Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    0, Vol. Issue () : 365-381    https://doi.org/10.1007/s11783-013-0520-5
RESEARCH ARTICLE
Synthesis, physicochemical characterizations and catalytic performance of Pd/carbon-zeolite and Pd/carbon-CeO2 nanocatalysts used for total oxidation of xylene at low temperatures
Zeinab JAMALZADEH1,2, Mohammad HAGHIGHI1,2(), Nazli ASGARI1,2
1. Chemical Engineering Faculty, Sahand University of Technology, Tabriz 5331711111, Iran; 2. Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, Tabriz 5331711111, Iran
 Download: PDF(1160 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, xylene removal from waste gas streams was investigated via catalytic oxidation over Pd/carbon-zeolite and Pd/carbon-CeO2 nanocatalysts. Activated carbon was obtained from pine cone chemically activated using ZnCl2 and modified by H3PO4. Natural zeolite of clinoptilolite was modified by acid treatment with HCl, while nano-ceria was synthesized via redox method. Mixed supports of carbon-zeolite and carbon-ceria were prepared and palladium was dispersed over them via impregnation method. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller surface area (BET), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric (TG) techniques. Characterization of nanocatalysts revealed a good morphology with an average particle size in a nano range, and confirmed the formation of nano-ceria with an average crystallite size below 60 nm. BET analysis indicated a considerable surface area for catalysts (~1000 m2·g-1). FTIR patterns demonstrated that the surface groups of synthesized catalysts are in good agreement with the patterns of materials applied in catalyst synthesis. The performance of catalysts was assessed in a low-pressure catalytic oxidation pilot in the temperature range of 100°C–250°C. According to the reaction data, the synthesized catalysts have been shown to be so advantageous in the removal of volatile organic compounds (VOCs), representing high catalytic performance of 98% for the abatement of xylene at 250°C. Furthermore, a reaction network is proposed for catalytic oxidation of xylene over nanocatalysts.

Keywords Pd/carbon-CeO2      Pd/carbon-zeolite      pine cone      ZnCl2      catalytic oxidation      xylene     
Corresponding Author(s): HAGHIGHI Mohammad,Email:haghighi@sut.ac.ir   
Issue Date: 01 June 2013
 Cite this article:   
Zeinab JAMALZADEH,Mohammad HAGHIGHI,Nazli ASGARI. Synthesis, physicochemical characterizations and catalytic performance of Pd/carbon-zeolite and Pd/carbon-CeO2 nanocatalysts used for total oxidation of xylene at low temperatures[J]. Front Envir Sci Eng, 0, (): 365-381.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0520-5
https://academic.hep.com.cn/fese/EN/Y0/V/I/365
Fig.1  Schematic flow chart for the preparation steps of supports (a) activated carbon (AC), (b) HCl activated zeolite (AZ) and (c) nano-CeO (NC)
Fig.2  Experimental setup for synthesis of activated carbon from pine cone via ZnCl activation
Fig.3  Schematic flow chart for the preparation steps of nanostructured catalysts: (a) Pd/carbon-zeolite (PCZ) and (b) Pd/carbon-CeO (PCC)
Fig.4  Experimental setup for testing catalytic performance of synthesized nanostructured catalysts: Pd/carbon-zeolite (PCZ) and Pd/carbon-CeO (PCC)
Fig.5  XRD patterns of synthesized activated carbons via ZnCl activation at various impregnation ratios of activation agent to dry precursor (wt/wt): (a) ZnCl/pinecone= 1 (AC1), (b) ZnCl/pinecone= 1.5 (AC1.5) and (c) ZnCl/pinecone= 2 (AC2)
Fig.6  FESEM images of synthesized activated carbons via ZnCl activation at various impregnation ratios of activation agent to dry precursor (wt/wt): (a) ZnCl/Pinecone= 1 (AC1), (b) ZnCl/Pinecone= 1.5 (AC1.5) and (c) ZnCl/Pinecone= 2 (AC2)
catalyst/supportnomenclaturecomponentposition/(2θ)FWHMa)/(2θ)D-spacing/?latticeplanecrystallitesizeb) /nmcrystallitephaseJCPDScode
clinoptiloliteAZclinoptilolite22.5°0.46°3.9640017.6monoclinic00-025-1349
nano-CeO2NCCeO228.68°0.79°3.1111110.4cubic01-075-0076
Pd/carbon- zeolitePCZPd39.99°0.54°2.2511115.6cubic01-087-0639
Pd/carbon- zeolitePCZclinoptilolite22.47°0.47°3.9640017.1monoclinic00-025-1349
Pd/carbon-CeO2PCCCeO228.54°0.79°3.1111110.4cubic01-075-0076
Pd/carbon-CeO2PCCPd40.09°0.58°2.2511114.6cubic01-087-0639
Tab.1  Estimation of crystallite size of synthesized nanostructured catalysts: Pd/carbon-zeolite (PCZ) and Pd/carbon-CeO (PCC)
Fig.7  XRD patterns of (a) synthesized activated carbon (AC), (b) HCl activated zeolite (AZ), (c) synthesized nano-CeO (NC), (d) Pd/carbon-zeolite (PCZ) and (e) Pd/carbon-CeO (PCC)
Fig.8  FESEM images of (a) synthesized activated carbon (AC), (b) HCl activated zeolite (AZ), (c) synthesized nano-CeO (NC), (d) Pd/carbon-zeolite (PCZ) and (e) Pd/carbon-CeO (PCC)
Fig.9  Particle size histogram of (a) synthesized nano-CeO (NC) and (b) Pd/carbon-CeO (PCC) nanocatalyst
Fig.10  Specific surface area of synthesized supports and nanostructured catalysts
Fig.11  FTIR spectrums of (a) synthesized activated carbon (AC), (b) HCl activated zeolite (AZ), (c) synthesized nano-CeO (NC), (d) Pd/carbon-zeolite (PCZ) and (e) Pd/carbon-CeO (PCC)
Fig.12  TG-DTG spectrums of (a) synthesized activated carbon (AC), (b) HCl activated zeolite (AZ), (c) synthesized nano-CeO (NC), (d) Pd/carbon-zeolite (PCZ) and (e) Pd/carbon-CeO (PCC)
Fig.13  Oxidation performance of nanostructured catalysts at different temperatures
Fig.14  
Fig.15  Reaction mechanism for total oxidation of xylene over nanostructured catalysts: (a) Pd/carbon-zeolite (PCZ) and (b) Pd/carbon-CeO (PCC)
1 Rasheva T, Rasheva D, Mollov M. Introduction to Treatment of Industrial Waste Gases and Waters. Sofia: National Bank for Industrial Microorganisms and Cell Cultures, 2001
2 Cunningham D. Estimation of VOC emissions. Journal of Cleaner Production , 1995, 3(4): 225-228
doi: 10.1016/0959-6526(96)00003-0
3 Leuchner M, Rappengl°Ck B. VOC source-receptor relationships in Houston during TexAQS-II. Atmospheric Environment , 2010, 44(33): 4056-4067
doi: 10.1016/j.atmosenv.2009.02.029
4 Dégé P, Pinard L, Magnoux P, Guisnet M. Catalytic oxidation of volatile organic compounds (VOCs): oxidation of o-xylene over Pd and Pt/HFAU catalysts. Comptes Rendus de l'Académie des Sciences-Series IIC- Chemistry , 2001, 4(1): 41-47
5 Li W B, Wang J X, Gong H. Catalytic combustion of VOCs on non-noble metal catalysts. Catalysis Today , 2009, 148(1-2): 81-87
doi: 10.1016/j.cattod.2009.03.007
6 Adams J C, Dills R L, Morgan M S, Kalman D A, Pierce C H. A physiologically based toxicokinetic model of inhalation exposure to xylenes in Caucasian men. Regul Toxicol and Pharmacol , 2005, 43(2): 203-214
doi: 10.1016/j.yrtph.2005.07.005 pmid:16169135
7 Fishbein L. An overview of environmental and toxicological aspects of aromatic hydrocarbons. III. Xylene. Sci Total Environ , 1985, 43(1-2): 165-183
doi: 10.1016/0048-9697(85)90039-7 pmid:3892684
8 Gironi F, Piemonte V. VOCs removal from dilute vapour streams by adsorption onto activated carbon. Chemical Engineering Journal , 2011, 172(2 - 3): 671-677
doi: 10.1016/j.cej.2011.06.034
9 Lu Y, Liu J, Lu B, Jiang A, Wan C. Study on the removal of indoor VOCs using biotechnology. Journal of Hazardous Materials , 2010, 182(1-3): 204-209
doi: 10.1016/j.jhazmat.2010.06.016 pmid:20598440
10 Spigno G, Pagella C, Daria Fumi M, Molteni R, Marco De Faveri D. VOCs removal from waste gases: gas-phase bioreactor for the abatement of hexane by Aspergillus Niger. Chemical Engineering Science , 2003, 58(3-6): 739-746
doi: 10.1016/S0009-2509(02)00603-6
11 Takashima H, Karches M, Kanno Y. Catalytic decomposition of trichloroethylene over Pt-/Ni-catalyst under microwave heating. Applied Surface Science , 2008, 254(7): 2023-2030
doi: 10.1016/j.apsusc.2007.08.030
12 Shim W G, Kim S C. Heterogeneous adsorption and catalytic oxidation of benzene, toluene and xylene over spent and chemically regenerated platinum catalyst supported on activated carbon. Applied Surface Science , 2010, 256(17): 5566-5571
doi: 10.1016/j.apsusc.2009.12.148
13 Liu H, Ma L, Shao S, Li Z, Wang A, Huang Y, Zhang T, Preferential COoxidation on Ce-promoted Pt/[gamma]-Al2O3 catalysts under H2-rich atmosphere. Chinese Journal of Catalysis , 2007, 28(12): 1077-1082
doi: 10.1016/S1872-2067(08)60008-X
14 Asgari N, Haghighi M, Shafiei S. Synthesis and physicochemical characterization of nanostructured Pd/ceria-clinoptilolite catalyst used for p-xylene abatement from waste gas streams at low temperature. Journal of Chemical Technology and Biotechnology , 2013, 88(4): 690-703
doi: 10.1002/jctb.3887
15 Yang Z, Chen C Y, Chang H T. Preparation of highly electroactive cobalt sulfide core-shell nanosheets as counter electrodes for CdZnSSe nanostructure-sensitized solar cells. Solar Energy Materials and Solar Cells , 2011, 95(10): 2867-2873
doi: 10.1016/j.solmat.2011.06.002
16 Zhang G, Zhao Z, Xu J, Zheng J, Liu J, Jiang G, Duan A, He H. Comparative study on the preparation, characterization and catalytic performances of 3DOM Ce-based materials for the combustion of diesel soot. Applied Catalysis B: Environmental , 2011, 107(3-4): 302-315
doi: 10.1016/j.apcatb.2011.07.029
17 Gómez-Serrano V, Cuerda-Correa E M, Fernández-González M C, Alexandre-Franco M F, Macías-García A. Preparation of activated carbons from walnut wood: a study of microporosity and fractal dimension. Smart Materials and Structures , 2005, 14(2): 363-368
doi: 10.1088/0964-1726/14/2/010
18 Horikawa T, Kitakaze Y, Sekida T, Hayashi J, Katoh M. Characteristics and humidity control capacity of activated carbon from bamboo. Bioresource Technology , 2010, 101(11): 3964-3969
doi: 10.1016/j.biortech.2010.01.032 pmid:20133125
19 Duman G, Onal Y, Okutucu C, Onenc S, Yanik J. Production of activated carbon from pine cone and evaluation of its physical, chemical, and adsorption properties. Energy & Fuels , 2009, 23(4): 2197-2204
doi: 10.1021/ef800510m
20 Rezaee A, Godini H, Dehestani S, Khavanin A. Application of impregnated almond shell activated carbon by zinc and zinc sulfate for nitrate removal from water. Iranian Journal of Environmental Health Sciences & Engineering , 2008, 5(2): 125-130
21 Ruiz Bevia F, Prats Rico D, Marcilla Gomis A F. Activated carbon from almond shells. Chemical activation. 2. Zinc chloride activation temperature influence. Industrial & Engineering Chemistry Product Research and Development , 1984, 23(2): 269-271
doi: 10.1021/i300014a020
22 Schr?der E, Thomauske K, Weber C, Hornung A, Tumiatti V. Experiments on the generation of activated carbon from biomass. Journal of Analytical and Applied Pyrolysis , 2007, 79(1-2): 106-111
doi: 10.1016/j.jaap.2006.10.015
23 Wartelle L H, Marshall W E, Toles C A, Johns M M. Comparison of nutshell granular activated carbons to commercial adsorbents for the purge-and-trap gas chromatographic analysis of volatile organic compounds. Journal of Chromatography. A , 2000, 879(2): 169-175
doi: 10.1016/S0021-9673(00)00290-9 pmid:10893033
24 Yang T, Lua A C. Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. Journal of Colloid and Interface Science , 2003, 267(2): 408-417
doi: 10.1016/S0021-9797(03)00689-1 pmid:14583219
25 Namane A, Mekarzia A, Benrachedi K, Belhaneche-Bensemra N, Hellal A. Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4. Journal of Hazardous Materials , 2005, 119(1-3): 189-194
doi: 10.1016/j.jhazmat.2004.12.006 pmid:15752865
26 Choi J S, Kim T H, Choo K Y, Sung J S, Saidutta M B, Ryu S O, Song S D, Ramachandra B, Rhee Y W. Direct synthesis of phenol from benzene on iron-impregnated activated carbon catalysts. Applied Catalysis A , 2005, 290(1-2): 1-8
doi: 10.1016/j.apcata.2005.04.060
27 Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production-a review. Renewable & Sustainable Energy Reviews , 2007, 11(9): 1966-2005
doi: 10.1016/j.rser.2006.03.013
28 Oliveira C R, Rubio J. New basis for adsorption of ionic pollutants onto modified zeolites. Minerals Engineering , 2007, 20(6): 552-558
doi: 10.1016/j.mineng.2006.11.002
29 Taffarel S R, Rubio J. On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites. Minerals Engineering , 2009, 22(4): 336-343
doi: 10.1016/j.mineng.2008.09.007
30 Hernández-Beltrán N A, Olguín M T. Elemental composition variability of clinoptilolite-rich tuff after the treatment with acid phosphate solutions. Hydrometallurgy , 2007, 89(3-4): 374-378
doi: 10.1016/j.hydromet.2007.09.003
31 Korkuna O, Leboda R, Skubiszewska-Zie?ba J, Vrublevs’ka T, Gun’ko V M, Ryczkowski J. Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous and Mesoporous Materials , 2006, 87(3): 243-254
doi: 10.1016/j.micromeso.2005.08.002
32 Hernàandez M A, Corona L, Rojas F. Adsorption characteristics of natural erionite, clinoptilolite and mordenite zeolites from Mexico. Adsorption , 2000, 6(1): 33-45
doi: 10.1023/A:1008943031277
33 Tanaka H, Yamasaki N, Muratani M, Hino R. Structure and formation process of (K,Na)-clinoptilolite. Materials Research Bulletin , 2003, 38(4): 713-722
doi: 10.1016/S0025-5408(03)00006-0
34 Galarnau A, Di Renzo F, Faujula F, Vedrine J. Clinoptilolite-heulandite: applications and basic research. Studies in Surface Science and Catalysis , 2001, 135: 13-27
35 Garcia T, Solsona B, Taylor S H. Nano-crystalline ceria catalysts for the abatement of polycyclic aromatic hydrocarbons. Catalysis Letters , 2005, 105(3-4): 183-189
doi: 10.1007/s10562-005-8689-2
36 Zhao D, Han E, Wu X, Guan H. Hydrothermal synthesis of ceria nanoparticles supported on carbon nanotubes in supercritical water. Materials Letters , 2006, 60(29-30): 3544-3547
doi: 10.1016/j.matlet.2006.03.049
37 Abbasi Z, Haghighi M, Fatehifar E, Saedy S. Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3-CeO2 catalysts for total oxidation of VOCs. Journal of Hazardous Materials , 2011, 186(2-3): 1445-1454
doi: 10.1016/j.jhazmat.2010.12.034 pmid:21216099
38 Delimaris D, Ioannides T. VOC oxidation over CuO-CeO2 catalysts prepared by a combustion method. Applied Catalysis B: Environmental , 2009, 89(1-2): 295-302
doi: 10.1016/j.apcatb.2009.02.003
39 Wang C H, Lin S S. Preparing an active cerium oxide catalyst for the catalytic incineration of aromatic hydrocarbons. Applied Catalysis A , 2004, 268(1-2): 227-233
doi: 10.1016/j.apcata.2004.03.040
40 Kim H S, Kim T W, Koh H L, Lee S H, Min B R. Complete benzene oxidation over Pt-Pd bimetal catalyst supported on γ-alumina: influence of Pt-Pd ratio on the catalytic activity. Applied Catalysis A , 2005, 280(2): 125-131
doi: 10.1016/j.apcata.2004.02.027
41 Sricharoenchaikul V, Pechyen C, Aht-ong D, Atong D. Preparation and characterization of activated carbon from the pyrolysis of physic nut (Jatropha curcas L.) waste. Energy & Fuels , 2008, 22(1): 31-37
doi: 10.1021/ef700285u
42 Stuart B H. Infrared Spectroscopy: Fundamentals and Applications: Chichester, West Sussex, England. New York: John Wiley & Sons Inc. , 2004
43 Povnnennykh A S. The use of infrared spectra for the determination of minerals. American Mineralogist , 1978, 63: 956-959
44 Shirazi L, Jamshidi E, Ghasemi M R. The effect of Si/Al ratio of ZSM 5 zeolite on its morphology, acidity and crystal size. Crystal Research and Technology , 2008, 43(12): 1300-1306
doi: 10.1002/crat.200800149
45 Asgari N, Haghighi M, Shafiei S. Synthesis and physicochemical characterization of nanostructured CeO2/clinoptilolite for catalytic total oxidation of xylene at low temperature. Environmental Progress & Sustainable Energy, 2012. Available online at: http://onlinelibrary.wiley.com/doi/10.1002/ep.11669/full (Accessed April15, 2013)
46 Abbasi Z, Haghighi M, Fatehifar E, Rahemi N. Comparative synthesis and physicochemical characterization of CeO2 nanopowder via redox reaction, precipitation and sol-gel methods used for total oxidation of toluene. Asia-Pacific Journal of Chemical Engineering , 2012, 7(6): 868-876
doi: 10.1002/apj.652
47 Spivey J J. Complete catalytic oxidation of volatile organics. Industrial & Engineering Chemistry Research , 1987, 26(11): 2165-2180
doi: 10.1021/ie00071a001
48 Abbasi Z, Haghighi M, Fatehifar E, Saedy S. Synthesis and physicochemical characterization of nanostructured Pt/CeO2 catalyst used for total oxidation of toluene. International Journal of Chemical Reactor Engineering , 2011, 9(1): 1-19
49 Wu J C S, Lin Z A, Tsai F M, Pan J W. Low-temperature complete oxidation of BTX on Pt/activated carbon catalysts. Catalysis Today , 2000, 63(2-4): 419-426
doi: 10.1016/S0920-5861(00)00487-9
50 Ene A B, Archipov T, Roduner E. Spectroscopic study of the adsorption of benzene on Cu/HZSM5 zeolites. Journal of Physical Chemistry C , 2010, 114(34): 14571-14578
doi: 10.1021/jp105370w
[1] Xin Xing, Na Li, Dandan Liu, Jie Cheng, Zhengping Hao. Effect of Cu-ZSM-5 catalysts with different CuO particle size on selective catalytic oxidation of N,N-Dimethylformamide[J]. Front. Environ. Sci. Eng., 2022, 16(10): 125-.
[2] Na Li, Xin Xing, Yonggang Sun, Jie Cheng, Gang Wang, Zhongshen Zhang, Zhengping Hao. Catalytic oxidation of o-chlorophenol over Co2XAl (X= Co, Mg, Ca, Ni) hydrotalcite-derived mixed oxide catalysts[J]. Front. Environ. Sci. Eng., 2020, 14(6): 105-.
[3] Tiejun Zhang, Jian Li, Hong He, Qianqian Song, Quanming Liang. NO oxidation over Co-La catalysts and NOx reduction in compact SCR[J]. Front. Environ. Sci. Eng., 2017, 11(2): 4-.
[4] Nanli QIAO,Xin ZHANG,Chi HE,Yang LI,Zhongshen ZHANG,Jie CHENG,Zhengping HAO. Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts[J]. Front. Environ. Sci. Eng., 2016, 10(3): 458-466.
[5] Longli BO, Jianbo LIAO, Yucai ZHANG, Xiaohui WANG, Quan YANG. CuO/zeolite catalyzed oxidation of gaseous toluene under microwave heating[J]. Front Envir Sci Eng, 2013, 7(3): 395-402.
[6] Chang-Mao HUNG, Wen-Liang LAI, Jane-Li LIN. Investigation of fluorescence characterization and electrochemical behavior on the catalysts of nanosized Pt-Rh/γ-Al2O3 to oxidize gaseous ammonia[J]. Front Envir Sci Eng, 2013, 7(3): 428-434.
[7] Fei YU, Jie MA, Yanqing WU. Adsorption of toluene, ethylbenzene and xylene isomers on multi-walled carbon nanotubes oxidized by different concentration of NaOCl[J]. Front Envir Sci Eng, 2012, 6(3): 320-329.
[8] ZHOU Yunrui, ZHU Wanpeng, CHEN Xun. Catalytic activity of cerium-doped Ru/AlO during ozonation of dimethyl phthalate[J]. Front.Environ.Sci.Eng., 2008, 2(3): 354-357.
[9] GUO Ting, BAI Zhipeng, WU Can, ZHU Tan. Influence of environmental temperature and relative humidity on photocatalytic oxidation of toluene on activated carbon fibers coated TiO[J]. Front.Environ.Sci.Eng., 2008, 2(2): 224-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed