Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (4) : 6    https://doi.org/10.1007/s11783-018-1059-2
RESEARCH ARTICLE
An extraction- assay system: Evaluation on flavonols in plant resistance to Pb and Cd by supercritical extraction- gas chromatography
Xu Zhang1, Huanhuan Yang2, Xinlei Wang1, Wen Song1, Zhaojie Cui1()
1. School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
2. School of Life Science, Shandong University, Jinan 250100, China
 Download: PDF(1524 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

SFE-GC system is established for flavonols assessment.

Optimal parameters of SFE-GC are evaluated and determined.

Quercetin and kaempferol are detected in plant under heavy metal stress.

Gene expression analysis shows consistent regularity with content of flavonols.

ROS level is applied for elaborating the plant resistance status.

In this research, supercritical carbon dioxide extraction (SFE) showed better extraction effect when compared with Solid- liquid extraction (SLE), Soxhlet extraction (SE) and Ultrasonic extraction (UE), not only in the rate but also the time. The comparison among these three extraction modifiers, including acetone, ethanol and methanol demonstrated that ethanol was preferred to SFE due to its high extraction effect and low toxicology. In addition, parameter of SFE, influence of temperature and pressure were investigated, and the best extraction effect was achieved at the optima conditions, temperature of 40°C and the pressure of 35 Mpa. Thus, SFE is a highly effective method for flavonols extraction, requiring minimum energy and producing non-toxic byproduct. SFE-GC system is applied for the evaluation on flavonols that plays a key role in plant resistance to heavy metal, with its content and synthetase gene expression significantly increasing in plant when threatened by heavy metal. Besides, results indicated that flavonols can improve plant resistance to oxidative stress by quenching the redundant ROS in matrix.

Keywords Flavonols      Heavy metal      Supercritical carbon dioxide extraction (SFE)      GC      Plant resistance     
Corresponding Author(s): Zhaojie Cui   
Issue Date: 19 July 2018
 Cite this article:   
Xu Zhang,Huanhuan Yang,Xinlei Wang, et al. An extraction- assay system: Evaluation on flavonols in plant resistance to Pb and Cd by supercritical extraction- gas chromatography[J]. Front. Environ. Sci. Eng., 2018, 12(4): 6.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1059-2
https://academic.hep.com.cn/fese/EN/Y2018/V12/I4/6
Fig.1  SFE- GC extraction and detection system of flavonols
Fig.2  Modifier comparison among methanol, acetone and ethanol
Fig.3  Optimum parameter analysis of pressure and temperature
Fig.4  Effect of static time and dynamic time
Fig.5  Extraction efficiency of four different methods
Fig.6  Relative content and expression of quercetin and kaempferol in plant samples
Fig.7  DAB and NBT detection of quercetin and kaempferol groups with Pb or Cd
1 Benaventegarcía O, Castillo J (2008). Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. Journal of Agricultural and Food Chemistry, 56(15): 6185–6205
https://doi.org/10.1021/jf8006568
2 Bogdanov M G, Svinyarov I, Keremedchieva R, Sidjimov A (2012). Ionic liquid-supported solid‒liquid extraction of bioactive alkaloids. I. New HPLC method for quantitative determination of glaucine in Glaucium flavum Cr. (Papaveraceae). Separation and Purification Technology, 97: 221–227
https://doi.org/10.1016/j.seppur.2012.02.001
3 Dauner M, Sauer U (2000). GC-MS Analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnology Progress, 16(4): 642–649
https://doi.org/10.1021/bp000058h
4 Diet A, Link B, Seifert G J, Schellenberg B, Wagner U, Pauly M, Reiter W D, Ringli C (2006). The Arabidopsis root hair cell wall formation mutant LRX1 is suppressed by mutations in the RHM1 gene encoding a UDP-l-rhamnose synthase. Plant Cell, 18(7): 1630– 1641
https://doi.org/10.1105/tpc.105.038653
5 El-Aty A M A, Choi J H, Ko M W, Khay S, Goudah A, Shin H C, Kim J S, Chang B J, Lee C H, Shim J H (2009). Approaches for application of sub and supercritical fluid extraction for quantification of orbifloxacin from plasma and milk: Application to disposition kinetics. Analytica Chimica Acta, 631(1): 108–115
https://doi.org/10.1016/j.aca.2008.10.023
6 Emteborg H, Björklund E, Ödman F, Karlsson L, Mathiasson L, Frech W, Baxter D C (2016). Determination of methylmercury in sediments using supercritical fluid extraction and gas chromatography coupled with microwave-induced plasma atomic emission spectrometry. Analyst (London), 121(1): 19–29
https://doi.org/10.1039/AN9962100019
7 Espinosa-Pardo F A, Nakajima V M, Macedo G A, Macedo J A, Martínez J (2016). Extraction of phenolic compounds from dry and fermented orange pomace using supercritical CO2 and cosolvents. Food and Bioproducts Processing, 101: 1–10
https://doi.org/10.1016/j.fbp.2016.10.002
8 Ferrentino G, Calliari N, Bertucco A, Spilimbergo S (2014). Validation of a mathematical model for predicting high pressure carbon dioxide inactivation kinetics of Escherichia coli spiked on fresh cut carrot. Journal of Supercritical Fluids, 85: 17–23
https://doi.org/10.1016/j.supflu.2013.10.015
9 Hossein K, Karamatollah R (2009). Effect of various parameters on the selective extraction of main components from hyssop using supercritical fluid extraction (SFE). Food Science and Technology Research, 15(6): 645–652
https://doi.org/10.3136/fstr.15.645
10 Houben R J, Janssen H G M, Leclercq P A, Rijks J A, Cramers C A (2015). Supercritical fluid extraction‐capillary gas chromatography: On‐line coupling with a programmed temperature vaporizer. Journal of Separation Science, 13: 669–673
11 Hu Y, Li C, Kulkarni B A, Strobel G, Lobkovsky E, Torczynski R M Jr P J (2001). Exploring chemical diversity of epoxyquinoid natural products: Synthesis and biological activity of (-)-jesterone and related molecules. Organic Letters, 3(11), 1649–1652
12 Jaakola L, Hohtola A (2010). Effect of latitude on flavonoid biosynthesis in plants. Plant, Cell & Environment, 33: 1239
13 Jaramillo K, Dawid C, Hofmann T, Fujimoto Y, Osorio C (2011). Identification of antioxidative flavonols and anthocyanins in Sicana odorifera fruit peel. Journal of Agricultural and Food Chemistry, 59(3): 975–983
https://doi.org/10.1021/jf103151n
14 Jungbluth G, Ternes W (2000). HPLC separation of flavonols, flavones and oxidized flavonols with UV-, DAD-, electrochemical and ESI-ion trap MS detection. Fresenius’ Journal of Analytical Chemistry, 367(7): 661–666
https://doi.org/10.1007/s002160000434
15 Kamali H, Ghaziaskar H S, Khakshour A, Kaboudvand M (2013). Supercritical CO2 extraction of phthalic anhydride, benzoic acid and maleic acid from petrochemical wastes. Journal of Supercritical Fluids, 74: 46–51
https://doi.org/10.1016/j.supflu.2012.10.014
16 Katherine L S, Edgar C C, Jerry W K, Luke R H, Julie C D (2008). Extraction conditions affecting supercritical fluid extraction (SFE) of lycopene from watermelon. Bioresource Technology, 99(16): 7835–7841
https://doi.org/10.1016/j.biortech.2008.01.082
17 Kazazi H, Rezaei K, Ghotb-Sharif S J, Emam-Djomeh Z, Yamini Y (2007). Supercriticial fluid extraction of flavors and fragrances from Hyssopus officinalis L. cultivated in Iran. Food Chemistry, 105(2): 805–811
https://doi.org/10.1016/j.foodchem.2007.01.059
18 Kuhn B M, Geisler M, Bigler L, Ringli C (2011). Flavonols accumulate asymmetrically and affect auxin transport in Arabidopsis. Plant Physiology, 156(2): 585–595
https://doi.org/10.1104/pp.111.175976
19 Kumar P, Pal A, Saxena M K, Ramakumar K L (2008). Supercritical fluid extraction of uranium and thorium from solid matrices. Desalination, 232(1-3): 71–79
https://doi.org/10.1016/j.desal.2007.08.022
20 Kutchko B G, Goodman A L, Rosenbaum E, Natesakhawat S, Wagner K (2013). Characterization of coal before and after supercritical CO2 exposure via feature relocation using field-emission scanning electron microscopy. Fuel, 107: 777–786
https://doi.org/10.1016/j.fuel.2013.02.008
21 Lummaetee K, Ku H M, Wongrat W, Elkamel A (2017). Optimization of supercritical fluid extraction of isoflavone from soybean meal. Canadian Journal of Chemical Engineering, 95(6): 1141–1149
22 Maran J P, Manikandan S, Priya B, Gurumoorthi P (2015). Box-Behnken design based multi-response analysis and optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from tea (Camellia sinensis L.) leaves. Journal of Food Science and Technology, 52(1): 92–104
https://doi.org/10.1007/s13197-013-0985-z
23 Mason J T, Chemat F, Vinatoru M (2016). The extraction of natural products using ultrasound or microwaves. Current Organic Chemistry, 15: 237–247
https://doi.org/10.2174/138527211793979871
24 Modey W K, Mulholland D A, Raynor M W( 2015). Analytical supercritical fluid extraction of natural products. Phytochemical Analysis, 7(1): 1–15
https://doi.org/10.1002/(SICI)1099-1565(199601)7:1<1::AID-PCA275>3.0.CO;2-U
25 Pan H, Zhang X, Ren B, Yang H, Ren Z, Wang W (2017). Toxic assessment of cadmium based on online swimming behavior and the continuous AChE activity in the gill of Zebrafish (Danio rerio). Water, Air, and Soil Pollution, 228(9): 355
https://doi.org/10.1007/s11270-017-3540-0
26 Rajagopalan R, Vaucheret H, Trejo J, Bartel D P (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes & Development, 20(24): 3407–3425
https://doi.org/10.1101/gad.1476406
27 Ren Z (2015). Characterizing response behavior of medaka (Oryzias latipes) under chemical stress based on self-organizing map and filtering by integration. Ecological Informatics, 29: 107–118
https://doi.org/10.1016/j.ecoinf.2014.11.008
28 Shen J, Shao X (2005). A comparison of accelerated solvent extraction, Soxhlet extraction, and ultrasonic-assisted extraction for analysis of terpenoids and sterols in tobacco. Analytical and Bioanalytical Chemistry, 383(6): 1003–1008
https://doi.org/10.1007/s00216-005-0078-6
29 Skerget M, Kotnik P, Hadolin M, Hras A R, Simonic M, Knez Z (2005). Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry, 89(2): 191–198
https://doi.org/10.1016/j.foodchem.2004.02.025
30 Spence A J, Jimenez-Flores R, Qian M, Goddik L( 2009). The influence of temperature and pressure factors in supercritical fluid extraction for optimizing nonpolar lipid extraction from buttermilk powder. Journal of Dairy Science, 2009, 92(2): 458–468
https://doi.org/10.3168/jds.2008-1278
31 Sung S, Amasino R M (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature, 427(6970): 159–164
https://doi.org/10.1038/nature02195
32 Suzuki N, Koussevitzky S, Mittler R, Miller G (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment, 35(2): 259–270
https://doi.org/10.1111/j.1365-3040.2011.02336.x
33 Taher H, Al-Zuhair S, Al-Marzouqi A H, Haik Y, Farid M (2014). Mass transfer modeling of Scenedesmus sp. lipids extracted by supercritical CO2. Biomass and Bioenergy, 70: 530–541
https://doi.org/10.1016/j.biombioe.2014.08.019
34 Veggi P C, Cavalcanti R N, Meireles M A A (2011). Modifier effects on supercritical fluid extraction (SFE) of some Brazilian plants: Antioxidant activity and economical evaluation. Procedia Food Science, 1: 1717–1724
https://doi.org/10.1016/j.profoo.2011.09.253
35 Wang W, Dong C, Dong W, Yang C, Ju T, Huang L, Ren Z (2016). The design and implementation of risk assessment model for hazard installations based on AHP–FCE method: A case study of Nansi Lake Basin. Ecological Informatics, 36: 162–171
https://doi.org/10.1016/j.ecoinf.2015.11.010
36 Xing N, Ji L, Song J, Ma J, Li S, Ren Z, Xu F, Zhu J( 2017). Cadmium stress assessment based on the electrocardiogram characteristics of zebra fish (Danio rerio): QRS complex could play an important role. Aquatic Toxicology (Amsterdam, Netherlands), 191: 236–244
https://doi.org/10.1016/j.aquatox.2017.08.015
37 Yang C, Ming Z, Dong W, Cui G, Ren Z, Wang W( 2017). Highly efficient photocatalytic degradation of methylene blue by PoPD/TiO2 nanocomposite. PLoS One, 12(3): e0174104
https://doi.org/10.1371/journal.pone.0174104
38 Yin L, Yang H, Si G, Ren Q, Fu R, Zhang B, Zhang X, Wang X, Qi P, Xia C( 2015). Persistence parameter: A reliable measurement for behavioral responses of Medaka (Oryzias latipes) to Environmental Stress. Environmental Modeling and Assessment, 21: 1–9
39 Ren Z, Zhang X, Wang X, Qi P, Zhang B, Zeng Y (2015). AChE inhibition: One dominant factor for swimming behavior changes of Daphnia magna under DDVP exposure. Chemosphere, 120, 252
https://doi.org/10.1016/j.chemosphere.2014.06.081
40 Zhang Q, Li Y, Phanlavong P, Wang Z, Jiao T, Qiu H, Peng Q (2017a). Highly efficient and rapid fluoride scavenger using an acid/base tolerant zirconium phosphate nanoflake: Behavior and mechanism. Journal of Cleaner Production, 161: 317–326
https://doi.org/10.1016/j.jclepro.2017.05.120
41 Zhang Q, Li Y, Yang Q, Chen H, Chen X, Jiao T, Peng Q (2017b). Distinguished Cr(VI) capture with rapid and superior capability using polydopamine microsphere: Behavior and mechanism. Journal of Hazardous Materials, 342: 732–740
https://doi.org/10.1016/j.jhazmat.2017.08.061
42 Zhang X, Li X, Yang H, Cui Z (2018a). Biochemical mechanism of phytoremediation process of lead and cadmium pollution with Mucor circinelloides and Trichoderma asperellum. Ecotoxicology and Environmental Safety, 157: 21–28
https://doi.org/10.1016/j.ecoenv.2018.03.047
43 Zhang X, Ren B, Li S, Qu X, Yang H, Xu S, Ren Z, Kong Q, Wang C (2017c). Is sodium percarbonate a good choice in situ remediation of deltamethrin pollution? Frontiers of Environmental Science & Engineering, 11(3): 3
https://doi.org/10.1007/s11783-017-0931-9
44 Zhang X, Yang H, Cui Z (2016). A new indicator to evaluate the pollution of iron and manganese. RSC Advances, 6(33): 27963–27968
https://doi.org/10.1039/C6RA00765A
45 Zhang X, Yang H, Cui Z (2017d). Alleviating effect and mechanism of flavonols in Arabidopsis resistance under Pb–HBCD stress. ACS Sustainable Chemistry & Engineering, 5(11): 11034–11041
https://doi.org/10.1021/acssuschemeng.7b02971
46 Zhang X, Yang H, Cui Z( 2018b). Evaluation and analysis of soil migration and distribution characteristics of heavy metals in iron tailings. Journal of Cleaner Production, 172: 475–480
https://doi.org/10.1016/j.jclepro.2017.09.277
[1] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[2] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[3] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[4] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[5] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[6] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[7] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[8] Xinjie Wang, Yang Li, Jian Zhao, Hong Yao, Siqi Chu, Zimu Song, Zongxian He, Wen Zhang. Magnetotactic bacteria: Characteristics and environmental applications[J]. Front. Environ. Sci. Eng., 2020, 14(4): 56-.
[9] Jun Yang, Jingyun Wang, Pengwei Qiao, Yuanming Zheng, Junxing Yang, Tongbin Chen, Mei Lei, Xiaoming Wan, Xiaoyong Zhou. Identifying factors that influence soil heavy metals by using categorical regression analysis: A case study in Beijing, China[J]. Front. Environ. Sci. Eng., 2020, 14(3): 37-.
[10] Lei Zheng, Xingbao Gao, Wei Wang, Zifu Li, Lingling Zhang, Shikun Cheng. Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and health risk assessment[J]. Front. Environ. Sci. Eng., 2020, 14(1): 5-.
[11] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[12] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[13] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[14] Huosheng Li, Hongguo Zhang, Jianyou Long, Ping Zhang, Yongheng Chen. Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: Bench and pilot scale studies focusing on in-depth thallium removal[J]. Front. Environ. Sci. Eng., 2019, 13(4): 49-.
[15] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed