Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2019, Vol. 13 Issue (5) : 78    https://doi.org/10.1007/s11783-019-1162-z
RESEARCH ARTICLE
Effects of cultivation strategies on the cultivation of Chlorella sp. HQ in photoreactors
Xiaoya Liu, Yu Hong(), Peirui Liu, Jingjing Zhan, Ran Yan
Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
 Download: PDF(559 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Heterotrophic cultivation caused high level of ROS and high lipids accumulation.

HMTC is the best culture strategy for improving the microalgal biomass.

Chlorella sp. HQ had great nutrient removal capacity under five culture strategies.

The effects of cultivation strategies (including autotrophic cultivation (AC), heterotrophic cultivation (HC), fed-batch cultivation (FC), heterotrophic+ autotrophic two-stage cultivation (HATC), and heterotrophic+ mixotrophic two-stage cultivation (HMTC)) on the growth and lipid accumulation of Chlorella sp. HQ and its total nitrogen (TN) and total phosphorus (TP) removal in secondary effluent were investigated in column photoreactors. The results showed that the TN and TP removal rates ranged between 93.72%–95.82% and 92.73%–100%, respectively, under the five different strategies. The microalgal growth potential evaluated by the maximal growth rate (Rmax) was in the order of HMTC>HC>FC>AC>HATC. The values of biomass, total lipid yield, triacylglycerols (TAGs) yield, and total lipid content of the microalga cultivated in the last 5 d increased significantly, but the TAGs productivities of the five strategies were lower than those in the first 7 d. Compared with all the other cultivation strategies, the TAGs productivity and yield after 12 d of cultivation under the heterotrophic condition reached the highest values accompanying the highest level of intracellular reactive oxygen species (ROS), in which the TAGs yield reached 40.81 mg/L at the end of the cultivation period. The peaks in TAGs yield and ROS level suggested that HC was beneficial for lipids accumulation via regulating the cellular redox status and exerting ROS stress on microalgal cells. In summary, HMTC was the best cultivation strategy for improving the microalgal biomass and HC was the best strategy for microalgal TAGs accumulation to produce biodiesel.

Keywords Chlorella sp. HQ      Cultivation strategy      lipids      Nitrogen removal      Phosphorus removal      Reactive oxygen species     
Corresponding Author(s): Yu Hong   
Issue Date: 29 September 2019
 Cite this article:   
Xiaoya Liu,Yu Hong,Peirui Liu, et al. Effects of cultivation strategies on the cultivation of Chlorella sp. HQ in photoreactors[J]. Front. Environ. Sci. Eng., 2019, 13(5): 78.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1162-z
https://academic.hep.com.cn/fese/EN/Y2019/V13/I5/78
Cultivation strategy Initial amount of glucose (g/L) Initial aeration rate (air) (L/mL) Illumination Detailed requirements of the strategy
AC 0 1 Light 12 d Continuous cultivation
HMTC 10 1 Dark 7 d and light 5 d Add 15 g of glucose on day 7
HATC 10 1 Dark 7 d and light 5 d Change to 5% CO2 with constant aeration on day 7
FC 0 1 Light 12 d According to the formula, add 0.5 L of mBG-11 in batches
HC 10 1 Dark 12 d Continuous cultivation
Tab.1  The  design of five cultivation strategies
Initial liquid volume (L) Added volume (L) Control factor for addition Flow rate (L/d)
Days 3 and 12 Days 4 and 11 Days 5 and 10 Days 6 and 9 Days 7 and 8
1.5 0.5 -0.00225 0.023 0.041 0.054 0.063 0.068
Tab.2  The  daily flow rate of fed-batch cultivation
Fig.1  Growth curves of Chlorella sp. HQ under five different cultivation strategies (AC: autotrophic cultivation; HC: heterotrophic cultivation; FC: fed-batch cultivation; HATC: heterotrophic+ autotrophic two-stage cultivation; HMTC: heterotrophic+ mixotrophic two-stage cultivation).
Cultivation strategy r (d-1) K (106 cells/mL) Rmax (106 cells/(mL·d)) Adj. R2
AC 0.54±0.06 75.36±4.77 10.13±0.07 0.9898
HC 1.01±0.09 69.66±1.72 17.65±0.04 0.9952
HMTC 1.05±0.11 74.06±2.04 19.45±0.05 0.9934
HATC 0.71±0.10 47.18±2.36 8.39±0.06 0.9841
FC 0.97±0.07 69.75±1.49 16.94±0.03 0.9965
Tab.3  The  logistic parameters of Chlorella sp. HQ under different cultivation strategies
Fig.2  Biomass of  Chlorella sp. HQ under different cultivation strategies (AC: autotrophic cultivation; HC: heterotrophic cultivation; FC: fed-batch cultivation; HATC: heterotrophic+ autotrophic two-stage cultivation; HMTC: heterotrophic+ mixotrophic two-stage cultivation).
Fig.3  Total lipid yield (a), triacylglycerols  (TAGs) yield (b), lipid content per biomass (c), and TAGs content per biomass (d) of Chlorella sp. HQ under different cultivation strategies throughout the cultivation period (AC: autotrophic cultivation; HC: heterotrophic cultivation; FC: fed-batch cultivation; HATC: heterotrophic+ autotrophic two-stage cultivation; HMTC: heterotrophic+ mixotrophic two-stage cultivation).
Cultivation strategy Biomass productivity
(mg/(L·d))
Lipid productivity
(mg/(L·d))
TAGs productivity
(mg/(L·d))
AC First 7 d 28.47±0.41 4.40±0.08 3.35±0.06
Last 5 d 34.83±0.25 9.60±0.12 2.59±0.05
Increase or decrease in last 5 d (%) 22.34 118.25 -22.63
HMTC First 7 d 45.01±2.02 7.33±0.27 3.59±0.08
Last 5 d 16.72±0.35 6.05±0.30 2.38±0.12
Increase or decrease in last 5 d (%) -62.85 -17.45 -33.79
HATC First 7 d 27.10±1.71 5.51±0.30 3.14±0.47
Last 5 d 15.23±0.57 8.50±0.64 2.58±0.26
Increase or decrease in last 5 d (%) -43.82 54.19 -17.89
FC First 7 d 43.01±2.02 8.08±0.51 3.51±0.18
Last 5 d 14.91±0.51 10.03±0.36 2.94±0.07
Increase or decrease in last 5 d (%) -65.34 24.11 -16.25
HC First 7 d 42.39±1.44 7.22±0.17 3.51±0.04
Last 5 d 14.25±0.26 6.94±0.08 3.21±0.07
Increase or decrease in last 5 d (%) -66.39 -3.81 -8.53
Tab.4  The  effects of prolonged culture time on biomass productivity, lipid productivity, and triacylglycerols (TAGs) productivity of Chlorella sp. HQ under different cultivation strategies
Fig.4  Total phosphorus (TP) concentration (a) and total nitrogen (TN) concentration (b) of the culture medium under different cultivation strategies throughout the cultivation period (AC: autotrophic cultivation; HC: heterotrophic cultivation; FC: fed-batch cultivation; HATC: heterotrophic+ autotrophic two-stage cultivation; HMTC: heterotrophic+ mixotrophic two-stage cultivation).
Parameter comparison AC HMTC HATC FC HC
End of cultivation Biomass productivity (mg/(L·d)) 31.12±0.93 33.23±0.48 22.16±2.15 31.30±1.66 30.66±0.83
Lipid productivity (mg/(L·d)) 6.57±1.02 6.80±0.56 6.75±0.08 8.89±0.47 7.10±0.22
TAGs productivity (mg/(L·d)) 3.03±0.32 3.08±0.24 2.90±0.41 3.27±0.15 3.38±0.43
TN removal rate (%) 95.20±0.53 95.41±1.07 94.19±0.13 95.82±0.89 93.72±0.92
TP removal rate (%) 100.00±0.00 99.27±0.40 100.00±0.00 92.73±1.35 97.80±0.67
Comparison with AC (increase or decrease) Biomass productivity (%) - 6.78 -28.79 0.58 -1.48
Lipid productivity (%) - 3.50 2.74 35.31 8.07
TAGs productivity (%) - 1.65 -4.29 7.92 11.55
TN removal rate (%) - 0.22 -1.06 0.65 -1.55
TP removal rate (%) - -0.73 0.00 -7.27 -2.20
Tab.5  Lipid production and nutrient removal rates  of Chlorella sp. HQ under five different cultivation strategies after 12 d of cultivation
Fig.5  Effects of cultivation strategies on the  relative reactive oxygen species (ROS) level of Chlorella sp. HQ (AC: autotrophic cultivation; HC: heterotrophic cultivation; FC: fed-batch cultivation; HATC: heterotrophic+ autotrophic two-stage cultivation; HMTC: heterotrophic+ mixotrophic two-stage cultivation).
AC: autotrophic cultivation
HC: heterotrophic cultivation
FC: fed-batch cultivation
HATC: heterotrophic+ autotrophic two-stage cultivation
HMTC: heterotrophic+ mixotrophic two-stage cultivation
TAGs: triacylglycerols
TP: total phosphorus
TN: total nitrogen
ROS: reactive oxygen species
DCFH-DA: 2',7'-dichlorofluorescein diacetate
mBG11: modified BG-11 medium for blue green algae
Tab.6  Abbreviations
1 R A I Abou-Shanab, M K Ji, H C Kim, K J Paeng, B H Jeon (2013). Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. Journal of Environmental Management, 115(3): 257–264
https://doi.org/10.1016/j.jenvman.2012.11.022 pmid: 23270891
2 A P Abreu, B Fernandes, A A Vicente, J Teixeira, G Dragone (2012). Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology, 118: 61–66
https://doi.org/10.1016/j.biortech.2012.05.055 pmid: 22705507
3 B Biddanda, R Benner (1997). Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnology and Oceanography, 42(3): 506–518
https://doi.org/10.4319/lo.1997.42.3.0506
4 E G Bligh, W J Dyer (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8): 911–917
https://doi.org/10.1139/o59-099 pmid: 13671378
5 P Bohutskyi, K Liu, B A Kessler, T Kula, Y Hong, E J Bouwer, M J Betenbaugh, F C T Allnutt (2014). Mineral and non-carbon nutrient utilization and recovery during sequential phototrophic-heterotrophic growth of lipid-rich algae. Applied Microbiology and Biotechnology, 98(11): 5261–5273
https://doi.org/10.1007/s00253-014-5655-1 pmid: 24839256
6 H Campos, W J Boeing, B N Dungan, T Schaub (2014). Cultivating the marine microalga Nannochloropsis salina under various nitrogen sources: Effect on biovolume yields, lipid content and composition, and invasive organisms. Biomass and Bioenergy, 66: 301–307
https://doi.org/10.1016/j.biombioe.2014.04.005
7 S Chinnasamy, A Bhatnagar, R W Hunt, K C Das (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101(9): 3097–3105
https://doi.org/10.1016/j.biortech.2009.12.026 pmid: 20053551
8 Y Chisti (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3): 294–306
https://doi.org/10.1016/j.biotechadv.2007.02.001 pmid: 17350212
9 X Deng, Y Li, X Fei (2009). Microalgae: A promising feedstock for biodiesel. African Journal of Microbiological Research, 3(13): 1008–1014
10 C Escapa, R N Coimbra, S Paniagua, A I García, M Otero (2017). Paracetamol and salicylic acid removal from contaminated water by microalgae. Journal of Environmental Management, 203(Pt 2): 799–806
https://doi.org/10.1016/j.jenvman.2016.06.051 pmid: 27421699
11 W Farooq, Y C Lee, B G Ryu, B H Kim, H S Kim, Y E Choi, J W Yang (2013). Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresource Technology, 132: 230–238
https://doi.org/10.1016/j.biortech.2013.01.034 pmid: 23411453
12 K Gopalakrishnan, J Roostaei, Y Zhang (2018). Mixed culture of Chlorella sp. and wastewater wild algae for enhanced biomass and lipid accumulation in artificial wastewater medium. Frontiers of Environmental Science & Engineering, 12(4): 14
https://doi.org/10.1007/s11783-018-1075-2
13 M J Griffiths, S T L Harrison (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21(5): 493–507
https://doi.org/10.1007/s10811-008-9392-7
14 A Guldhe, S Kumari, L Ramanna, P Ramsundar, P Singh, I Rawat, F Bux (2017). Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 203(Pt 1): 299–315
https://doi.org/10.1016/j.jenvman.2017.08.012 pmid: 28803154
15 P L Gupta, H J Choi, R R Pawar, S P Jung, S M Lee (2016). Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source. Journal of Environmental Management, 184(Pt 3): 585–595
https://doi.org/10.1016/j.jenvman.2016.10.018 pmid: 27789093
16 F Han, J Huang, Y Li, W Wang, M Wan, G Shen, J Wang (2013). Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by CO2. Bioresource Technology, 136: 418–424
https://doi.org/10.1016/j.biortech.2013.03.017 pmid: 23567711
17 Y Hong, H Y Hu, F M Li (2008). Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa. Ecotoxicology and Environmental Safety, 71(2): 527–534
https://doi.org/10.1016/j.ecoenv.2007.10.010 pmid: 18054385
18 Q Hu, M Sommerfeld, E Jarvis, M Ghirardi, M Posewitz, M Seibert, A Darzins (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J, 54(4): 621–639
https://doi.org/10.1111/j.1365-313X.2008.03492.x pmid: 18476868
19 F Iasimone, A Panico, V De Felice, F Fantasma, M Iorizzi, F Pirozzi (2018). Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: Biomass production, lipids accumulation and settleability characteristics. Journal of Environmental Management, 223: 1078–1085
https://doi.org/10.1016/j.jenvman.2018.07.024 pmid: 30096748
20 A Jebali, F G Acién, S Sayadi, E Molina-Grima (2018). Utilization of centrate from urban wastewater plants for the production of Scenedesmus sp. in a raceway-simulating reactor. Journal of Environmental Management, 211: 112–124
https://doi.org/10.1016/j.jenvman.2018.01.043 pmid: 29408060
21 C Jeffryes, J Rosenberger, G L Rorrer (2013). Fed-batch cultivation and bioprocess modeling of Cyclotella sp. for enhanced fatty acid production by controlled silicon limitation. Algal Research, 2(1): 16–27
https://doi.org/10.1016/j.algal.2012.11.002
22 X Li, H Y Hu, K Gan, Y X Sun (2010a). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101: 5494–5500
23 X Li, H Y Hu, J Yang (2010b). Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. New Biotechnology, 27: 59–63
24 X Li, H Y Hu, J Yang, Y H Wu (2010c). Enhancement effect of ethyl-2-methyl acetoacetate on triacylglycerols production by a freshwater microalga, Scenedesmus sp. LX1. Bioresource Technology, 101: 9819–9821
25 Q Lin, N Gu, G Li, J Lin, L Huang, L L Tan (2012). Effects of inorganic carbon concentration on carbon formation, nitrate utilization, biomass and oil accumulation of Nannochloropsis oculata CS 179. Bioresource Technology, 111: 353–359
https://doi.org/10.1016/j.biortech.2012.02.008 pmid: 22386465
26 J Liu, J C Huang, Z Sun, Y J Zhong, Y Jiang, F Chen (2011). Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: Assessment of algal oils for biodiesel production. Bioresource Technology, 102(1): 106–110
https://doi.org/10.1016/j.biortech.2010.06.017 pmid: 20591657
27 R Maceiras, M Rodrı´guez, A Cancela, S Urréjola, A Sánchez (2011). Macroalgae: Raw material for biodiesel production. Applied Energy, 88(10): 3318–3323
https://doi.org/10.1016/j.apenergy.2010.11.027
28 R Ranjbar, R Inoue, H Shiraishi, T Katsuda, S Katoh (2008). High efficiency production of astaxanthin by autotrophic cultivation of Haematococcus pluvialis in a bubble column photobioreactor. Biochemical Engineering Journal, 39(3): 575–580
https://doi.org/10.1016/j.bej.2007.11.010
29 H Ren, J Tuo, M M Addy, R Zhang, Q Lu, E Anderson, P Chen, R Ruan (2017). Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal. Bioresource Technology, 245(Pt A): 1130–1138
https://doi.org/10.1016/j.biortech.2017.09.040 pmid: 28962086
30 M Y Roleda, S P Slocombe, R J Leakey, J G Day, E M Bell, M S Stanley (2013). Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresource Technology, 129: 439–449
https://doi.org/10.1016/j.biortech.2012.11.043 pmid: 23262022
31 E S Salama, M B Kurade, R A I Abou-Shanab, M M El-Dalatony, I S Yang, B Min, B H Jeon (2017). Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable & Sustainable Energy Reviews, 79: 1189–1211
https://doi.org/10.1016/j.rser.2017.05.091
32 Y Tan, J Lin (2011). Biomass production and fatty acid profile of a Scenedesmus rubescens-like microalga. Bioresource Technology, 102(21): 10131–10135
https://doi.org/10.1016/j.biortech.2011.07.091 pmid: 21903386
33 H Wang, W Zhou, H Shao, T Liu (2017). A comparative analysis of biomass and lipid content in five Tribonema sp. strains at autotrophic, heterotrophic and mixotrophic cultivation. Algal Research, 24: 284–289
https://doi.org/10.1016/j.algal.2017.04.020
34 K Wang, J Yang, S Zhuang (1999). Improving the biomass of Dunaliella salina by fed-batch culture. Marine Science Bulletin 18:64–69 (in Chinese with English abstract)
35 X Wang, L Lin, H Lu, Z Liu, N Duan, T Dong, H Xiao, B Li, P Xu (2018). Microalgae cultivation and culture medium recycling by a two-stage cultivation system. Frontiers of Environmental Science & Engineering, 12(6): 14
https://doi.org/10.1007/s11783-018-1078-z
36 Y H Wu, Y Yu, H Y Hu, L L Zhuang (2016). Effects of cultivation conditions on the production of soluble algal products (SAPs) of Scenedesmus sp. LX1. Algal Research, 16: 376–382
https://doi.org/10.1016/j.algal.2016.04.006
37 Z Wu, X Shi (2007). Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Letters in Applied Microbiology, 44(1): 13–18
https://doi.org/10.1111/j.1472-765X.2006.02038.x pmid: 17209808
38 J Yang, X Li, H Y Hu, X Zhang, Y Yu, Y S Chen (2011). Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Applied Energy, 88(10): 3295–3299
https://doi.org/10.1016/j.apenergy.2010.11.029
39 K Yoon, D Han, Y Li, M Sommerfeld, Q Hu (2012). Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell, 24(9): 3708–3724
https://doi.org/10.1105/tpc.112.100701 pmid: 23012436
40 Z Yu, H Pei, Q Hou, C Nie, L Zhang, Z Yang, X Wang (2018). The effects of algal extracellular substances on algal growth, metabolism and long-term medium recycle, and inhibition alleviation through ultrasonication. Bioresource Technology, 267: 192–200
https://doi.org/10.1016/j.biortech.2018.07.019 pmid: 30025314
41 J J Zhan, Q Zhang, M M Qin, Y Hong (2016). Selection and characterization of eight freshwater green algae strains for synchronous water purification and lipid production. Frontiers of Environmental Science & Engineering, 10(3): 548–558
https://doi.org/10.1007/s11783-016-0831-4
42 Q Zhang, Y Hong (2014a). Comparison in growth, lipid accumulation, and nutrient removal capacities of Chlorella sp. in secondary effluents under sterile and non-sterile conditions. Water Sci Technol, 69(3): 573–579
https://doi.org/10.2166/wst.2013.748 pmid: 24552730
43 Q Zhang, Y Hong (2014b). Effects of stationary phase elongation and initial nitrogen and phosphorus concentrations on the growth and lipid-producing potential of Chlorella sp. HQ. Journal of Applied Phycology, 26(1): 141–149
https://doi.org/10.1007/s10811-013-0091-7
44 Q Zhang, T Wang, Y Hong (2014). Investigation of initial pH effects on growth of an oleaginous microalgae Chlorella sp. HQ for lipid production and nutrient uptake. Water Sci Technol, 70(4): 712–719
https://doi.org/10.2166/wst.2014.285 pmid: 25116503
45 Y Zheng, T Li, X C Yu, P D Bates, T Dong, S L Chen (2013). High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Applied Energy, 108: 281–287
https://doi.org/10.1016/j.apenergy.2013.02.059
46 W G Zhou, Y C Li, M Min, B Hu, H Zhang, X C Ma, L Li, Y L Cheng, P Chen, R Ruan (2012a). Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Applied Energy, 98: 433–440
https://doi.org/10.1016/j.apenergy.2012.04.005
47 W G Zhou, M Min, Y C Li, B Hu, X C Ma, Y L Cheng, Y H Liu, P Chen, R Ruan (2012b). A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresource Technology, 110: 448–455
https://doi.org/10.1016/j.biortech.2012.01.063 pmid: 22326332
[1] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[2] Barsha Roy, Khushboo Kadam, Suresh Palamadai Krishnan, Chandrasekaran Natarajan, Amitava Mukherjee. Assessing combined toxic effects of tetracycline and P25 titanium dioxide nanoparticles using Allium cepa bioassay[J]. Front. Environ. Sci. Eng., 2021, 15(1): 6-.
[3] Quan Zheng, Minglu Zhang, Tingting Zhang, Xinhui Li, Minghan Zhu, Xiaohui Wang. Insights from metagenomic, metatranscriptomic, and molecular ecological network analyses into the effects of chromium nanoparticles on activated sludge system[J]. Front. Environ. Sci. Eng., 2020, 14(4): 60-.
[4] Hanzhong Jia, Yafang Shi, Xiaofeng Nie, Song Zhao, Tiecheng Wang, Virender K. Sharma. Persistent free radicals in humin under redox conditions and their impact in transforming polycyclic aromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(4): 73-.
[5] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[6] Wenchao Jiang, Ping Tang, Zhen Liu, Huan He, Qian Sui, Shuguang Lyu. Enhanced carbon tetrachloride degradation by hydroxylamine in ferrous ion activated calcium peroxide in the presence of formic acid[J]. Front. Environ. Sci. Eng., 2020, 14(2): 18-.
[7] Zhenfeng Han, Ying Miao, Jing Dong, Zhiqiang Shen, Yuexi Zhou, Shan Liu, Chunping Yang. Enhanced nitrogen removal and microbial analysis in partially saturated constructed wetland for treating anaerobically digested swine wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(4): 52-.
[8] Virender K. Sharma, Xin Yu, Thomas J. McDonald, Chetan Jinadatha, Dionysios D. Dionysiou, Mingbao Feng. Elimination of antibiotic resistance genes and control of horizontal transfer risk by UV-based treatment of drinking water: A mini review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 37-.
[9] Xin Li, Jun Xie, Chuanjia Jiang, Jiaguo Yu, Pengyi Zhang. Review on design and evaluation of environmental photocatalysts[J]. Front. Environ. Sci. Eng., 2018, 12(5): 14-.
[10] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[11] Lin Lin, Ying-yu Li, Xiao-yan Li. Acidogenic sludge fermentation to recover soluble organics as the carbon source for denitrification in wastewater treatment: Comparison of sludge types[J]. Front. Environ. Sci. Eng., 2018, 12(4): 3-.
[12] Dongliang Du, Chuanyi Zhang, Kuixia Zhao, Guangrong Sun, Siqi Zou, Limei Yuan, Shilong He. Effect of different carbon sources on performance of an A2N-MBR process and its microbial community structure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 4-.
[13] Gang Guo, Yayi Wang, Tianwei Hao, Di Wu, Guang-Hao Chen. Enzymatic nitrous oxide emissions from wastewater treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 10-.
[14] Yu Liu, Qiao Zhang, Yu Hong. Formation of disinfection byproducts from accumulated soluble products of oleaginous microalga after chlorination[J]. Front. Environ. Sci. Eng., 2017, 11(6): 1-.
[15] Ming Zeng, Ping Li, Nan Wu, Xiaofang Li, Chang Wang. Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 15-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed