Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2020, Vol. 14 Issue (2) : 27    https://doi.org/10.1007/s11783-019-1206-4
RESEARCH ARTICLE
Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass
Luman Zhou1,2, Chengyang Wu1,2, Yuwei Xie1,2, Siqing Xia1,2()
1. State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
 Download: PDF(1433 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Pd nanoparticles could be reduced and supported by activated sludge microbes.

• The effect of biomass on Pd adsorption by microbes is greater than Pd reduction.

• More biomass reduces Pd particle size, which is more dispersed on the cell surface.

• When the biomass/Pd add to 6, the catalytic reduction rate of Cr(VI) reaches stable.

Palladium, a kind of platinum group metal, owns catalytic capacity for a variety of hydrogenations. In this study, Pd nanoparticles (PdNPs) were generated through enzymatic recovery by microbes of activated sludge at various biomass/Pd, and further used for the Cr(VI) reduction. The results show that biomass had a strong adsorption capacity for Pd(II), which was 17.25 mg Pd/g sludge. The XRD and TEM-EDX results confirmed the existence of PdNPs associated with microbes (bio-Pd). The increase of biomass had little effect on the reduction rate of Pd(II), but it could cause decreasing particle size and shifting location of Pd(0) with the better dispersion degree on the cell surface. In the Cr(VI) reduction experiments, Cr(VI) was first adsorbed on bio-Pd with hydrogen and then reduced using active hydrogen as electron donor. Biomass improved the catalytic activity of PdNPs. When the biomass/Pd (w/w) ratio increased to six or higher, Cr(VI) reduction achieved maximum rate that 50 mg/L of Cr(VI) could be rapidly reduced in one minute.

Keywords Palladium nanoparticles      Activated sludge      Hexavalent chromium     
Corresponding Author(s): Siqing Xia   
Issue Date: 27 December 2019
 Cite this article:   
Luman Zhou,Chengyang Wu,Yuwei Xie, et al. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1206-4
https://academic.hep.com.cn/fese/EN/Y2020/V14/I2/27
Experiment Pd(II)
(mg/L)
Microbe a) Cr(VI)
(mg/L)
Gas atmosphere
Test A 200 Activated 50 Plenty H2
Test B 200 Inactivated b) 50 Plenty H2
Test C Activated 50 Plenty H2
Test D 200 Inactivated 50 Plenty N2
Test E Inactivated 50 Plenty N2
Tab.1  Operational  parameters for all tests
Fig.1  Phylogenetic  profiling of the major microflora in the activated sludge at the family (a) and class (b) levels. Phylotypes<3% are grouped within others.
Fig.2  Pd(II)  concentration over time at different VSS/Pd, during the initial 1 h with N2; (inset) Pd adsorbance against sludge quantity.
Fig.3  Pd(II)  concentration over time at different VSS/Pd, during the ensuing 1 h with H2; (inset) the rate constant (K) against VSS.
Fig.4  TEM images,  corresponding size histogram and EDX spectrum of bio-Pd at VSS/Pd= 1 (a), (b), (c); VSS/Pd= 3 (d), (e), (f); VSS/Pd= 6 (g), (h), (i). Note the black bar for scale is 1 mm in length, the white bar for scale is 100 or 20 nm in length.
Fig.5  Cr(VI)  concentration over time at different VSS/Pd, during the 130 min with H2. Error bars represent standard deviation of duplicate experimental time series.
VSS/Pd Pseudo-first order reaction Pseudo-second order reaction
K (min-1) R2 K (L/mg/min) R2
0 0.008 0.835 0.0002 0.842
1 0.042 0.911 0.004 0.980
3 0.116 0.970 0.218 0.576
Tab.2  The kinetic  parameters of bio-Pd for Cr(VI) catalytic reduction
Fig.6  Cr(VI)  concentration over time in tests A, B and C, during the 6 h with H2 (a). Cr(VI) concentration over time in tests D and E, during the 6 h with N2 (b). Error bars represent standard deviation of duplicate experimental time series.
Fig.7  Schematic  representation of the catalytic activity of bio-Pd catalyst.
1 J Barnhart (1997). Occurrences, uses, and properties of chromium. Regulatory Toxicology and Pharmacology, 26(1): S3–S7
https://doi.org/10.1006/rtph.1997.1132 pmid: 9380835
2 C E Barrera-Diaz, V Lugo-Lugo, B Bilyeu (2012). A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. Journal of Hazardous Materials, 223: 1–12
https://doi.org/10.1016/j.jhazmat.2012.04.054 pmid: 22608208
3 D Blowes (2002). Environmental chemistry. Tracking hexavalent Cr in groundwater. Science, 295(5562): 2024–2025
https://doi.org/10.1126/science.1070031 pmid: 11896259
4 M Bunge, L S Søbjerg, A E Rotaru, D Gauthier, A T Lindhardt, G Hause, K Finster, P Kingshott, T Skrydstrup, R L Meyer (2010). Formation of palladium(0) nanoparticles at microbial surfaces. Biotechnology and Bioengineering, 107(2): 206–215
https://doi.org/10.1002/bit.22801 pmid: 20506339
5 J G Caporaso, J Kuczynski, J Stombaugh, K Bittinger, F D Bushman, E K Costello, N Fierer, A G Peña, J K Goodrich, J I Gordon, G A Huttley, S T Kelley, D Knights, J E Koenig, R E Ley, C A Lozupone, D McDonald, B D Muegge, M Pirrung, J Reeder, J R Sevinsky, P J Turnbaugh, W A Walters, J Widmann, T Yatsunenko, J Zaneveld, R Knight (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336
https://doi.org/10.1038/nmeth.f.303 pmid: 20383131
6 M Celebi, M Yurderi, A Bulut, M Kaya, M Zahmakiran (2016). Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction. Applied Catalysis B: Environmental, 180: 53–64
https://doi.org/10.1016/j.apcatb.2015.06.020
7 B P Chaplin, M Reinhard, W F Schneider, C Schüth, J R Shapley, T J Strathmann, C J Werth (2012). Critical review of Pd-based catalytic treatment of priority contaminants in water. Environmental Science & Technology, 46(7): 3655–3670
https://doi.org/10.1021/es204087q pmid: 22369144
8 D Chidambaram, T Hennebel, S Taghavi, J Mast, N Boon, W Verstraete, D van der Lelie, J P Fitts (2010). Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Environmental Science & Technology, 44(19): 7635–7640
https://doi.org/10.1021/es101559r pmid: 20822130
9 H Conrad, G Ertl, E E Latta (1974). Adsorption of hydrogen on palladium single crystal surfaces. Surface Science, 41(2): 435–446
https://doi.org/10.1016/0039-6028(74)90060-0
10 E A Crespo, S Claramonte, M Ruda, de Debiaggi S R ( 2010). Thermodynamics of hydrogen in Pd nanoparticles. International Journal of Hydrogen Energy, 35(11): 6037–6041
https://doi.org/10.1016/j.ijhydene.2009.12.074
11 A Dandapat, D Jana, G De (2011). Pd nanoparticles supported mesoporous g-Al2O3 film as a reusable catalyst for reduction of toxic Cr VI to Cr III in aqueous solution. Applied Catalysis A, General, 396(1–2): 34–39
https://doi.org/10.1016/j.apcata.2011.01.032
12 S De Corte, T Hennebel, B De Gusseme, W Verstraete, N Boon (2012). Bio-palladium: From metal recovery to catalytic applications. Microbial Biotechnology, 5(1): 5–17
https://doi.org/10.1111/j.1751-7915.2011.00265.x pmid: 21554561
13 W De Windt, N Boon, J Van den Bulcke, L Rubberecht, F Prata, J Mast, T Hennebel, W Verstraete (2006). Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. Antonie Van Leeuwenhoek, 90(4): 377–389
https://doi.org/10.1007/s10482-006-9088-4 pmid: 17033880
14 K L Dennis, Y Wang, N R Blatner, S Wang, A Saadalla, E Trudeau, A Roers, C T Weaver, J J Lee, J A Gilbert, E B Chang, K Khazaie (2013). Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Cancer Research, 73(19): 5905–5913
https://doi.org/10.1158/0008-5472.CAN-13-1511 pmid: 23955389
15 D P Durkin, T Ye, E G Larson, L M Haverhals, K J T Livi, H C De Long, P C Trulove, D H Fairbrother, D Shuai (2016). Lignocellulose fiber- and welded fiber- supports for palladium based catalytic hydrogenation: A natural fiber welding application for water treatment. ACS Sustainable Chemistry & Engineering, 4(10): 5511–5522
https://doi.org/10.1021/acssuschemeng.6b01250
16 N C C O E Epidemiology (1991). Environmental epidemiology, Volume 1: Public health and hazardous wastes. Quarterly Review of Biology, 68(3): 108
17 Y Gao, W Sun, W Yang, Q Li (2017). Creation of Pd/Al2O3 catalyst by a spray process for fixed bed reactors and its effective removal of aqueous bromate. Scientific Reports, 7(1): 41797
https://doi.org/10.1038/srep41797 pmid: 28150716
18 D Gauthier, L S Søbjerg, K M Jensen, A T Lindhardt, M Bunge, K Finster, R L Meyer, T Skrydstrup (2010). Environmentally benign recovery and reactivation of palladium from industrial waste by using gram-negative bacteria. ChemSusChem, 3(9): 1036–1039
https://doi.org/10.1002/cssc.201000091 pmid: 20652926
19 S Hanada, W T Liu, T Shintani, Y Kamagata, K Nakamura (2002). Tetrasphaera elongata sp. nov., a polyphosphate-accumulating bacterium isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 52(3): 883–887
pmid: 12054253
20 H A Headlam, P A Lay (2016). Spectroscopic characterization of genotoxic chromium(V) peptide complexes: Oxidation of Chromium(III) triglycine, tetraglycine and pentaglycine complexes. Journal of Inorganic Biochemistry, 162: 227–237
https://doi.org/10.1016/j.jinorgbio.2016.06.015 pmid: 27365280
21 R Jobby, P Jha, A K Yadav, N Desai (2018). Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere, 207: 255–266
https://doi.org/10.1016/j.chemosphere.2018.05.050 pmid: 29803157
22 P Kaszycki, H Gabrys, K J Appenroth, A Jaglarz, S Sedziwy, T Walczak, H Koloczek (2005). Exogenously applied sulphate as a tool to investigate transport and reduction of chromate in the duckweed Spirodela polyrhiza. Plant, Cell & Environment, 28(2): 260–268
https://doi.org/10.1111/j.1365-3040.2004.01276.x
23 M S Kim, S H Chung, C J Yoo, M S Lee, I H Cho, D W Lee, K Y Lee (2013). Catalytic reduction of nitrate in water over Pd-Cu/TiO2 catalyst: Effect of the strong metal-support interaction (SMSI) on the catalytic activity. Applied Catalysis B: Environmental, 142–143: 354–361
https://doi.org/10.1016/j.apcatb.2013.05.033
24 J R Lloyd, P Yong, L E Macaskie (1998). Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Applied and Environmental Microbiology, 64(11): 4607–4609
pmid: 9797331
25 M Long, Z E Ilhan, S Xia, C Zhou, B E Rittmann (2018). Complete dechlorination and mineralization of pentachlorophenol (PCP) in a hydrogen-based membrane biofilm reactor (MBfR). Water Research, 144: 134–144
https://doi.org/10.1016/j.watres.2018.06.071 pmid: 30025265
26 A M Maszenan, R J Seviour, B K C Patel, P Schumann, J Burghardt, Y Tokiwa, H M Stratton (2000). Three isolates of novel polyphosphate-accumulating gram-positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp. nov. and Tetrasphaera australiensis sp. nov. International Journal of Systematic and Evolutionary Microbiology, 50(2): 593–603
https://doi.org/10.1099/00207713-50-2-593 pmid: 10758865
27 I P Mikheenko, M Rousset, S Dementin, L E Macaskie (2008). Bioaccumulation of palladium by Desulfovibrio fructosivorans wild-type and hydrogenase-deficient strains. Applied and Environmental Microbiology, 74(19): 6144–6146
https://doi.org/10.1128/AEM.02538-07 pmid: 18689514
28 S T Moerz, A Kraegeloh, M Chanana, T Kraus (2015). Formation mechanism for stable hybrid clusters of proteins and nanoparticles. ACS Nano, 9(7): 6696–6705
https://doi.org/10.1021/acsnano.5b01043 pmid: 26030129
29 M A Omole, I O K’owino, O A Sadik (2007). Palladium nanoparticles for catalytic reduction of Cr(VI) using formic acid. Applied Catalysis B: Environmental, 76(1–2): 158–167
https://doi.org/10.1016/j.apcatb.2007.05.018
30 W H Organization (2011). Guidelines for Drinking-water Quality. 4th Ed. Geneva: Organization W H, 2: 206–215
31 D Pradhan, L B Sukla, M Sawyer, P K S M Rahman (2017). Recent bioreduction of hexavalent chromium in wastewater treatment: A review. Journal of Industrial and Engineering Chemistry, 55: 1–20
https://doi.org/10.1016/j.jiec.2017.06.040
32 M D Redwood, K Deplanche, V S Baxter-Plant, L E Macaskie (2008). Biomass-supported palladium catalysts on Desulfovibrio desulfuricans and Rhodobacter sphaeroides. Biotechnology and Bioengineering, 99(5): 1045–1054
https://doi.org/10.1002/bit.21689 pmid: 17969153
33 P Singh, D K Chowdhuri (2017). Environmental presence of hexavalent but not trivalent chromium causes neurotoxicity in exposed drosophila melanogaster. Molecular Neurobiology, 54(5): 3368–3387
https://doi.org/10.1007/s12035-016-9909-z pmid: 27167131
34 O S G P Soares, J J M Orfao, M F R Pereira (2009). Bimetallic catalysts supported on activated carbon for the nitrate reduction in water: Optimization of catalysts composition. Applied Catalysis B: Environmental, 91(1–2): 441–448
https://doi.org/10.1016/j.apcatb.2009.06.013
35 D M Stearns, L J Kennedy, K D Courtney, P H Giangrande, L S Phieffer, K E Wetterhahn (1995). Reduction of chromium(VI) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro. Biochemistry, 34(3): 910–919
https://doi.org/10.1021/bi00003a025 pmid: 7827049
36 J L Vandewalle, G W Goetz, S M Huse, H G Morrison, M L Sogin, R G Hoffmann, K Yan, S L McLellan (2012). Acinetobacter, Aeromonas and Trichococcus populations dominate the microbial community within urban sewer infrastructure. Environmental Microbiology, 14(9): 2538–2552
https://doi.org/10.1111/j.1462-2920.2012.02757.x pmid: 22524675
37 M P Watts, V S, Coker S A Parry, R A Thomas, R Kalin, J R Lloyd (2015). Effective treatment of alkaline Cr(VI) contaminated leachate using a novel Pd-bionanocatalyst: Impact of electron donor and aqueous geochemistry. Applied Catalysis B: Environmental, 170–171: 162–172
https://doi.org/10.1016/j.apcatb.2015.01.017 pmid: 26146457
38 B Wielinga, M M Mizuba, C M Hansel, S Fendorf (2001). Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environmental Science & Technology, 35(3): 522–527
https://doi.org/10.1021/es001457b pmid: 11351723
39 S Xia, X Xu, C Zhou, C Wang, L Zhou, B E Rittmann (2016). Direct delivery of CO2 into a hydrogen-based membrane biofilm reactor and model development. Chemical Engineering Journal, 290: 154–160
https://doi.org/10.1016/j.cej.2016.01.021
40 M Yadav, Q Xu (2013). Catalytic chromium reduction using formic acid and metal nanoparticles immobilized in a metal-organic framework. Chemical Communications (Cambridge, England), 49(32): 3327–3329
https://doi.org/10.1039/c3cc00293d pmid: 23505626
41 M Yamauchi, R Ikeda, H Kitagawa, M Takata (2008). Nanosize effects on hydrogen storage in palladium. Journal of Physical Chemistry C, 112(9): 3294–3299
https://doi.org/10.1021/jp710447j
42 P Yong, N A Rowson, J P G Farr, I R Harris, L E Macaskie (2002a). Biloaccumulation of palladium by Desulfovibrio desulfuricans. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 77(5): 593–601
https://doi.org/10.1002/jctb.606
43 P Yong, N A Rowson, J P G Farr, I R Harris, L E Macaskie (2002b). Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnology and Bioengineering, 80(4): 369–379
https://doi.org/10.1002/bit.10369 pmid: 12325145
44 F Zhang, S Miao, Y Yang, X Zhang, J Chen, N Guan (2008). Size-dependent hydrogenation selectivity of nitrate on Pd-Cu/TiO2 catalysts. Journal of Physical Chemistry C, 112(20): 7665–7671
https://doi.org/10.1021/jp800060g
45 Y Y Zhang, M Kuroda, S Arai, F Kato, D Inoue, M Ike (2019). Biological removal of selenate in saline wastewater by activated sludge under alternating anoxic/oxic conditions. Frontiers of Environmental Science and Engineering, 13(5): 68
46 A Zhitkovich (2011). Chromium in drinking water: Sources, metabolism, and cancer risks. Chemical Research in Toxicology, 24(10): 1617–1629
https://doi.org/10.1021/tx200251t pmid: 21766833
47 C Zhou, A Ontiveros-Valencia, Z Wang, J Maldonado, H P Zhao, R Krajmalnik-Brown, B E Rittmann (2016). Palladium recovery in a H2-based membrane biofilm reactor: Formation of Pd(0) nanoparticles through enzymatic and autocatalytic reductions. Environmental Science & Technology, 50(5): 2546–2555
https://doi.org/10.1021/acs.est.5b05318 pmid: 26883809
[1] FSE-19112-OF-ZLM_suppl_1 Download
[1] Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Front. Environ. Sci. Eng., 2021, 15(4): 56-.
[2] Rongrong Zhang, Daohao Li, Jin Sun, Yuqian Cui, Yuanyuan Sun. In situ synthesis of FeS/Carbon fibers for the effective removal of Cr(VI) in aqueous solution[J]. Front. Environ. Sci. Eng., 2020, 14(4): 68-.
[3] Lanhe Zhang, Jing Zheng, Jingbo Guo, Xiaohui Guan, Suiyi Zhu, Yanping Jia, Jian Zhang, Xiaoyu Zhang, Haifeng Zhang. Effects of Al3+ on pollutant removal and extracellular polymeric substances (EPS) under anaerobic, anoxic and oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(6): 85-.
[4] Yuanyuan Zhang, Masashi Kuroda, Shunsuke Arai, Fumitaka Kato, Daisuke Inoue, Michihiko Ike. Biological removal of selenate in saline wastewater by activated sludge under alternating anoxic/oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(5): 68-.
[5] Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang. Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel clinoptilolite composite carrier[J]. Front. Environ. Sci. Eng., 2019, 13(5): 69-.
[6] Yanqing Duan, Aijuan Zhou, Kaili Wen, Zhihong Liu, Wenzong Liu, Aijie Wang, Xiuping Yue. Upgrading VFAs bioproduction from waste activated sludge via co-fermentation with soy sauce residue[J]. Front. Environ. Sci. Eng., 2019, 13(1): 3-.
[7] Sijia Ai, Hongyu Liu, Mengjie Wu, Guangming Zeng, Chunping Yang. Roles of acid-producing bacteria in anaerobic digestion of waste activated sludge[J]. Front. Environ. Sci. Eng., 2018, 12(6): 3-.
[8] Yun Zhou, Siqing Xia, Binh T. Nguyen, Min Long, Jiao Zhang, Zhiqiang Zhang. Interactions between metal ions and the biopolymer in activated sludge: quantification and effects of system pH value[J]. Front. Environ. Sci. Eng., 2017, 11(1): 7-.
[9] Ran Yu, Shiwen Zhang, Zhoukai Chen, Chuanyang Li. Isolation and application of predatory Bdellovibrio-and-like organisms for municipal waste sludge biolysis and dewaterability enhancement[J]. Front. Environ. Sci. Eng., 2017, 11(1): 10-.
[10] Shuai MA,Siyu ZENG,Xin DONG,Jining CHEN,Gustaf OLSSON. Modification of the activated sludge model for chemical dosage[J]. Front. Environ. Sci. Eng., 2015, 9(4): 694-701.
[11] Zheng LI,Rong QI,Wei AN,Takashi MINO,Tadashi SHOJI,Willy VERSTRAETE,Jian GU,Shengtao LI,Shiwei XU,Min YANG. Simulation of long-term nutrient removal in a full-scale closed-loop bioreactor for sewage treatment: an example of Bayesian inference[J]. Front. Environ. Sci. Eng., 2015, 9(3): 534-544.
[12] Xi CHEN,Linjiang YUAN,Wenjuan LU,Yuyou LI,Pei LIU,Kun NIE. Cultivation of aerobic granular sludge in a conventional, continuous flow, completely mixed activated sludge system[J]. Front. Environ. Sci. Eng., 2015, 9(2): 324-333.
[13] DING Wenchuan,PENG Wenlong,ZENG Xiaolan,TIAN Xiumei. Effects of phosphorus concentration on Cr(VI) sorption onto phosphorus-rich sludge biochar[J]. Front.Environ.Sci.Eng., 2014, 8(3): 379-385.
[14] Yin WANG, Xuejiang WANG, Xin WANG, Mian LIU, Siqing XIA, Daqiang YIN, Yalei ZHANG, Jianfu ZHAO. Reduction of hexavalent chromium with scrap iron in a fixed bed reactor[J]. Front Envir Sci Eng, 2012, 6(6): 761-769.
[15] Panyue ZHANG, Tian WAN, Guangming ZHANG. Enhancement of sludge gravitational thickening with weak ultrasound[J]. Front Envir Sci Eng, 2012, 6(5): 753-760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed