradation of 27 typical VOCs was systematically investigated.

Contribution of photolysis and photooxidation to VOCs removal was identified.

Gaseous VOC could be partially converted to particles by 185/254 nm UV irradiation.

The mineralization and conversion of 27 VOCs by UV irradiation were reported.

Photodegradation by ultraviolet irradiation (UV) is increasingly applied in volatile organic compound (VOC) and odor gas treatments. In this study, 27 typical VOCs, including 11 hydrocarbons and 16 hydrocarbon derivatives, at 150–200 ppm in air and nitrogen gas were treated by a laboratory-scale UV reactor with 185/254 nm irradiation to systematically investigate their removal and conversion by UV irradiation. For the tested 27 VOCs, the VOC removal efficiencies in air were within the range of 13%–97% (with an average of 80%) at a retention time of 53 s, which showed a moderate positive correlation with the molecular weight of the VOCs (R = 0.53). The respective contributions of photolysis and photooxidation to VOC removal were identified for each VOC. According to the CO2 results, the mineralization rate of the tested VOCs was within the range of 9%–90%, with an average of 41% and were negatively correlated to the molecular weight (R = -0.63). Many of the tested VOCs exhibited high concentration particulate matters in the off-gases with a 3–283 mg/m3 PM10 range and a 2–40 mg/m3 PM2.5 range. The carbon balance of each VOC during UV irradiation was analyzed based on the VOC, CO2 and PM10 concentrations. Certain organic intermediates and 23–218 ppm ozone were also identified in the off-gases. Although the UV technique exhibited a high VOC removal efficiency, its drawbacks, specifically low mineralization, particulate matters production, and ozone emission, must be considered prior to its application in VOC gas treatments.

Keywords VOCs      UV photodegradation      Particulate matters      Ozone     
Corresponding Author(s): Jinying Xi   
Issue Date: 26 March 2018
 Cite this article:   
In-Sun Kang,Jinying Xi,Hong-Ying Hu. Photolysis and photooxidation of typical gaseous VOCs by UV Irradiation: Removal performance and mechanisms[J]. Front. Environ. Sci. Eng., 2018, 12(3): 8.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1032-0
https://academic.hep.com.cn/fese/EN/Y2018/V12/I3/8
Type VOCs Molecular
formula
Molecular weight
(Da)
Melting point
(K)
Boiling point
(K)
Hydrocarbon
(11 VOCs)
Benzene C6H6 78.11 278.6 353.3
Toluene C7H8 92.14 178.1 383.8
Ethylbenzene C8H10 106.16 179.0 409.3
p-Xylene C8H10 106.17 286.4 411.4
m-Xylene C8H10 106.17 225.0 412.3
o-Xylene C8H10 106.17 248.0 417.0
Styrene C8H8 104.14 241.0 419.0
Mesitylene C9H12 120.19 225.0 437.8
n-Propylbenzene C9H12 120.19 173.7 432.4
cyclohexane C6H12 84.16 279.6 353.9
n-Hexane C6H14 86.18 178.0 341.9
Hydrocarbon
derivatives
(16 VOCs)
Propionaldehyde C3H6O 58.08 192.2 391.3
Acetone C3H6O 58.08 178.2 329.7
Methanol CH4O 32.04 176.2 354.7
Tetrahydrofuran C4H8O 72.11 164.8 404.2
Ethyl acetate C4H8O2 88.11 189.6 428.9
Ethanol C2H6O 46.07 159.2 310.7
Isopropanol C3H8O 60.1 184.7 351.6
n-Propanol C3H8O 60.10 147.2 350.4
n-Butanol C4H10O 74.12 184.3 370.3
Acetic acid C2H4O2 60.05 289.8 337.7
n-Butyl acetate C6H12O2 116.16 195.2 426.0
Cyclohexanone C6H10O 98.14 228.2 390.5
Dimethyl sulfide C2H6S 62.13 174.9 399.3
Acetonitrile C2H3N 41.05 227.5 370.3
N,N-Dimethylformamide C3H7NO 73.09 212.7 321.2
Chlorobenzene C6H5Cl 112.56 228.2 339.2
Tab.1  Properties of 27 VOCs selected for photodegradation experiment
Fig.1  Diagram of UV photodegradation experimental system
VOCs Removal efficiency
in air
REair (%)
Removal efficiency in N2
REN2 (%)
REN2/REair
n-Propylbenzene 77 35 0.45
Benzene 81 23 0.28
Toluene 84 42 0.50
p-Xylene 86 37 0.43
Ethyl Benzene 88 48 0.55
m-Xylene 91 4 0.04
o-Xylene 92 78 0.85
Styrene 95 52 0.55
Mesitylene 96 32 0.33
Cyclohexane 97 19 0.20
n-Hexane 97 89 0.92
Acetonitrile 13 15 1.15
Isopropanol 34 3 0.09
Acetic acid 45 21 0.47
Acetone 56 35 0.63
Ethyl acetate 69 25 0.36
Methanol 73 9 0.12
N,N-Dimethylformamide 77 5 0.06
Ethanol 78 10 0.13
n-Propanol 80 13 0.78
n-Butyl acetate 84 15 0.18
Cyclohexanone 89 22 0.25
n-Butanol 89 14 0.16
Propionaldehyde 93 22 0.24
Dimethyl sulfide 94 93 0.99
Tetrahydrofuran 95 39 0.41
Chlorobenzene 95 50 0.52
Tab.2  VOC removal efficiencies for 27 tested VOCs by UV irradiation in air and N2
VOCs Inlet CO2
(ppm)
Outlet CO2
(ppm)
Generated CO2
(ppm)
MR
(%)
No VOCs (UV off) 351 351 0
No VOCs (UV on) 393 398 5
Styrene 248 354 106 9
Toluene 337 498 161 16
o-Xylene 226 398 172 16
Ethylbenzene 312 531 219 17
Mesitylene 361 648 247 18
Cyclohexane 316 515 199 19
n-Propylbenzene 260 575 315 21
m-Xylene 218 547 329 33
Benzene 345 610 265 35
p-Xylene 310 761 451 37
n-Hexane 260 1071 811 73
Dimethyl sulfide 287 362 75 26
Acetic acid 352 392 40 28
Chlorobenzene 324 596 272 32
Tetrahydrofuran 271 510 239 38
n-Propanol 380 533 153 43
Cyclohexanone 347 807 460 46
Ethyl acetate 274 523 249 46
Acetone 254 437 183 50
n-Butanol 339 615 276 50
n-Butyl acetate 228 615 386 50
Acetonitrile 441 455 14 53
Ethanol 266 412 146 58
Propionaldehyde 435 726 291 62
N,N-Dimethylformamide 371 652 281 71
isopropanol 302 441 139 81
Methanol 375 468 93 90
Tab.3  Inlet and outlet CO2 concentrations and the mineralization rate (MR) of 27 tested VOCs by UV photodegradation in air
VOCs Intermediates identified Chemical structure Report in literature
Benzene Benzene acetaldehyde
Benzaldehyde
Benzoic Acid
Phenyl Methyl Ketone
Ethylbenzene Benzaldehyde Cheng et al. [18]
Benzyl alcohol Cheng et al. [18]
3-Methylbenzyl alcohol
Phenyl methyl ketone Cheng et al. [18]
2-Ethylphenol
Toluene Benzene Jeong et al. [26]
Styrene Benzene
Toluene
Benzaldehyde
Benzene acetaldehyde
Phenyl Methyl Ketone
n-Hexane 3-Hexanone
2-Hexanone
3-Hexanol
n-Butanol Paraldehyde
Tab.4  Intermediate VOCs detected in the off-gas of the UV reactor
VOCs Inlet PM2.5 Outlet PM2.5 Generated PM2.5 Inlet PM10 Outlet PM10 Generated PM10
No VOCs with UV off 42 42 0 131 131 0
No VOCs with UV on 27 31 4 82 95 13
n-Hexane 21 22 1 64 76 12
p-Xylene 24 39478 39454 72 66525 66453
n-Propylbenzene 15 5026 5011 27 125128 125101
m-Xylene 64 23817 23753 186 165588 165402
Benzene 9 23667 23658 26 174497 174471
Mesitylene 22 22236 22214 62 190266 190204
Ethylbenzene 21 16842 16821 76 231848 231772
o-Xylene 34 14013 13979 91 246558 246467
Styrene 34 11878 11844 116 262136 262020
Toluene 29 11828 11799 90 264542 264452
Cyclohexane 25 9611 9586 81 282894 282813
n-Butyl acetate 8 11 3 24 24 0
n-Propanol 45 45 0 61 62 1
Ethyl acetate 14 19 5 59 65 6
Acetic acid 24 29 5 78 87 9
Acetonitrile 9 12 3 30 43 13
Ethanol 33 35 2 85 99 14
Methanol 16 22 6 42 63 21
Propionaldehyde 27 30 3 63 92 29
Isopropanol 21 23 2 51 87 36
Acetone 71 2042 1971 193 3644 3451
n-Butanol 4 4100 4096 21 8380 8359
Tetrahydrofuran 200 25506 25306 453 37344 36891
Chlorobenzene 35 4100 4065 103 103110 103007
N,N-Dimethylformamide 16 5335 5319 46 143294 143248
Cyclohexanone 31 14518 14487 76 247693 247617
Dimethyl sulfide 186 10005 9819 476 249248 248772
Tab.5  Concentrations of particulate matters (PM2.5 and PM10) in the inlet and outlet of UV reactor for the 27 tested VOCs (unit: mg/m3)
Fig.27  Carbon balance of the VOC conversion for the tested VOCs: (a) results for hydrocarbons, (b) results for hydrocarbon derivatives. The fraction of each form of VOC or its product after UV irradiation is indicated. The original VOCs is the residual VOCs in the off-gas, and other intermediates are all gaseous products except for CO2
Fig.28  Concentration of ozone generated by UV irradiation: (a) results for hydrocarbons, (b) results for hydrocarbon derivatives. Blank is the off-gas sample without VOCs in air but with the UV on
Fig.29  Some correlations between the VOCs properties, removal and products based on different groups of VOCs: (a) MW-REair for 27 VOCs, (b) MW-O3 for 11 hydrocarbons, (c) MW-MR for 27 VOCs, (d) MW-CO2 for 16 derivatives, (e) PM10-MR for 27 VOCs, (f) PM10-CO2 for 11 hydrocarbons. R is the Pearson correlation coefficient
1 Duan H, Liu X, Yan M, Wu Y, Liu Z. Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China. Frontiers of Environmental Science and Engineering, 2016, 10(1): 73–84
https://doi.org/doi.org/10.1007/s11783-014-0743-0
2 Niu H, Mo Z, Shao M, Lu S, Xie S. Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation. Frontiers of Environmental Science and Engineering, 2016, 10(5): 1
https://doi.org/doi.org/10.1007/s11783-016-0828-z
3 Zhao P, Zhu L. Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air. Frontiers of Environmental Science and Engineering, 2016, 10(2): 219–228
https://doi.org/doi.org/10.1007/s11783-014-0760-z
4 Qiao N, Zhang X, He C, Li Y, Zhang Z, Cheng J, Hao Z. Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts. Frontiers of Environmental Science and Engineering, 2016, 10(3): 458–466
https://doi.org/doi.org/10.1007/s11783-015-0802-1
5 Berenjian A, Chan N, Malmiri H J. Volatile organic compounds removal methods: A review. American Journal of Biochemistry and Biotechnology, 2012, 8(4): 220–229
https://doi.org/10.3844/ajbbsp.2012.220.229
6 Parmar G R, Rao N N. Emerging control technologies for volatile organic compounds. Critical Reviews in Environmental Science and Technology, 2008, 39(1): 41–78
https://doi.org/10.1080/10643380701413658
7 Wekhof A. Treatment of contaminated water, air and soil with UV flash lamps. Environment and Progress, 1991, 10(4): 241–247
https://doi.org/10.1002/ep.670100408
8 Bhowmick M, Semmens M J. Ultraviolet photooxidation for the destruction of VOCs in air. Water Research, 1994, 28(11): 2407–2415
https://doi.org/10.1016/0043-1354(94)90057-4
9 Hay S O, Obee T, Luo Z, Jiang T, Meng Y, He J, Murphy S C, Suib S. The viability of photocatalysis for air purification. Molecules (Basel, Switzerland), 2015, 20(1): 1319–1356
https://doi.org/10.3390/molecules20011319 pmid: 25594345
10 George C, Beeldens A, Barmpas F, Doussin J F, Manganelli G, Herrmann H, Kleffmann J, Mellouki A. Impact of photocatalytic remediation of pollutants on urban air quality. Frontiers of Environmental Science & Engineering, 2016, 10(5): 2
https://doi.org/10.1007/s11783-016-0834-1
11 Wang J H, Ray M B. Application of ultraviolet photooxidation to remove organic pollutants in the gas phase. Separation and Purification Technology, 2000, 19(1–2): 11–20
https://doi.org/10.1016/S1383-5866(99)00078-7
12 Kang I S, Xi J Y, Hu H Y. Effects of different operating conditions on the VOCs removal performance of UV irradiation reactors. Journal of Odor and Indoor Environment, 2017, 16(1): 72–80
https://doi.org/10.15250/joie.2017.16.1.72
13 Feiyan C, Pehkonen S O, Ray M B. Kinetics and mechanisms of UV-photodegradation of chlorinated organics in the gas phase. Water Research, 2002, 36(17): 4203–4214
https://doi.org/10.1016/S0043-1354(02)00140-9 pmid: 12420925
14 Yu J, Cai W, Chen J, Feng L, Jiang Y, Cheng Z. Conversion characteristics and mechanism analysis of gaseous dichloromethane degraded by a VUV light in different reaction media. Journal of Environmental Sciences-China, 2012, 24(10): 1777–1784
https://doi.org/10.1016/S1001-0742(11)61021-8 pmid: 23520847
15 Shen Y S, Ku Y. Treatment of gas-phase volatile organic compounds (VOCs) by the UV/O3 process. Chemosphere, 1999, 38(8): 1855–1866
https://doi.org/10.1016/S0045-6535(98)00400-7
16 Chou M S, Chang K L. UV/ozone degradation of gaseous hexamethyldisilazane (HMDS). Chemosphere, 2007, 69(5): 697–704
https://doi.org/10.1016/j.chemosphere.2007.05.040 pmid: 17604817
17 Mahmoudkhani F, Rezaei M, Asili V, Atyabi M, Vaisman E, Langford C H, De Visscher A. Benzene degradation in waste gas by photolysis and photolysis-ozonation: experiments and modeling. Frontiers of Environmental Science & Engineering, 2016, 10(6): 10
https://doi.org/10.1007/s11783-016-0876-4
18 Cheng Z W, Sun P F, Jiang Y F, Yu J M, Chen J M. Ozone-assisted UV254 nm photodegradation of gaseous ethylbenzene and chlorobenzene: Effects of process parameters, degradation pathways, and kinetic analysis. Chemical Engineering Journal, 2013, 228 (3): 1003–1010
https://doi.org/10.1016/j.cej.2013.05.076
19 Koh L H, Kuhn C S, Mohseni M, Allen D G. Utilizing ultraviolet Photolysis as a pre-treatment of volatile organic compounds upstream of a biological gas cleaning operation. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2004, 79(6): 619–625
https://doi.org/10.1002/jctb.1030
20 Wang C, Xi J Y, Hu H Y, Yao Y. Advantages of combined UV photodegradation and biofiltration processes to treat gaseous chlorobenzene. Journal of Hazardous Materials, 2009, 171(1–3): 1120–1125
https://doi.org/10.1016/j.jhazmat.2009.06.129 pmid: 19616379
21 Braslavskys S E. Glossary of terms used in photochemistry, 3rd ed. Pure and Applied Chemistry, 2007, 79(3): 293–465
22 Kang I S, Xi J Y, Wang C, Hu H Y. UV Photodegradation of chlorinated VOCs: Removal efficiency and products. Journal of Korean Society for Atmospheric Environment, 2017, 33(2): 87–96
https://doi.org/10.5572/KOSAE.2017.33.2.087
23 Ji J, Xu Y, Huang H, He M, Liu S, Liu G, Xie R, Feng Q, Shu Y, Zhan Y, Fang R, Ye X, Leung D Y C. Mesoporous TiO2 under VUV irradiation: Enhanced photocatalytic oxidation for VOCs degradation at room temperature. Chemical Engineering Journal, 2017, 327: 490–499
https://doi.org/10.1016/j.cej.2017.06.130
24 Mohseni M. Gas phase trichloroethylene (TCE) photooxidation and byproduct formation: Photolysis vs. titania/silica based photocatalysis. Chemosphere, 2005, 59(3): 335–342
https://doi.org/10.1016/j.chemosphere.2004.10.054 pmid: 15763086
25 Huang H, Huang H, Zhan Y, Liu G, Wang X, Lu H, Xiao L, Feng Q, Leung D Y C. Efficient degradation of gaseous benzene by VUV photolysis combined with ozone-assisted catalytic oxidation: Performance and mechanism. Applied Catalysis B: Environmental, 2016, 186: 62–68
https://doi.org/10.1016/j.apcatb.2015.12.055
26 Jeong T S, Shin C H, Kim J S, Longzhe C. A study on the treatment of toluene and pilot test by using UV and ozone. Journal of Korean Society of Environmental Technology, 2007, 8: 33–39
27 Holzinger R, Millet D B, Williams B, Lee A, Kreisberg N, Hering S V, Jimenez J, Allan J D, Worsnop D R, Goldstein A H. Emission, oxidation, and secondary organic aerosol formation of volatile organic compounds as observed at Chebogue Point, Nova Scotia. Journal of Geophysical Research, 2007, 112(D10): D10S24
https://doi.org/10.1029/2006JD007599
28 Camredon M, Aumont B, Lee-Taylor J, Madronich S. The SOA/VOC/NOx system: An explicit model of secondary organic aerosol formation. Atmospheric Chemistry and Physics Discussions, 2007, 7: 5599–5610
29 Lee S B, Bae G N, Moon K C. Smog chamber measurements. In: Kim Y J, Platt U, Gu M B, Iwahashi H, eds. Atmospheric and Biological Environmental Monitoring. Dordrecht: Springer, 2009, 105–136
30 Vaden T D, Song C, Zaveri R A, Imre D, Zelenyuk A. Morphology of mixed primary and secondary organic particles and the adsorption of spectator organic gases during aerosol formation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6658–6663
https://doi.org/10.1073/pnas.0911206107 pmid: 20194795
31 Tie X, Madronich S, Li G H, Ying Z, Zhang R, Garcia A R, Lee-Taylor J, Liu Y. Characterizations of chemical oxidants in Mexico City: A regional chemical/dynamical model (WRF-Chem) study. Atmospheric Environment, 2007, 41(9): 1989–2008
https://doi.org/10.1016/j.atmosenv.2006.10.053
[1] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[2] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[3] Jiangbo Jin, Yun Zhu, Jicheng Jang, Shuxiao Wang, Jia Xing, Pen-Chi Chiang, Shaojia Fan, Shicheng Long. Enhancement of the polynomial functions response surface model for real-time analyzing ozone sensitivity[J]. Front. Environ. Sci. Eng., 2021, 15(2): 31-.
[4] Kun Zhang, Jialuo Xu, Qing Huang, Lei Zhou, Qingyan Fu, Yusen Duan, Guangli Xiu. Precursors and potential sources of ground-level ozone in suburban Shanghai[J]. Front. Environ. Sci. Eng., 2020, 14(6): 92-.
[5] Yulu Qiu, Zhiqiang Ma, Weili Lin, Weijun Quan, Weiwei Pu, Yingruo Li, Liyan Zhou, Qingfeng Shi. A study of peroxyacetyl nitrate at a rural site in Beijing based on continuous observations from 2015 to 2019 and the WRF-Chem model[J]. Front. Environ. Sci. Eng., 2020, 14(4): 71-.
[6] Siyu Chen, Lee Blaney, Ping Chen, Shanshan Deng, Mamatha Hopanna, Yixiang Bao, Gang Yu. Ozonation of the 5-fluorouracil anticancer drug and its prodrug capecitabine: Reaction kinetics, oxidation mechanisms, and residual toxicity[J]. Front. Environ. Sci. Eng., 2019, 13(4): 59-.
[7] Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Front. Environ. Sci. Eng., 2019, 13(4): 55-.
[8] Wenjing Lu, Yawar Abbas, Muhammad Farooq Mustafa, Chao Pan, Hongtao Wang. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds[J]. Front. Environ. Sci. Eng., 2019, 13(2): 30-.
[9] Lianjie Guo, Nan Jiang, Jie Li, Kefeng Shang, Na Lu, Yan Wu. Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor[J]. Front. Environ. Sci. Eng., 2018, 12(2): 15-.
[10] Mengqian Lu, Bin-Le Lin, Kazuya Inoue, Zhongfang Lei, Zhenya Zhang, Kiyotaka Tsunemi. PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan[J]. Front. Environ. Sci. Eng., 2018, 12(2): 13-.
[11] Yifei Song, Lei Sun, Xinfeng Wang, Yating Zhang, Hui Wang, Rui Li, Likun Xue, Jianmin Chen, Wenxing Wang. Pollution characteristics of particulate matters emitted from outdoor barbecue cooking in urban Jinan in eastern China[J]. Front. Environ. Sci. Eng., 2018, 12(2): 14-.
[12] Fariba Mahmoudkhani, Maryam Rezaei, Vahid Asili, Mahsasadat Atyabi, Elena Vaisman, Cooper H. Langford, Alex De Visscher. Benzene degradation in waste gas by photolysis and photolysis-ozonation: experiments and modeling[J]. Front. Environ. Sci. Eng., 2016, 10(6): 10-.
[13] Lyumeng Ye,Xuemei Wang,Shaofeng Fan,Weihua Chen,Ming Chang,Shengzhen Zhou,Zhiyong Wu,Qi Fan. Photochemical indicators of ozone sensitivity: application in the Pearl River Delta, China[J]. Front. Environ. Sci. Eng., 2016, 10(6): 15-.
[14] He NIU,Ziwei MO,Min SHAO,Sihua LU,Shaodong XIE. Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation[J]. Front. Environ. Sci. Eng., 2016, 10(5): 1-.
[15] David D. Parrish,Jin Xu,Bart Croes,Min Shao. Air quality improvement in Los Angeles—Perspectives for developing cities[J]. Front. Environ. Sci. Eng., 2016, 10(5): 11-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed