Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2020, Vol. 14 Issue (6) : 105    https://doi.org/10.1007/s11783-020-1284-3
RESEARCH ARTICLE
Catalytic oxidation of o-chlorophenol over Co2XAl (X= Co, Mg, Ca, Ni) hydrotalcite-derived mixed oxide catalysts
Na Li1,2, Xin Xing1,2, Yonggang Sun1,2, Jie Cheng2(), Gang Wang1, Zhongshen Zhang2, Zhengping Hao1,2()
1. Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2. National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
 Download: PDF(1203 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Superior catalytic activity observed for o-chlorophenol oxidation on Co2MgAlO.

• The reducibility, oxygen species and basicity influenced catalytic activity.

• The organic by-products were generated in o-chlorophenol catalytic oxidation.

A cobalt-based hydrotalcite-like compound was prepared using a constant-pH coprecipitation method. Cobalt-transition metal oxides (Co2XAlO, X= Co, Mg, Ca and Ni) were investigated for the deep catalytic oxidation of o-chlorophenol as a typical heteroatom contaminant containing chlorine atoms. The partial substitution of Co by Mg, Ca or Ni in the mixed oxide can promote the catalytic oxidation of o-chlorophenol. The Co2MgAlO catalyst presented the best catalytic activity, and could maintain 90% o-chlorophenol conversion at 167.1°C, compared only 27% conversion for the Co3AlO catalyst. The results demonstrated that the high activity could be attributed to its increased low-temperature reducibility, rich active oxygen species and excellent oxygen mobility. In the existence of acid and base sites, catalysts with strong basicity also showed preferred activity. The organic by-products generated during the o-chlorophenol catalytic oxidation over Co2MgAlO catalyst included carbon tetrachloride, trichloroethylene, 2,4-dichlorophenol, and 2,6-dichloro-p-benzoquinon, et al. This work provides a facile method for the preparation of Co-based composite oxide catalysts, which represent promising candidates for typical chlorinated and oxygenated volatile organic compounds.

Keywords Hydrotalcite-derived mixed oxides      o-chlorophenol      Catalytic oxidation      Organic by-products     
Corresponding Author(s): Jie Cheng,Zhengping Hao   
Issue Date: 28 June 2020
 Cite this article:   
Na Li,Xin Xing,Yonggang Sun, et al. Catalytic oxidation of o-chlorophenol over Co2XAl (X= Co, Mg, Ca, Ni) hydrotalcite-derived mixed oxide catalysts[J]. Front. Environ. Sci. Eng., 2020, 14(6): 105.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1284-3
https://academic.hep.com.cn/fese/EN/Y2020/V14/I6/105
Fig.1  XRD patterns of Co2XAl-HTs precursors (a) and Co2XAlO catalysts (b).
Sample T10 (°C) T90 (°C) r × 106
(mol/gcat./s)
SBET a) (m2/g) Vp b) (cm3/g) Dp c) (nm) Co3+ d)
(%)
Ob e)
(%)
Crystallite sized f)
(nm)
Co3AlO 142.3 265.8 1.1 82.1 0.22 8.6 34.4 36.8 12.1
Co2MgAlO 109.4 167.1 15.7 80.0 0.28 11.5 55.6 51.6 5.3
Co2CaAlO 116.3 217.3 9.1 81.2 0.20 7.2 54.5 47.6 8.1
Co2NiAlO 123.2 230.3 5.9 86.3 0.21 7.3 37.8 49.9 8.6
Tab.1  T50, T90, reaction rates (r) at 120°C and textural properties of the Co2XAlO catalysts
Fig.2  Nitrogen adsorption/desorption isotherms curves (a) and pore size distribution (b) of the Co2XAlO catalysts.
Fig.3  The catalytic performances (a) and Arrhenius plots (ln (r × 106) vs 1000/T) (b).
Label Compound name Structure Label Compound name Structure
1 Carbon Tetrachloride 11 Hexachlorobutadiene
2 Trichloroethylene 12 2,4-Dichlorophenol
3 Trichloroacetaldehyde 13 2,6-Dichlorophenol
4 Tetrachloroethylene 14 2,6-Dichloro-p-Benzoquinon
5 Chlorobenzene 15 1,2,4,5-Tetrachlorobenzene
6 1,4-Dichlorobenzene 16 1,2,3,5-Tetrachlorobenzene
7 2-Chlorophenol 17 2,4,6-Trichlorophenol
8 1,3-Dichlorobenzene 18 2,3,6-Trichlorophenol
9 1,2,4-Trichlorobenzene 19 Pentachlorobenzene
10 1,3,5-Trichlorobenzene
Tab.2  Organic by-products over Co2MgAlO catalyst at 400°C
Fig.4  FT-IR spectra of the Co2XAlO catalysts.
Fig.5  H2-TPR (a), O2-TPD-MS (b), Co 2p (c) and O 1s (d) XPS spectra of Co2XAlO.
Fig.6  NH3-TPD-MS (a) and CO2-TPD-MS (b) profiles of the Co2XAlO catalysts.
1 B Y Bai, J H Li (2014). Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation. ACS Catalysis, 4(8): 2753–2762
https://doi.org/10.1021/cs5006663
2 N Blanch-Raga, A E Palomares, J Martínez-Triguero, G Fetter, P Bosch (2013). Cu mixed oxides based on hydrotalcite-like compounds for the oxidation of trichloroethylene. Industrial & Engineering Chemistry Research, 52(45): 15772–15779
https://doi.org/10.1021/ie4024935
3 N Blanch-Raga, A E Palomares, J Martínez-Triguero, M Puche, G Fetter, P Bosch (2014). The oxidation of trichloroethylene over different mixed oxides derived from hydrotalcites. Applied Catalysis B: Environmental, 160–161: 129–134
https://doi.org/10.1016/j.apcatb.2014.05.014
4 P H Bolt, F H P M Habraken, J W Geus (1998). Formation of nickel, cobalt, copper, and iron aluminates from a- and l-alumina-supported oxides: A comparative study. Journal of Solid State Chemistry, 135(1): 59–69
https://doi.org/10.1006/jssc.1997.7590
5 T Cai, H Huang, W Deng, Q G Dai, W Liu, X Y Wang (2015). Catalytic combustion of 1,2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts. Applied Catalysis B: Environmental, 166–167: 393–405
https://doi.org/10.1016/j.apcatb.2014.10.047
6 C A Chagas, E F de Souza, R L Manfro, S M Landi, M M V M Souza, M Schmal (2016). Copper as promoter of the NiO-CeO2 catalyst in the preferential CO oxidation. Applied Catalysis B: Environmental, 182: 257–265
https://doi.org/10.1016/j.apcatb.2015.09.033
7 J Cheng, J J Yu, X P Wang, L D Li, J J Li, Z P Hao (2008). Novel CH4 combustion catalysts derived from Cu-Co/X-Al (X= Fe, Mn, La, Ce) hydrotalcite-like compounds. Energy & Fuels, 22(4): 2131–2137
https://doi.org/10.1021/ef8000168
8 Q G Dai, W Wang, X Y Wang, G Z Lu (2017). Sandwich-structured CeO2@ZSM-5 hybrid composites for catalytic oxidation of 1,2-dichloroethane: An integrated solution to coking and chlorine poisoning deactivation. Applied Catalysis B: Environmental, 203: 31–42
https://doi.org/10.1016/j.apcatb.2016.10.009
9 C S Evans, B Dellinger (2005). Surface-mediated formation of polybrominated dibenzo-p-dioxins and dibenzofurans from the high-temperature pyrolysis of 2-bromophenol on a CuO/silica surface. Environmental Science & Technology, 39(13): 4857–4863
https://doi.org/10.1021/es048057z
10 Y F Gu, T Cai, X H Gao, H Q Xia, W Sun, J Zhao, Q G Dai, X Y Wang (2019). Catalytic combustion of chlorinated aromatics over WOx/CeO2 catalysts at low temperature. Applied Catalysis B: Environmental, 248: 264–276
https://doi.org/10.1016/j.apcatb.2018.12.055
11 L J Guo, N Jiang, J Li, K F Shang, N Lu, Y Wu (2018). Abatement of mixed volatile organic compounds in a catalytic hybrid surface/packed-bed discharge plasma reactor. Frontiers of Environmental Science & Engineering, 12(2): 15
https://doi.org/10.1007/s11783-018-1017-z
12 J K Han, L T Jia, B Hou, D B Li, Y Liu, Y C Liu (2015). Catalytic properties of CoAl2O4/Al2O3 supported cobalt catalysts for Fischer-Tropsch synthesis. Journal of Fuel Chemistry and Technology, 43(7): 846–851
https://doi.org/10.1016/S1872-5813(15)30025-6
13 C He, J Cheng, X Zhang, M Douthwaite, S Pattisson, Z P Hao (2019). Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources. Chemical Reviews, 119(7): 4471–4568
https://doi.org/10.1021/acs.chemrev.8b00408
14 C E Hetrick, J Lichtenberger, M D Amiridis (2008). Catalytic oxidation of chlorophenol over V2O5/TiO2 catalysts. Applied Catalysis B: Environmental, 77(3–4): 255–263
https://doi.org/10.1016/j.apcatb.2007.07.022
15 H Hu, S X Cai, H R Li, L Huang, L Y Shi, D S Zhang (2015). Mechanistic aspects of deNOx processing over TiO2 supported Co–Mn oxide catalysts: Structure–activity relationships and in situ DRIFTs analysis. ACS Catalysis, 5(10): 6069–6077
https://doi.org/10.1021/acscatal.5b01039
16 Y C Huang, W J Fan, B Long, H B Li, W T Qiu, F Y Zhao, Y X Tong, H B Ji (2016a). Alkali-modified non-precious metal 3D-NiCo2O4 nanosheets for efficient formaldehyde oxidation at low temperature. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 4(10): 3648–3654
https://doi.org/10.1039/C5TA09370H
17 Y C Huang, K H Ye, H B Li, W J Fan, F Y Zhao, Y M Zhang, H B Ji (2016b). A highly durable catalyst based on CoxMn3–xO4 nanosheets for low-temperature formaldehyde oxidation. Nano Research, 9(12): 3881–3892
https://doi.org/10.1007/s12274-016-1257-9
18 M S Kamal, S A Razzak, M M Hossain (2016). Catalytic oxidation of volatile organic compounds (VOCs): A review. Atmospheric Environment, 140: 117–134
https://doi.org/10.1016/j.atmosenv.2016.05.031
19 P Li, C He, J Cheng, C Y Ma, B J Dou, Z P Hao (2011). Catalytic oxidation of toluene over Pd/Co3AlO catalysts derived from hydrotalcite-like compounds: Effects of preparation methods. Applied Catalysis B: Environmental, 101(3–4): 570–579
https://doi.org/10.1016/j.apcatb.2010.10.030
20 Q Li, M Meng, Z Q Zou, X G Li, Y Q Zha (2009). Simultaneous soot combustion and nitrogen oxides storage on potassium-promoted hydrotalcite-based CoMgAlO catalysts. Journal of Hazardous Materials, 161(1): 366–372
https://doi.org/10.1016/j.jhazmat.2008.03.103
21 S D Li, H S Wang, W M Li, X F Wu, W X Tang, Y F Chen (2015). Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor. Applied Catalysis B: Environmental, 166–167: 260–269
https://doi.org/10.1016/j.apcatb.2014.11.040
22 J G Liu, M Y Ding, T J Wang, L L Ma (2012). Promoting effect of cobalt addition on higher alcohols synthesis over copper-based catalysts. Advanced Materials Research, 550–553: 270–275
https://doi.org/10.4028/www.scientific.net/AMR.550-553.270
23 Y Lou, L Wang, Z Y Zhao, Y H Zhang, Z G Zhang, G Z Lu, Y Guo, Y L Guo (2014). Low-temperature CO oxidation over Co3O4-based catalysts: Significant promoting effect of Bi2O3 on Co3O4 catalyst. Applied Catalysis B: Environmental, 146: 43–49
https://doi.org/10.1016/j.apcatb.2013.06.007
24 W J Lu, Y Abbas, M F Mustafa, C Pan, H T Wang (2019). A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds. Frontiers of Environmental Science & Engineering, 13(2): 30
https://doi.org/10.1007/s11783-019-1108-5
25 M Salavati-Niasari, N Mir, F Davar (2009). Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate. Journal of Physics and Chemistry of Solids, 70(5): 847–852
https://doi.org/10.1016/j.jpcs.2009.04.006
26 Z N Shi, P Yang, F Tao, R X Zhou (2016). New insight into the structure of CeO2–TiO2 mixed oxides and their excellent catalytic performances for 1,2-dichloroethane oxidation. Chemical Engineering Journal, 295: 99–108
https://doi.org/10.1016/j.cej.2016.03.032
27 X F Tang, J M Hao, J H Li (2009). Complete oxidation of methane on Co3O4–SnO2 catalysts. Frontiers of Environmental Science & Engineering in China, 3(3): 265–270
https://doi.org/10.1007/s11783-009-0019-2
28 M J Tian, C He, Y K Yu, H Pan, L Smith, Z Y Jiang, N B Gao, Y F Jian, Z P Hao, Q Zhu (2018). Catalytic oxidation of 1,2-dichloroethane over three-dimensional ordered meso-macroporous Co3O4/La0.7Sr0.3Fe0.5Co0.5O3: Destruction route and mechanism. Applied Catalysis A, General, 553: 1–14
https://doi.org/10.1016/j.apcata.2018.01.013
29 Z Y Tian, P H Tchoua Ngamou, V Vannier, K Kohse-Höinghaus, N Bahlawane (2012). Catalytic oxidation of VOCs over mixed Co–Mn oxides. Applied Catalysis B: Environmental, 117–118: 125–134
https://doi.org/10.1016/j.apcatb.2012.01.013
30 L L Yang, G R Liu, M H Zheng, Y Y Zhao, R Jin, X L Wu, Y Xu (2017). Molecular mechanism of dioxin formation from chlorophenol based on electron paramagnetic resonance spectroscopy. Environmental Science & Technology, 51(9): 4999–5007
https://doi.org/10.1021/acs.est.7b00828
31 P Yang, S S Yang, Z N Shi, Z H Meng, R X Zhou (2015). Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts. Applied Catalysis B: Environmental, 162: 227–235
https://doi.org/10.1016/j.apcatb.2014.06.048
32 L P Zeng, K Z Li, F Huang, X Zhu, H C Li (2016). Effects of Co3O4 nanocatalyst morphology on CO oxidation: Synthesis process map and catalytic activity. Chinese Journal of Catalysis, 37(6): 908–922
https://doi.org/10.1016/S1872-2067(16)62460-9
33 C H Zhang, C Wang, S Gil, A Boreave, L Retailleau, Y L Guo, J L Valverde, A Giroir-Fendler (2017). Catalytic oxidation of 1,2-dichloropropane over supported LaMnOx oxides catalysts. Applied Catalysis B: Environmental, 201: 552–560
https://doi.org/10.1016/j.apcatb.2016.08.038
34 X Zhang, Z Wang, Y Y Tang, N L Qiao, Y Li, S Q Qu, Z P Hao (2015). Catalytic behaviors of combined oxides derived from Mg/AlxFe1–x–Cl layered double hydroxides for H2S selective oxidation. Catalysis Science & Technology, 5(11): 4991–4999
https://doi.org/10.1039/C5CY00689A
35 Z Z Zhu, G Z Lu, Z G Zhang, Y Guo, Y L Guo, Y Q Wang (2013). Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: Effect of the preparation method. ACS Catalysis, 3(6): 1154–1164
https://doi.org/10.1021/cs400068v
[1] FSE-20041-OF-LN_suppl_1 Download
[1] Tiejun Zhang, Jian Li, Hong He, Qianqian Song, Quanming Liang. NO oxidation over Co-La catalysts and NOx reduction in compact SCR[J]. Front. Environ. Sci. Eng., 2017, 11(2): 4-.
[2] Nanli QIAO,Xin ZHANG,Chi HE,Yang LI,Zhongshen ZHANG,Jie CHENG,Zhengping HAO. Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts[J]. Front. Environ. Sci. Eng., 2016, 10(3): 458-466.
[3] Chang-Mao HUNG, Wen-Liang LAI, Jane-Li LIN. Investigation of fluorescence characterization and electrochemical behavior on the catalysts of nanosized Pt-Rh/γ-Al2O3 to oxidize gaseous ammonia[J]. Front Envir Sci Eng, 2013, 7(3): 428-434.
[4] Longli BO, Jianbo LIAO, Yucai ZHANG, Xiaohui WANG, Quan YANG. CuO/zeolite catalyzed oxidation of gaseous toluene under microwave heating[J]. Front Envir Sci Eng, 2013, 7(3): 395-402.
[5] Zeinab JAMALZADEH, Mohammad HAGHIGHI, Nazli ASGARI. Synthesis, physicochemical characterizations and catalytic performance of Pd/carbon-zeolite and Pd/carbon-CeO2 nanocatalysts used for total oxidation of xylene at low temperatures[J]. Front Envir Sci Eng, 2013, 7(3): 365-381.
[6] ZHOU Yunrui, ZHU Wanpeng, CHEN Xun. Catalytic activity of cerium-doped Ru/AlO during ozonation of dimethyl phthalate[J]. Front.Environ.Sci.Eng., 2008, 2(3): 354-357.
[7] GUO Ting, BAI Zhipeng, WU Can, ZHU Tan. Influence of environmental temperature and relative humidity on photocatalytic oxidation of toluene on activated carbon fibers coated TiO[J]. Front.Environ.Sci.Eng., 2008, 2(2): 224-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed