Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (4) : 69    https://doi.org/10.1007/s11783-020-1362-6
RESEARCH ARTICLE
Using loose nanofiltration membrane for lake water treatment: A pilot study
Danyang Liu1, Johny Cabrera1, Lijuan Zhong2, Wenjing Wang2, Dingyuan Duan2, Xiaomao Wang1(), Shuming Liu1, Yuefeng F. Xie1,3
1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
2. Chengdu Xingrong Environmental Co., Ltd., Chengdu 610041, China
3. Civil and Environmental Programs, Penn State University, Middletown, PA 17057, USA
 Download: PDF(616 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• A pilot study was conducted for drinking water treatment using loose NF membranes.

• The membranes had very high rejection of NOM and medium rejection of Ca2+/Mg2+.

• Organic fouling was dominant and contribution of inorganic fouling was substantial.

• Both organic and inorganic fouling had spatial non-uniformity on membrane surface.

• Applying EDTA at basic conditions was effective in removing membrane fouling.

Nanofiltration (NF) using loose membranes has a high application potential for advanced treatment of drinking water by selectively removing contaminants from the water, while membrane fouling remains one of the biggest problems of the process. This paper reported a seven-month pilot study of using a loose NF membrane to treat a sand filtration effluent which had a relatively high turbidity (~0.4 NTU) and high concentrations of organic matter (up to 5 mg/L as TOC), hardness and sulfate. Results showed that the membrane demonstrated a high rejection of TOC (by>90%) and a moderately high rejection of two pesticides (54%–82%) while a moderate rejection of both calcium and magnesium (~45%) and a low rejection of total dissolved solids (~27%). The membrane elements suffered from severe membrane fouling, with the membrane permeance decreased by 70% after 85 days operation. The membrane fouling was dominated by organic fouling, while biological fouling was moderate. Inorganic fouling was mainly caused by deposition of aluminum-bearing substances. Though inorganic foulants were minor contents on membrane, their contribution to overall membrane fouling was substantial. Membrane fouling was not uniform on membrane. While contents of organic and inorganic foulants were the highest at the inlet and outlet region, respectively, the severity of membrane fouling increased from the inlet to the outlet region of membrane element with a difference higher than 30%. While alkaline cleaning was not effective in removing the membrane foulants, the use of ethylenediamine tetraacetate (EDTA) at alkaline conditions could effectively restore the membrane permeance.

Keywords Nanofiltration      Drinking water      Membrane fouling      Aluminum carryover      Chemical cleaning     
Corresponding Author(s): Xiaomao Wang   
Issue Date: 13 November 2020
 Cite this article:   
Danyang Liu,Johny Cabrera,Lijuan Zhong, et al. Using loose nanofiltration membrane for lake water treatment: A pilot study[J]. Front. Environ. Sci. Eng., 2021, 15(4): 69.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1362-6
https://academic.hep.com.cn/fese/EN/Y2021/V15/I4/69
Fig.1  Schematic diagram of the nanofiltration system for the pilot study.
Fig.2  Comparison of rejections of organic matter, total dissolved solids and various cations and anions by the loose nanofiltration membrane.
Fig.3  Variation of membrane inlet pressure and membrane permeance in the first 85 days of operation of the nanofiltration system.
Fig.4  Accumulation of various elements onto the membrane from the feed water.
Fig.5  Comparison of organic foulants content (as TOC and UV254) and resistance to filtration of fouled membrane in the inlet, middle and outlet regions of membrane element.
Fig.6  Comparison of the FTIR spectra of fouled membrane in the inlet, middle and outlet regions of membrane element.
Fig.7  Effects of various chemical cleaning methods in reducing resistance to filtration of the fouled membrane.
Fig.8  Effects of various chemical cleaning methods in changing FTIR spectra of the fouled membrane.
1 S Bandini, D Vezzani (2003). Nanofiltration modeling: the role of dielectric exclusion in membrane characterization. Chemical Engineering Science, 58(15): 3303–3326
https://doi.org/10.1016/S0009-2509(03)00212-4
2 C Bellona, J E Drewes, P Xu, G Amy (2004). Factors affecting the rejection of organic solutes during NF/RO treatment: A literature review. Water Research, 38(12): 2795–2809
https://doi.org/10.1016/j.watres.2004.03.034
3 F Beyer, B M Rietman, A Zwijnenburg, P van den Brink, J S Vrouwenvelder, M Jarzembowska, J Laurinonyte, A J M Stams, C M Plugge (2014). Long-term performance and fouling analysis of full-scale direct nanofiltration (NF) installations treating anoxic groundwater. Journal of Membrane Science, 468: 339–348
https://doi.org/10.1016/j.memsci.2014.06.004
4 Y H Choi, J A Nason, J H Kweon (2013). Effects of aluminum hydrolysis products and natural organic matter on nanofiltration fouling with PACl coagulation pretreatment. Separation and Purification Technology, 120: 78–85
https://doi.org/10.1016/j.seppur.2013.09.016
5 B Cyna, G Chagneau, G Bablon, N Tanghe (2002). Two years of nanofiltration at the Mery-sur-Oise plant, France. Desalination, 147(1–3): 69–75
https://doi.org/10.1016/S0011-9164(02)00578-7
6 X Q Fan, J Gao, W C Li, J Huang, G Yu (2020). Determination of 27 pharmaceuticals and personal care products (PPCPs) in water: The benefit of isotope dilution. Frontiers of Environmental Science & Engineering, 14(1): 8
https://doi.org/10.1007/s11783-019-1187-3
7 C Fritzmann, J Löwenberg, T Wintgens, T Melin (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216(1–3): 1–76
https://doi.org/10.1016/j.desal.2006.12.009
8 B Frolund, T Griebe, P H Nielsen (1995). Enzymatic-activity in the activated sludge floc matrix. Applied Microbiology and Biotechnology, 43(4): 755–761
https://doi.org/10.1007/s002530050481
9 C J Gabelich, W R Chen, T I Yun, B M Coffey, I H Suffet (2005). The role of dissolved aluminum in silica chemistry for membrane processes. Desalination, 180(1–3): 307–319
https://doi.org/10.1016/j.desal.2005.02.009
10 C J Gabelich, K P Ishida, F W Gerringer, R Evangelista, M Kalyan, I H Suffet (2006). Control of residual aluminum from conventional treatment to improve reverse osmosis performance. Desalination, 190(1–3): 147–160
https://doi.org/10.1016/j.desal.2005.09.002
11 P Gerhardt, R G E Murray, W A Wood, N R Krieg (1994). Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology
12 Y Guo, T Y Li, K Xiao, X M Wang, Y F Xie (2020). Key foulants and their interactive effect in organic fouling of nanofiltration membranes. Journal of Membrane Science, 610: 118252
https://doi.org/10.1016/j.memsci.2020.118252
13 N Her, G Amy, A Plottu-Pecheux, Y Yoon (2007). Identification of nanofiltration membrane foulants. Water Research, 41(17): 3936–3947
https://doi.org/10.1016/j.watres.2007.05.015
14 A Houari, D Seyer, K Kecili, V Heim, P D Martino (2013). Kinetic development of biofilm on NF membranes at the Mery-sur-Oise plant, France. Biofouling, 29(2): 109–118
https://doi.org/10.1080/08927014.2012.752464
15 K Kimura, S Okazaki, T Ohashi, Y Watanabe (2016). Importance of the co-presence of silica and organic matter in membrane fouling for RO filtering MBR effluent. Journal of Membrane Science, 501: 60–67
https://doi.org/10.1016/j.memsci.2015.12.016
16 D W Kolpin, E T Furlong, M T Meyer, E M Thurman, S D Zaugg, L B Barber, H T Buxton (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environmental Science & Technology, 36(6): 1202–1211
https://doi.org/10.1021/es011055j
17 Y A Le Gouellec, M Elimelech (2002). Calcium sulfate (gypsum) scaling in nanofiltration of agricultural drainage water. Journal of Membrane Science, 205(1–2): 279–291
https://doi.org/10.1016/S0376-7388(02)00128-X
18 Y L Liu, X M Wang, H W Yang, Y F Xie, X Huang (2019). Preparation of nanofiltration membranes for high rejection of organic micropollutants and low rejection of divalent cations. Journal of Membrane Science, 572: 152–160
https://doi.org/10.1016/j.memsci.2018.11.013
19 J Q Luo, Y H Wan (2013). Effects of pH and salt on nanofiltration—A critical review. Journal of Membrane Science, 438: 18–28
https://doi.org/10.1016/j.memsci.2013.03.029
20 R G Miller, F C Kopfler, K C Kelty, J A Stober, N S Ulmer (1984). The occurrence of aluminum in drinking water. Journal- American Water Works Association, 76(1): 84–91
https://doi.org/10.1002/j.1551-8833.1984.tb05267.x
21 J Nriagu, F Darroudi, B Shomar (2016). Health effects of desalinated water: Role of electrolyte disturbance in cancer development. Environmental Research, 150: 191–204
https://doi.org/10.1016/j.envres.2016.05.038
22 K Ohno, Y Matsui, M Itoh, Y Oguchi, T Kondo, Y Konno, T Matsushita, Y Magara (2010). NF membrane fouling by aluminum and iron coagulant residuals after coagulation–MF pretreatment. Desalination, 254(1–3): 17–22
https://doi.org/10.1016/j.desal.2009.12.020
23 K V Plakas, A J Karabelas (2008). Membrane retention of herbicides from single and multi-solute media: The effect of ionic environment. Journal of Membrane Science, 320(1–2): 325–334
https://doi.org/10.1016/j.memsci.2008.04.016
24 J Radjenović , M Petrovic, F Ventura, D Barcelo (2008). Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Research, 42(14): 3601–3610
https://doi.org/10.1016/j.watres.2008.05.020
25 J Reungoat, B I Escher, M Macova, F X Argaud, W Gernjak, J Keller (2012). Ozonation and biological activated carbon filtration of wastewater treatment plant effluents. Water Research, 46(3): 863–872
https://doi.org/10.1016/j.watres.2011.11.064
26 M A Sari, S Chellam (2016). Reverse osmosis fouling during pilot-scale municipal water reuse: Evidence for aluminum coagulant carryover. Journal of Membrane Science, 520: 231–239
https://doi.org/10.1016/j.memsci.2016.07.029
27 E L Sharp, S A Parsons, B Jefferson (2006). Seasonal variations in natural organic matter and its impact on coagulation in water treatment. Science of the Total Environment, 363(1–3): 183–194
https://doi.org/10.1016/j.scitotenv.2005.05.032
28 R Sheikholeslami, I S Al-Mutaz, T Koo, A Young (2001). Pretreatment and the effect of cations and anions on prevention of silica fouling. Desalination, 139(1–3): 83–95
https://doi.org/10.1016/S0011-9164(01)00297-1
29 N Siebdrath, W Ding, E Pietsch, J Kruithof, W Uhl, J Vrouwenvelder (2017). Construction and validation of a long-channel membrane test cell for representative monitoring of performance and characterization of fouling over the length of spiral-wound membrane modules. Desalination and Water Treatment, 89: 1–16
https://doi.org/10.5004/dwt.2017.21077
30 C Ventresque, V Gisclon, G Bablon, G Chagneau (2000). An outstanding feat of modern technology: the Mery-sur-Oise Nanofiltration Treatment Plant (340,000 m3/d). Desalination, 131(1–3): 1–16
https://doi.org/10.1016/S0011-9164(00)90001-8
31 J S Vrouwenvelder, S A Manolarakis, J P van der Hoek, J A M van Paassen, W G J van der Meer, J M C van Agtmaal, H D M Prummel, J C Kruithof, M C M van Loosdrecht (2008). Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations. Water Research, 42(19): 4856–4868
https://doi.org/10.1016/j.watres.2008.09.002
32 J S Vrouwenvelder, J A M van Paassen, J C Kruithof, M C M van Loosdrecht (2009). Sensitive pressure drop measurements of individual lead membrane elements for accurate early biofouling detection. Journal of Membrane Science, 338(1–2): 92–99
https://doi.org/10.1016/j.memsci.2009.04.016
33 X M Wang, B Li, T Zhang, X Y Li (2015a). Performance of nanofiltration membrane in rejecting trace organic compounds: Experiment and model prediction. Desalination, 370: 7–16
https://doi.org/10.1016/j.desal.2015.05.010
34 X M Wang, T D Waite (2009). Role of gelling soluble and colloidal microbial products in membrane fouling. Environmental Science & Technology, 43(24): 9341–9347
https://doi.org/10.1021/es9013129
35 X M Wang, H W Yang, Z Y Li, S X Yang, Y F Xie (2015b). Pilot study for the treatment of sodium and fluoride contaminated groundwater by using high-pressure membrane systems. Frontiers of Environmental Science & Engineering, 9(1): 155–163
https://doi.org/10.1007/s11783-014-0740-3
36 P Westerhoff, Y Yoon, S Snyder, E Wert (2005). Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science & Technology, 39(17): 6649–6663
https://doi.org/10.1021/es0484799
37 M Q Yan, T T Luo, N Li, G V Korshin (2019). Monitoring the kinetics of reactions between natural organic matter and Al(III) ions using differential absorbance spectra. Chemosphere, 235: 220–226
https://doi.org/10.1016/j.chemosphere.2019.06.072
38 T Zhang, H Z Liu, Y Y Zhang, W J Sun, X W Ao (2020). Comparative genotoxicity of water processed by three drinking water treatment plants with different water treatment procedures. Frontiers of Environmental Science & Engineering, 14(3): 39
https://doi.org/10.1007/s11783-020-1214-4
39 X H Zhao, Y H Wu, X Zhang, X Tong, T Yu, Y H Wang, N Ikuno, K Ishii, H Y Hu (2019). Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion. Frontiers of Environmental Science & Engineering, 13(4): 55
https://doi.org/10.1007/s11783-019-1139-y
40 Y Y Zhao, F X Kong, Z Wang, H W Yang, X M Wang, Y F Xie, T D Waite (2017). Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes. Frontiers of Environmental Science & Engineering, 11(6): 20
https://doi.org/10.1007/s11783-017-0975-x
41 F Zhu, Z J Yao, W L Ji, D Y Liu, H Zhang, A M Li, Z L Huo, Q Zhou (2020). An efficient resin for solid-phase extraction and determination by UPLCMS/MS of 44 pharmaceutical personal care products in environmental waters. Frontiers of Environmental Science & Engineering, 14(3): 51
https://doi.org/10.1007/s11783-020-1228-y
[1] FSE-20119-OF-LDY_suppl_1 Download
[1] Ruobin Dai, Hongyi Han, Yuting Zhu, Xi Wang, Zhiwei Wang. Tuning the primary selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for efficient removal of hydrophobic endocrine disrupting compounds[J]. Front. Environ. Sci. Eng., 2022, 16(4): 40-.
[2] Hao Wang, Defang Ma, Weiye Shi, Zhiyu Yang, Yun Cai, Baoyu Gao. Formation of disinfection by-products during sodium hypochlorite cleaning of fouled membranes from membrane bioreactors[J]. Front. Environ. Sci. Eng., 2021, 15(5): 102-.
[3] Zhiling Wu, Xianchun Tang, Hongbin Chen. Seasonal and treatment-process variations in invertebrates in drinking water treatment plants[J]. Front. Environ. Sci. Eng., 2021, 15(4): 62-.
[4] Yue Hu, Ding Dong, Kun Wan, Chao Chen, Xin Yu, Huirong Lin. Potential shift of bacterial community structure and corrosion-related bacteria in drinking water distribution pipeline driven by water source switching[J]. Front. Environ. Sci. Eng., 2021, 15(2): 28-.
[5] Shuo Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan. Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance[J]. Front. Environ. Sci. Eng., 2021, 15(1): 11-.
[6] Xuewen Yi, Zhanqi Gao, Lanhua Liu, Qian Zhu, Guanjiu Hu, Xiaohong Zhou. Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 109-.
[7] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[8] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[9] Ting Zhang, Heze Liu, Yiyuan Zhang, Wenjun Sun, Xiuwei Ao. Comparative genotoxicity of water processed by three drinking water treatment plants with different water treatment procedures[J]. Front. Environ. Sci. Eng., 2020, 14(3): 39-.
[10] Kun Wan, Wenfang Lin, Shuai Zhu, Shenghua Zhang, Xin Yu. Biofiltration and disinfection codetermine the bacterial antibiotic resistome in drinking water: A review and meta-analysis[J]. Front. Environ. Sci. Eng., 2020, 14(1): 10-.
[11] Caiyun Hou, Sen Qiao, Yue Yang, Jiti Zhou. A novel sequence batch membrane carbonation photobioreactor developed for microalgae cultivation[J]. Front. Environ. Sci. Eng., 2019, 13(6): 92-.
[12] Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Front. Environ. Sci. Eng., 2019, 13(4): 55-.
[13] Chao Pang, Chunhua He, Zhenhu Hu, Shoujun Yuan, Wei Wang. Aggravation of membrane fouling and methane leakage by a three-phase separator in an external anaerobic ceramic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2019, 13(4): 50-.
[14] Qiaowen Tan, Weiying Li, Junpeng Zhang, Wei Zhou, Jiping Chen, Yue Li, Jie Ma. Presence, dissemination and removal of antibiotic resistant bacteria and antibiotic resistance genes in urban drinking water system: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 36-.
[15] Nathalie Tanne, Rui Xu, Mingyue Zhou, Pan Zhang, Xiaomao Wang, Xianghua Wen. Influence of pore size and membrane surface properties on arsenic removal by nanofiltration membranes[J]. Front. Environ. Sci. Eng., 2019, 13(2): 19-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed