Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (6) : 9    https://doi.org/10.1007/s11783-018-1046-7
RESEARCH ARTICLE
Comparison of membrane fouling in ultrafiltration of down-flow and up-flow biological activated carbon effluents
Lu Ao1, Wenjun Liu2(), Yang Qiao2, Cuiping Li3, Xiaomao Wang2
1. Department of Military Installation, Army Logistics University of PLA, Chongqing 401331, China
2. School of Environment, Tsinghua University, Beijing 100084, China
3. Urban Planning & Design Institute of Shenzhen, Shenzhen 518028, China
 Download: PDF(1351 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The UF membrane fouling by down- and up-flow BAC effluents were compared.

Up-flow BAC effluent fouled the membrane faster than down-flow BAC effluent.

The combined effects dominated irreversible fouling.

The extent of fouling exacerbated by inorganic particles was higher.

The TMP, permeate flux, and normalized membrane flux during 21 days of UF of DBAC and UBAC effluents.

Fouling during ultrafiltration of down- and up-flow biological activated carbon effluents was investigated to determine the roles of polysaccharides, proteins, and inorganic particles in ultrafiltration membrane fouling. During ultrafiltration of down- flow biological activated carbon effluent, the trans-membrane pressure was≤26 kPa and the permeate flux was steady at 46.7 L?m2?h1. However, during ultrafiltration of up-flow biological activated carbon effluent, the highest trans-membrane pressure was almost 40 kPa and the permeate flux continuously decreased to 30 L?m2?h1. At the end of the filtration period, the normalized membrane fluxes were 0.88 and 0.62 for down- and up-flow biological activated carbon effluents, respectively. The membrane removed the turbidity and polysaccharides content by 47.4% and 30.2% in down- flow biological activated effluent and 82.5% and 22.4% in up-flow biological activated carbon effluent, respectively, but retained few proteins. The retention of polysaccharides was higher on the membrane that filtered the down- flow biological activated effluent compared with that on the membrane that filtered the up-flow biological activated carbon effluent. The polysaccharides on the membranes fouled by up-flow biological activated carbon and down- flow biological activated effluents were spread continuously and clustered, respectively. These demonstrated that the up-flow biological activated carbon effluent fouled the membrane faster. Membrane fouling was associated with a portion of the polysaccharides (not the proteins) and inorganic particles in the feed water. When there was little difference in the polysaccharide concentrations between the feed waters, the fouling extent was exacerbated more by inorganic particles than by polysaccharides.

Keywords Ultrafiltration      Membrane fouling      Down-flow biological activated carbon      Up-flow biological activated carbon      Particles      Polysaccharide     
Corresponding Author(s): Wenjun Liu   
Issue Date: 19 August 2018
 Cite this article:   
Lu Ao,Wenjun Liu,Yang Qiao, et al. Comparison of membrane fouling in ultrafiltration of down-flow and up-flow biological activated carbon effluents[J]. Front. Environ. Sci. Eng., 2018, 12(6): 9.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1046-7
https://academic.hep.com.cn/fese/EN/Y2018/V12/I6/9
Parameters DBAC UBAC
Depth of filter (m) 2 2
HRT (min) 12 12
Filtering velocity (m?h-1) 9.6 10
GAC size range (mm) 0.6~2.38 0.6~2.38
Turbidity (NTU) 0.19±0.05 0.57±0.18
DOC (mg?L-1) 3.50±0.17 3.47±0.22
UV254 (1/cm) 0.049±0.015 0.055±0.012
pH 7.47±0.08 7.46±0.09
Polysaccharide (mg?L-1) 0.72±0.09 0.66±0.09
Protein (AFI of region I and II) January 2015 71.4 94.0
February 2015 67.2 80.3
March 2015 48.0 70.3
April 2015 49.5 59.7
May 2015 58.2 80.1
June 2015 49.3 67.9
Tab.1  The operation parameters of the DBAC and UBAC and the water qualities of their effluents.
Fig.1  The TMP, permeate flux, and normalized membrane flux during 21 days of UF of Down BAC and Up BAC effluents
Fig.2  Removal of (a) polysaccharides and (b) turbidity of Down BAC and Up BAC effluents treated by UF
Fig.3  FTIR spectra of the membranes fouled by Down BAC and Up BAC effluents
Fig.4  CLSM images of the membranes fouled by the Down BAC effluent. (a) β-D-Glucopyranose polysaccharides (calcofluor white); (b) proteins (FITC); (c) nucleic acids (SYTO 63); and (d) α-D-glucopyranose polysaccharides (Con A)
Fig.5  CLSM images of the membranes fouled by the Up BAC effluent. (a) β-D-Glucopyranose polysaccharides (calcofluor white); (b) proteins (FITC); (c) nucleic acids (SYTO 63); and (d) α-D-glucopyranose polysaccharides (Con A)
Elements Fig. 6a Fig. 6b Fig. 6c Fig. 6d Fig. 6e Fig. 6f Fig. 6c 1# Fig. 6c 2# Fig. 6c 3# Fig. 6d 3# Fig. 6d 4# Fig. 6d 5#
C 59.9 42.6 42.3 41.5 42.3 44.6 17.5 17.1 36.3 45.3 20.0 15.9
O 17.3 20.6 1.3 1.6 1.2 2.1 28.8 22.3 8.9 10.4 23.6 29.5
F 14.5 56.0 55.5 56.5 53.4 33.6 19.8 6.6
Na 0.4 1.1 2.3 0.5
Mg 0.6 0.9 1.0 8.6 1.0
Al 2.7 12.4 4.7 1.6
Ca 1.7 1.9 0.4 1.5 51.8 60.6 17.2 1.6 44.6 54.6
Mn 1.4
Fe 4.6 5.2
Si 1.7 11.3 1.3 1.7
P 2.2 2.6 1.2 1.0
S 0.8 0.7
K 0.8
Cl 0.7 0.7
Tab.2  Elemental analysis of the fouled membrane and each point illustrated in Figs. 6c and 6d (wt%)
Fig.6  Elemental analyses and SEM images of the membranes fouled by the (a) Down BAC effluent with periodic backwashing; (b) Up BAC effluent; (c) Down BAC effluent and cleaned with sodium hydroxide; (d) Up BAC effluent and cleaned with sodium hydroxide; (e) Down BAC effluent and cleaned with citric acid; and (d) Up BAC effluent and cleaned with citric acid.
1 Ao L, Liu W, Zhao L, Wang X (2016). Membrane fouling in ultrafiltration of natural water after pretreatment to different extents. Journal of Environmental Sciences (China), 43(5): 234–243
https://doi.org/10.1016/j.jes.2015.09.008 pmid: 27155429
2 Boudaud N, Machinal C, David F, Fréval-Le Bourdonnec A, Jossent J, Bakanga F, Arnal C, Jaffrezic M P, Oberti S, Gantzer C (2012). Removal of MS2, Qb and GA bacteriophages during drinking water treatment at pilot scale. Water Research, 46(8): 2651–2664
https://doi.org/10.1016/j.watres.2012.02.020 pmid: 22421032
3 Carroll T, King S, Gray S R, Bolto B A, Booker N A (2000). The fouling of microfiltration membranes by NOM after coagulation treatment. Water Research, 34(11): 2861–2868
https://doi.org/10.1016/S0043-1354(00)00051-8
4 Chang H, Liu B, Liang H, Yu H, Shao S, Li G (2017). Effect of filtration mode and backwash water on hydraulically irreversible fouling of ultrafiltration membrane. Chemosphere, 179: 254–264
https://doi.org/10.1016/j.chemosphere.2017.03.122 pmid: 28371709
5 Chen M Y, Lee D J, Yang Z, Peng X F, Lai J Y (2006). Fluorecent staining for study of extracellular polymeric substances in membrane biofouling layers. Environmental Science & Technology, 40(21): 6642–6646
https://doi.org/10.1021/es0612955 pmid: 17144290
6 Chen W, Westerhoff P, Leenheer J A, Booksh K (2003). Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 37(24): 5701–5710
https://doi.org/10.1021/es034354c pmid: 14717183
7 Chen X D, Wang Z, Liu D Y, Xiao K, Guan J, Xie Y F, Wang X M, Waite T D (2018). Role of adsorption in combined membrane fouling by biopolymers coexisting with inorganic particles. Chemosphere, 191: 226–234
https://doi.org/10.1016/j.chemosphere.2017.09.139 pmid: 29035794
8 Cho J W, Amy G, Pellegrino J, Yoon Y M (1998). Characterization of clean and natural organic matter (NOM) fouled NF and UF membranes, and foulants characterization. Desalination, 118(1–3): 101–108
https://doi.org/10.1016/S0011-9164(98)00100-3
9 Escobar I C, Hoek E M, Gabelich C J, DiGiano F A, Le Gouellec Y A, Berube P, Howe K J, Allen J, Atasi K Z, Benjamin M M, Brandhuber P J, Brant J, Chang Y J, Chapman M, Childress A, Conlon W J, Cooke T H, Crossley I A, Crozes G F, Huck P M, Kommineni S N, Jacangelo J G, Karimi A A, Kim J H, Lawler D F, Li Q L, Schideman L C, Sethi S, Tobiason J E, Tseng T, Veerapanemi S, Zander A K (2005). Committee Report: Recent advances and research needs in membrane fouling. Journal- American Water Works Association, 97(8): 79–89
https://doi.org/10.1002/j.1551-8833.2005.tb07452.x
10 Geismar N, Berube P R, Barbeau B (2012). Variability and limits of the unified membrane fouling index: application to the reduction of low-pressure membrane fouling by ozonation and biofiltration. Desalination and Water Treatment, 43(1–3): 91–101
https://doi.org/10.1080/19443994.2012.672214
11 Grabińska-Loniewska A, Perchuć M, Korniłowicz-Kowalska T (2004). Biocenosis of BAC(F)s used for groundwater treatment. Water Research, 38(7): 1695–1706
https://doi.org/10.1016/j.watres.2003.12.041 pmid: 15026224
12 Gray S R, Dow N, Orbell J D, Tran T, Bolto B A (2011). The significance of interactions between organic compounds on low pressure membrane fouling. Water Science and Technology, 64(3): 632–639
https://doi.org/10.2166/wst.2011.488 pmid: 22097041
13 Guo J, Hu J, Tao Y, Zhu J, Zhang X (2014). Effect of ozone on the performance of a hybrid ceramic membrane-biological activated carbon process. Journal of Environmental Sciences (China), 26(4): 783–791
https://doi.org/10.1016/S1001-0742(13)60477-5 pmid: 25079408
14 Hagen K (1998). Removal of particles, bacteria and parasites with ultrafiltration for drinking water treatment. Desalination, 1–3(119): 85–91
https://doi.org/10.1016/S0011-9164(98)00117-9
15 Hallé C, Huck P M, Peldszus S, Haberkamp J, Jekel M (2009). Assessing the performance of biological filtration as pretreatment to low pressure membranes for drinking water. Environmental Science & Technology, 43(10): 3878–3884
https://doi.org/10.1021/es803615g pmid: 19544902
16 Han L, Liu W, Chen M, Zhang M, Liu S, Sun R, Fei X (2013). Comparison of NOM removal and microbial properties in up-flow/down-flow BAC filter. Water Research, 47(14): 4861–4868
https://doi.org/10.1016/j.watres.2013.05.022 pmid: 23866148
17 Howe K J, Clark M M (2002). Fouling of microfiltration and ultrafiltration membranes by natural waters. Environmental Science & Technology, 36(16): 3571–3576
https://doi.org/10.1021/es025587r pmid: 12214651
18 Huang G, Meng F, Zheng X, Wang Y, Wang Z, Liu H, Jekel M (2011). Biodegradation behavior of natural organic matter (NOM) in a biological aerated filter (BAF) as a pretreatment for ultrafiltration (UF) of river water. Applied Microbiology and Biotechnology, 90(5): 1795–1803
https://doi.org/10.1007/s00253-011-3251-1 pmid: 21494866
19 Jarusutthirak C, Amy G (2006). Role of soluble microbial products (SMP) in membrane fouling and flux decline. Environmental Science & Technology, 40(3): 969–974
https://doi.org/10.1021/es050987a pmid: 16509344
20 Jermann D, Pronk W, Boller M (2008). Mutual influences between natural organic matter and inorganic particles and their combined effect on ultrafiltration membrane fouling. Environmental Science & Technology, 42(24): 9129–9136
https://doi.org/10.1021/es800654p pmid: 19174882
21 Katsoufidou I S, Sioutopoulos D C, Yiantsios S G, Karabelas A J (2010). UF membrane fouling by mixtures of humic acids and sodium alginate Fouling mechanisms and reversibility. Desalination, 264(3 3SI): 220–227
https://doi.org/10.1016/j.desal.2010.08.017
22 Katsoufidou K, Yiantsios S G, Karabelas A J (2008). An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: The effect of backwashing on flux recovery. Desalination, 220(1–3): 214–227
https://doi.org/10.1016/j.desal.2007.02.038
23 Kennedy M D, Chun H K, Yangali V, Heijman B, Schippers J C (2005). Natural organic matter (NOM) fouling of ultrafiltration membranes: fractionation of NOM in surface water and characterisation by LC-OCD. Desalination, 178(1–3): 73–83
https://doi.org/10.1016/j.desal.2005.02.004
24 Kennedy M D, Kamanyi J, Heijman B G J, Amy G (2008). Colloidal organic matter fouling of UF membranes: role of NOM composition & size. Desalination, 220(1–3): 200–213
https://doi.org/10.1016/j.desal.2007.05.025
25 Kim W H, Nishijima W, Shoto E, Okada M (1997). Pilot plant study on ozonation and biological activated carbon process for drinking water treatment. Water Science and Technology, 35(8): 21–28
https://doi.org/10.2166/wst.1997.0293
26 Kimura K, Hane Y, Watanabe Y, Amy G, Ohkuma N (2004). Irreversible membrane fouling during ultrafiltration of surface water. Water Research, 38(14-15): 3431–3441
https://doi.org/10.1016/j.watres.2004.05.007 pmid: 15276760
27 Kimura K, Tanaka K, Watanabe Y (2014). Microfiltration of different surface waters with/without coagulation: clear correlations between membrane fouling and hydrophilic biopolymers. Water Research, 49(2): 434–443
https://doi.org/10.1016/j.watres.2013.10.030 pmid: 24210507
28 Kong L, Kadokami K, Duong H T, Chau H T C (2016). Screening of 1300 organic micro-pollutants in groundwater from Beijing and Tianjin, North China. Chemosphere, 165: 221–230
https://doi.org/10.1016/j.chemosphere.2016.08.084 pmid: 27657814
29 Law C, Li X Y, Li Q L (2010). The Combined Colloid-Organic Fouling on Nanofiltration Membrane for Wastewater Treatment and Reuse. Separation Science and Technology, 45(7): 935–940
https://doi.org/10.1080/01496391003657055
30 Lee N, Amy G, Croué J P (2006). Low-pressure membrane (MF/UF) fouling associated with allochthonous versus autochthonous natural organic matter. Water Research, 40(12): 2357–2368
https://doi.org/10.1016/j.watres.2006.04.023 pmid: 16777172
31 Lin T, Chen W, Wang L (2010). Particle properties in granular activated carbon filter during drinking water treatment. Journal of Environmental Sciences (China), 22(5): 681–688
https://doi.org/10.1016/S1001-0742(09)60163-7 pmid: 20608503
32 Munla L, Peldszus S, Huck P M (2012). Reversible and irreversible fouling of ultrafiltration ceramic membranes by model solutions. Journal- American Water Works Association, 104(10): 47–48
https://doi.org/10.5942/jawwa.2012.104.0137
33 Nakatsuka S, Nakate I, Miyano T (1996). Drinking water treatment by using ultrafiltration hollow fiber membranes. Desalination, 106(1–3): 55–61
https://doi.org/10.1016/S0011-9164(96)00092-6
34 Peiris R H, Budman H, Moresoli C, Legge R L (2010). Understanding fouling behaviour of ultrafiltration membrane processes and natural water using principal component analysis of fluorescence excitation-emission matrices. Journal of Membrane Science, 357(1–2): 62–72
https://doi.org/10.1016/j.memsci.2010.03.047
35 Shao J, Hou J, Song H (2011). Comparison of humic acid rejection and flux decline during filtration with negatively charged and uncharged ultrafiltration membranes. Water Research, 45(2): 473–482
https://doi.org/10.1016/j.watres.2010.09.006 pmid: 20863548
36 Subhi N, Verliefde A, Chen V, Le-Clech P (2012). Assessment of physicochemical interactions in hollow fibre ultrafiltration membrane by contact angle analysis. Journal of Membrane Science, 403(6): 32–40
https://doi.org/10.1016/j.memsci.2012.02.007
37 Tian J Y, Ernst M, Cui F Y, Jekel M (2013). Effect of different cations on UF membrane fouling by NOM fractions. Chemical Engineering Journal, 223(5): 547–555
https://doi.org/10.1016/j.cej.2013.03.043
38 Wang J, Wang X C (2006). Ultrafiltration with in-line coagulation for the removal of natural humic acid and membrane fouling mechanism. Journal of Environmental Sciences (China), 18(5): 880–884
https://doi.org/10.1016/S1001-0742(06)60008-9 pmid: 17278741
39 Wang Y, Tang K W, Xu Z X, Tang Y, Liu H F (2009). Water quality assessment of surface drinking water sources in cities and towns of China. Water Resource Protection, 25(2): 1–4, 68
40 Xiao K, Sun J, Shen Y, Liang S, Liang P, Wang X M, Huang X (2016). Fluorescence properties of dissolved organic matter as a function of hydrophobicity and molecular weight: Case studies from two membrane bioreactors and an oxidation ditch. RSC Advances, 6(29): 24050–24059
https://doi.org/10.1039/C5RA23167A
41 Xiao P, Xiao F, Wang D S, Qin T, He S P (2012). Investigation of organic foulants behavior on hollow-fiber UF membranes in a drinking water treatment plant. Separation and Purification Technology, 95(1): 109–117
https://doi.org/10.1016/j.seppur.2012.04.028
42 Yamamura H, Okimoto K, Kimura K, Watanabe Y (2007). Influence of calcium on the evolution of irreversible fouling in microfiltration/ultrafiltration membranes. Journal of Water Supply: Research & Technology- Aqua, 56(6–7): 425–434
https://doi.org/10.2166/aqua.2007.018
43 Yang J S, Yuan D X, Weng T P (2010). Pilot study of drinking water treatment with GAC, O-3/BAC and membrane processes in Kinmen Island, Taiwan. Desalination, 263(1–3): 271–278
https://doi.org/10.1016/j.desal.2010.06.069
44 Zheng L J, Gao H J, Song Y H, Han L, Lu C J (2016). Comprehensive evaluation and analysis of surface water quality for typical cities of China. Huanjing Gongcheng Jishu Xuebao, 6(3): 252–258
[1] FSE-18015-OF-AL_suppl_1 Download
[1] Guowen Hu, Zeqi Zhang, Xuan Zhang, Tianrong Li. Size and shape effects of MnFe2O4 nanoparticles as catalysts for reductive degradation of dye pollutants[J]. Front. Environ. Sci. Eng., 2021, 15(5): 108-.
[2] Danyang Liu, Johny Cabrera, Lijuan Zhong, Wenjing Wang, Dingyuan Duan, Xiaomao Wang, Shuming Liu, Yuefeng F. Xie. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Front. Environ. Sci. Eng., 2021, 15(4): 69-.
[3] Shujuan Meng, Rui Wang, Kaijing Zhang, Xianghao Meng, Wenchao Xue, Hongju Liu, Dawei Liang, Qian Zhao, Yu Liu. Transparent exopolymer particles (TEPs)-associated protobiofilm: A neglected contributor to biofouling during membrane filtration[J]. Front. Environ. Sci. Eng., 2021, 15(4): 64-.
[4] Zhijian Liu, Haiyang Liu, Hang Yin, Rui Rong, Guoqing Cao, Qihong Deng. Prevention of surgical site infection under different ventilation systems in operating room environment[J]. Front. Environ. Sci. Eng., 2021, 15(3): 36-.
[5] Shuo Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan. Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance[J]. Front. Environ. Sci. Eng., 2021, 15(1): 11-.
[6] Barsha Roy, Khushboo Kadam, Suresh Palamadai Krishnan, Chandrasekaran Natarajan, Amitava Mukherjee. Assessing combined toxic effects of tetracycline and P25 titanium dioxide nanoparticles using Allium cepa bioassay[J]. Front. Environ. Sci. Eng., 2021, 15(1): 6-.
[7] Min Li, Shuai Liang, Yang Wu, Meiyue Yang, Xia Huang. Cross-stacked super-aligned carbon nanotube/activated carbon composite electrodes for efficient water purification via capacitive deionization enhanced ultrafiltration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 107-.
[8] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[9] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[10] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[11] Quan Zheng, Minglu Zhang, Tingting Zhang, Xinhui Li, Minghan Zhu, Xiaohui Wang. Insights from metagenomic, metatranscriptomic, and molecular ecological network analyses into the effects of chromium nanoparticles on activated sludge system[J]. Front. Environ. Sci. Eng., 2020, 14(4): 60-.
[12] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
[13] Ravikumar KVG, Debayan Ghosh, Mrudula Pulimi, Chandrasekaran Natarajan, Amitava Mukherjee. In situ formation of bimetallic FeNi nanoparticles on sand through green technology: Application for tetracycline removal[J]. Front. Environ. Sci. Eng., 2020, 14(1): 16-.
[14] Jian Wang, Qun Wang, Xueli Gao, Xinxia Tian, Yangyang Wei, Zhen Cao, Chungang Guo, Huifeng Zhang, Zhun Ma, Yushan Zhang. Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes[J]. Front. Environ. Sci. Eng., 2020, 14(1): 6-.
[15] Caiyun Hou, Sen Qiao, Yue Yang, Jiti Zhou. A novel sequence batch membrane carbonation photobioreactor developed for microalgae cultivation[J]. Front. Environ. Sci. Eng., 2019, 13(6): 92-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed