Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (3) : 230-238    https://doi.org/10.1007/s11515-015-1360-4
REVIEW
New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease
Young-Cho Kim1,Stephanie L. Alberico1,Eric Emmons1,Nandakumar S. Narayanan1,2,*()
1. Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
2. Aging Mind and Brain Initiative, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
 Download: PDF(314 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The neurotransmitter dopamine acts via two major classes of receptors, D1-type and D2-type. D1 receptors are highly expressed in the striatum and can also be found in the cerebral cortex. Here we review the role of D1 dopamine signaling in two major domains: L-DOPA-induced dyskinesias in Parkinson’s disease and cognition in neuropsychiatric disorders. While there are many drugs targeting D2-type receptors, there are no drugs that specifically target D1 receptors. It has been difficult to use selective D1-receptor agonists for clinical applications due to issues with bioavailability, binding affinity, pharmacological kinetics, and side effects. We propose potential therapies that selectively modulate D1 dopamine signaling by targeting second messengers downstream of D1 receptors, allosteric modulators, or by making targeted modifications to D1-receptor machinery. The development of therapies specific to D1-receptor signaling could be a new frontier in the treatment of neurological and psychiatric disorders.

Keywords cognition      D1DR      dopamine D1 receptor      dyskinesia     
Corresponding Author(s): Nandakumar S. Narayanan   
Just Accepted Date: 17 April 2015   Online First Date: 14 May 2015    Issue Date: 23 June 2015
 Cite this article:   
Stephanie L. Alberico,Eric Emmons,Young-Cho Kim, et al. New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease[J]. Front. Biol., 2015, 10(3): 230-238.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1360-4
https://academic.hep.com.cn/fib/EN/Y2015/V10/I3/230
Fig.1  Schematic diagram shows projections of midbrain dopaminergic projections (ventral tegmental area or substantia nigra) to the frontal cortex and striatum and intracellular signaling pathway in a D1 receptor synapse. Midbrain dopaminergic neurons (red) project to both glutamatergic pyramidal neurons (purple) and GABAergic interneurons (gray) in prefrontal cortex. Some midbrain dopaminergic neurons project to medium spiny neurons in the striatum that express either D1 dopamine receptors (blue) or D2 dopamine receptors (green). Dopamine synthesis in dopaminergic neurons requires two key proteins, tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC), which are target molecules for dopaminergic degenerating diseases (PD). D1DRs in post-synaptic neurons are coupled with G-proteins. Activation of D1DRs stimulates adenylate cyclase (AC) which results in increased cAMP levels. Increasing PKA activity with cAMP changes subsequently induces phosphorylation of DARPP-32.
1 Ariano M A, Sibley D R (1994). Dopamine receptor distribution in the rat CNS: elucidation using anti-peptide antisera directed against D1A and D3 subtypes. Brain Res, 649(1–2): 95–110
https://doi.org/10.1016/0006-8993(94)91052-9 pmid: 7953659
2 Arnsten A F, Cai J X, Murphy B L, Goldman-Rakic P S (1994). Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology (Berl), 116(2): 143–151
https://doi.org/10.1007/BF02245056 pmid: 7862943
3 Aubert I, Guigoni C, H?kansson K, Li Q, Dovero S, Barthe N, Bioulac B H, Gross C E, Fisone G, Bloch B, Bezard E (2005). Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol, 57(1): 17–26
https://doi.org/10.1002/ana.20296 pmid: 15514976
4 Bartus R T, Baumann T L, Siffert J, Herzog C D, Alterman R, Boulis N, Turner D A, Stacy M, Lang A E, Lozano A M, Olanow C W (2013). Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology, 80(18): 1698–1701
https://doi.org/10.1212/WNL.0b013e3182904faa pmid: 23576625
5 Bergson C, Mrzljak L, Smiley J F, Pappy M, Levenson R, Goldman-Rakic P S (1995). Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci, 15(12): 7821–7836
pmid: 8613722
6 Berthet A, Porras G, Doudnikoff E, Stark H, Cador M, Bezard E, Bloch B (2009). Pharmacological analysis demonstrates dramatic alteration of D1 dopamine receptor neuronal distribution in the rat analog of L-DOPA-induced dyskinesia. J Neurosci, 29(15): 4829–4835
https://doi.org/10.1523/JNEUROSCI.5884-08.2009 pmid: 19369551
7 Blanchet P J, Konitsiotis S, Chase T N (1998). Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys. Mov Disord, 13(5): 798–802
https://doi.org/10.1002/mds.870130507 pmid: 9756148
8 Boyden E S, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci, 8(9): 1263–1268
https://doi.org/10.1038/nn1525 pmid: 16116447
9 Calabresi P, Di Filippo M, Ghiglieri V, Picconi B (2008). Molecular mechanisms underlying levodopa-induced dyskinesia. Mov Disord, 23(Suppl 3): S570–S579
https://doi.org/10.1002/mds.22019 pmid: 18781674
10 Carter M E, de Lecea L (2011). Optogenetic investigation of neural circuits in vivo. Trends Mol Med, 17(4): 197–206
https://doi.org/10.1016/j.molmed.2010.12.005 pmid: 21353638
11 Castner S A, Goldman-Rakic P S (2004). Enhancement of working memory in aged monkeys by a sensitizing regimen of dopamine D1 receptor stimulation. J Neurosci, 24(6): 1446–1450
https://doi.org/10.1523/JNEUROSCI.3987-03.2004 pmid: 14960617
12 Castner S A, Williams G V, Goldman-Rakic P S (2000). Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science, 287(5460): 2020–2022
https://doi.org/10.1126/science.287.5460.2020 pmid: 10720329
13 Cavanagh J F, Frank M J (2014). Frontal theta as a mechanism for cognitive control. Trends Cogn Sci, 18(8): 414–421
https://doi.org/10.1016/j.tics.2014.04.012 pmid: 24835663
14 Charifson P S, Bowen J P, Wyrick S D, Hoffman A J, Cory M, McPhail A T, Mailman R B (1989). Conformational analysis and molecular modeling of 1-phenyl-, 4-phenyl-, and 1-benzyl-1,2,3,4-tetrahydroisoquinolines as D1 dopamine receptor ligands. J Med Chem, 32(9): 2050–2058
https://doi.org/10.1021/jm00129a006 pmid: 2527994
15 Cools R, Barker R A, Sahakian B J, Robbins T W (2001). Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex, 11(12): 1136–1143
https://doi.org/10.1093/cercor/11.12.1136 pmid: 11709484
16 Cools R, D’Esposito M (2011). Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry, 69(12): e113–e125
https://doi.org/10.1016/j.biopsych.2011.03.028 pmid: 21531388
17 Cools R, Stefanova E, Barker R A, Robbins T W, Owen A M (2002). Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain, 125(Pt 3): 584–594
https://doi.org/10.1093/brain/awf052 pmid: 11872615
18 Costa A, Peppe A, Dell’Agnello G, Caltagirone C, Carlesimo G A (2009). Dopamine and cognitive functioning in de novo subjects with Parkinson’s disease: effects of pramipexole and pergolide on working memory. Neuropsychologia, 47(5): 1374–1381
https://doi.org/10.1016/j.neuropsychologia.2009.01.039 pmid: 19428401
19 Creese I, Burt D R, Snyder S H (1976). Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science, 192(4238): 481–483 3854
https://doi.org/10.1126/science.3854 pmid: 3854
20 Cui G, Jun S B, Jin X, Pham M D, Vogel S S, Lovinger D M, Costa R M (2013). Concurrent activation of striatal direct and indirect pathways during action initiation. Nature, 494(7436): 238–242
https://doi.org/10.1038/nature11846 pmid: 23354054
21 Darmopil S, Martín A B, De Diego I R, Ares S, Moratalla R (2009). Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biol Psychiatry, 66(6): 603–613
https://doi.org/10.1016/j.biopsych.2009.04.025 pmid: 19520364
22 Farrell M S, Pei Y, Wan Y, Yadav P N, Daigle T L, Urban D J, Lee H M, Sciaky N, Simmons A, Nonneman R J, Huang X P, Hufeisen S J, Guettier J M, Moy S S, Wess J, Caron M G, Calakos N, Roth B L (2013). A Gαs DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology, 38(5): 854–862
https://doi.org/10.1038/npp.2012.251 pmid: 23303063
23 Fawzi A B, Macdonald D, Benbow L L, Smith-Torhan A, Zhang H, Weig B C, Ho G, Tulshian D, Linder M E, Graziano M P (2001). SCH-202676: An allosteric modulator of both agonist and antagonist binding to G protein-coupled receptors. Mol Pharmacol, 59(1): 30–37
pmid: 11125021
24 Feenstra M G, Teske G, Botterblom M H, De Bruin J P (1999). Dopamine and noradrenaline release in the prefrontal cortex of rats during classical aversive and appetitive conditioning to a contextual stimulus: interference by novelty effects. Neurosci Lett, 272(3): 179–182
https://doi.org/10.1016/S0304-3940(99)00601-1 pmid: 10505610
25 Feenstra M G, Vogel M, Botterblom M H, Joosten R N, de Bruin J P (2001). Dopamine and noradrenaline efflux in the rat prefrontal cortex after classical aversive conditioning to an auditory cue. Eur J Neurosci, 13(5): 1051–1054
https://doi.org/10.1046/j.0953-816x.2001.01471.x pmid: 11264679
26 Fienberg A A, Hiroi N, Mermelstein P G, Song W, Snyder G L, Nishi A, Cheramy A, O’Callaghan J P, Miller D B, Cole D G, Corbett R, Haile C N, Cooper D C, Onn S P, Grace A A, Ouimet C C, White F J, Hyman S E, Surmeier D J, Girault J, Nestler E J, Greengard P (1998). DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science, 281(5378): 838–842
https://doi.org/10.1126/science.281.5378.838 pmid: 9694658
27 Flores-Hernández J, Cepeda C, Hernández-Echeagaray E, Calvert C R, Jokel E S, Fienberg A A, Greengard P, Levine M S (2002). Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32. J Neurophysiol, 88(6): 3010–3020
https://doi.org/10.1152/jn.00361.2002 pmid: 12466426
28 Frederick A L, Yano H, Trifilieff P, Vishwasrao H D, Biezonski D, Mészáros J, Urizar E, Sibley D R, Kellendonk C, Sonntag K C, Graham D L, Colbran R J, Stanwood G D, Javitch J A (2015). Evidence against dopamine D1/D2 receptor heteromers. Mol Psychiatry, doi: 10.1038/mp.2014.166
pmid: 25560761
29 Friedman J H, Lannon M C (1989). Clozapine in the treatment of psychosis in Parkinson’s disease. Neurology, 39(9): 1219–1221
https://doi.org/10.1212/WNL.39.9.1219 pmid: 2771073
30 Fuster J (2008) The Prefrontal Cortex, 4th Edition. Academic Press, New York, NY
31 Gangarossa G, Longueville S, De Bundel D, Perroy J, Hervé D, Girault J A, Valjent E (2012). Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus. Hippocampus, 22(12): 2199–2207
https://doi.org/10.1002/hipo.22044 pmid: 22777829
32 Gerfen C R, Miyachi S, Paletzki R, Brown P (2002). D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci, 22(12): 5042–5054
pmid: 12077200
33 Goldman-Rakic P S (1998). The cortical dopamine system: role in memory and cognition. Adv Pharmacol, 42: 707–711
https://doi.org/10.1016/S1054-3589(08)60846-7 pmid: 9327997
34 Goldman-Rakic P S, Castner S A, Svensson T H, Siever L J, Williams G V (2004). Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl), 174(1): 3–16
https://doi.org/10.1007/s00213-004-1793-y pmid: 15118803
35 Goldman-Rakic P S, Muly E C 3rd, Williams G V (2000). D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev, 31(2–3): 295–301
https://doi.org/10.1016/S0165-0173(99)00045-4 pmid: 10719156
36 Grace A A, Floresco S B, Goto Y, Lodge D J (2007). Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci, 30(5): 220–227
https://doi.org/10.1016/j.tins.2007.03.003 pmid: 17400299
37 Green M F, Harvey P D (2014). Cognition in schizophrenia: Past, present, and future. Schizophr Res Cogn, 1(1): e1–e9
https://doi.org/10.1016/j.scog.2014.02.001 pmid: 25254156
38 Guttman M, Seeman P (1985). L-dopa reverses the elevated density of D2 dopamine receptors in Parkinson’s diseased striatum. J Neural Transm, 64(2): 93–103
https://doi.org/10.1007/BF01245971 pmid: 2934514
39 Ha C M, Park D, Han J K, Jang J I, Park J Y, Hwang E M, Seok H, Chang S (2012). Calcyon forms a novel ternary complex with dopamine D1 receptor through PSD-95 protein and plays a role in dopamine receptor internalization. J Biol Chem, 287(38): 31813–31822
https://doi.org/10.1074/jbc.M112.370601 pmid: 22843680
40 Hagger C, Buckley P, Kenny J T, Friedman L, Ubogy D, Meltzer H Y (1993). Improvement in cognitive functions and psychiatric symptoms in treatment-refractory schizophrenic patients receiving clozapine. Biol Psychiatry, 34(10): 702–712
https://doi.org/10.1016/0006-3223(93)90043-D pmid: 8292674
41 Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L (1994). Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology, 11(4): 245–256
https://doi.org/10.1038/sj.npp.1380111 pmid: 7531978
42 Hanrieder J, Ljungdahl A, F?lth M, Mammo SE, Bergquist J, Andersson M (2011) L-DOPA-induced dyskinesia is associated with regional increase of striatal dynorphin peptides as elucidated by imaging mass spectrometry. Mol Cell Proteomics MCP 10:M111.009308
https://doi.org/10.1074/mcp.M111.009308
43 Hernandez-Lopez S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier D J (2000). D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci, 20(24): 8987–8995
pmid: 11124974
44 Hoare S R, Coldwell M C, Armstrong D, Strange P G (2000). Regulation of human D(1), d(2(long)), d(2(short)), D(3) and D(4) dopamine receptors by amiloride and amiloride analogues. Br J Pharmacol, 130(5): 1045–1059
https://doi.org/10.1038/sj.bjp.0703370 pmid: 10882389
45 Hoffman B, Cho S J, Zheng W, Wyrick S, Nichols D E, Mailman R B, Tropsha A (1999). Quantitative structure-activity relationship modeling of dopamine D(1) antagonists using comparative molecular field analysis, genetic algorithms-partial least-squares, and K nearest neighbor methods. J Med Chem, 42(17): 3217–3226
https://doi.org/10.1021/jm980415j pmid: 10464009
46 Jenner P (2008). Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci, 9(9): 665–677
https://doi.org/10.1038/nrn2471 pmid: 18714325
47 Karlsson P, Smith L, Farde L, H?rnryd C, Sedvall G, Wiesel F A (1995). Lack of apparent antipsychotic effect of the D1-dopamine receptor antagonist SCH39166 in acutely ill schizophrenic patients. Psychopharmacology (Berl), 121(3): 309–316
https://doi.org/10.1007/BF02246068 pmid: 8584611
48 K?tzel D, Nicholson E, Schorge S, Walker M C, Kullmann D M (2014). Chemical-genetic attenuation of focal neocortical seizures. Nat Commun, 5: 3847
https://doi.org/10.1038/ncomms4847 pmid: 24866701
49 Kemppainen N, Ruottinen H, Nagren K, Rinne J O (2000). PET shows that striatal dopamine D1 and D2 receptors are differentially affected in AD. Neurology, 55(2): 205–209
https://doi.org/10.1212/WNL.55.2.205 pmid: 10908891
50 Khor S P, Hsu A (2007). The pharmacokinetics and pharmacodynamics of levodopa in the treatment of Parkinson’s disease. Curr Clin Pharmacol, 2(3): 234–243
https://doi.org/10.2174/157488407781668802 pmid: 18690870
51 Klein C, Gordon J, Pollak L, Rabey J M (2003). Clozapine in Parkinson’s disease psychosis: 5-year follow-up review. Clin Neuropharmacol, 26(1): 8–11
https://doi.org/10.1097/00002826-200301000-00003 pmid: 12567158
52 Kravitz A V, Freeze B S, Parker P R L, Kay K, Thwin M T, Deisseroth K, Kreitzer A C (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466(7306): 622–626
https://doi.org/10.1038/nature09159 pmid: 20613723
53 LaHoste G J, Henry B L, Marshall J F (2000). Dopamine D1 receptors synergize with D2, but not D3 or D4, receptors in the striatum without the involvement of action potentials. J Neurosci, 20(17): 6666–6671
pmid: 10964971
54 Land B B, Narayanan N S, Liu R J, Gianessi C A, Brayton C E, Grimaldi D M, Sarhan M, Guarnieri D J, Deisseroth K, Aghajanian G K, DiLeone R J (2014). Medial prefrontal D1 dopamine neurons control food intake. Nat Neurosci, 17(2): 248–253
https://doi.org/10.1038/nn.3625 pmid: 24441680
55 Lapish C C, Kroener S, Durstewitz D, Lavin A, Seamans J K (2007). The ability of the mesocortical dopamine system to operate in distinct temporal modes. Psychopharmacology (Berl), 191(3): 609–625
https://doi.org/10.1007/s00213-006-0527-8 pmid: 17086392
56 Lee S P, Xie Z, Varghese G, Nguyen T, O’Dowd B F, George S R (2000). Oligomerization of dopamine and serotonin receptors. Neuropsychopharmacology, 23(4 Suppl): S32–S40
https://doi.org/10.1016/S0893-133X(00)00155-X pmid: 11008065
57 Lemberger T, Parlato R, Dassesse D, Westphal M, Casanova E, Turiault M, Tronche F, Schiffmann S N, Schütz G (2007). Expression of Cre recombinase in dopaminoceptive neurons. BMC Neurosci, 8(1): 4
https://doi.org/10.1186/1471-2202-8-4 pmid: 17201924
58 LeWitt P A, Rezai A R, Leehey M A, Ojemann S G, Flaherty A W, Eskandar E N, Kostyk S K, Thomas K, Sarkar A, Siddiqui M S, Tatter S B, Schwalb J M, Poston K L, Henderson J M, Kurlan R M, Richard I H, Van Meter L, Sapan C V, During M J, Kaplitt M G, Feigin A (2011). AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol, 10(4): 309–319
https://doi.org/10.1016/S1474-4422(11)70039-4 pmid: 21419704
59 Lidow M S, Goldman-Rakic P S, Gallager D W, Rakic P (1991). Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience, 40(3): 657–671
https://doi.org/10.1016/0306-4522(91)90003-7 pmid: 2062437
60 Mailman R B, Murthy V (2010). Third generation antipsychotic drugs: partial agonism or receptor functional selectivity? Curr Pharm Des, 16(5): 488–501
https://doi.org/10.2174/138161210790361461 pmid: 19909227
61 Mattila P M, R?ytt? M, L?nnberg P, Marjam?ki P, Helenius H, Rinne J O (2001). Choline acetytransferase activity and striatal dopamine receptors in Parkinson’s disease in relation to cognitive impairment. Acta Neuropathol, 102(2): 160–166
pmid: 11563631
62 Narayanan N S, Guarnieri D J, DiLeone R J (2010). Metabolic hormones, dopamine circuits, and feeding. Front Neuroendocrinol, 31(1): 104–112
https://doi.org/10.1016/j.yfrne.2009.10.004 pmid: 19836414
63 Narayanan N S, Land B B, Solder J E, Deisseroth K, DiLeone R J (2012). Prefrontal D1 dopamine signaling is required for temporal control. Proc Natl Acad Sci USA, 109(50): 20726–20731
https://doi.org/10.1073/pnas.1211258109 pmid: 23185016
64 Narayanan N S, Rodnitzky R L, Uc E Y (2013). Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease. Rev Neurosci, 24(3): 267–278
https://doi.org/10.1515/revneuro-2013-0004 pmid: 23729617
65 Neumeyer J L, Kula N S, Bergman J, Baldessarini R J (2003). Receptor affinities of dopamine D1 receptor-selective novel phenylbenzazepines. Eur J Pharmacol, 474(2–3): 137–140
https://doi.org/10.1016/S0014-2999(03)02008-9 pmid: 12921854
66 Parker K L, Alberico S L, Miller A D, Narayanan N S (2013a). Prefrontal D1 dopamine signaling is necessary for temporal expectation during reaction time performance. Neuroscience, 255: 246–254
https://doi.org/10.1016/j.neuroscience.2013.09.057 pmid: 24120554
67 Parker K L, Chen K H, Kingyon J R, Cavanagh J F, Narayanan N S (2014). D1-dependent 4 Hz oscillations and ramping activity in rodent medial frontal cortex during interval timing. J Neurosci, 34(50): 16774–16783
https://doi.org/10.1523/JNEUROSCI.2772-14.2014 pmid: 25505330
68 Parker K L, Lamichhane D, Caetano M S, Narayanan N S (2013b). Executive dysfunction in Parkinson’s disease and timing deficits. Front Integr Neurosci, 7: 75
https://doi.org/10.3389/fnint.2013.00075 pmid: 24198770
69 Perreault M L, Hasbi A, O’Dowd B F, George S R (2011). The dopamine d1-d2 receptor heteromer in striatal medium spiny neurons: evidence for a third distinct neuronal pathway in Basal Ganglia. Front Neuroanat, 5: 31
https://doi.org/10.3389/fnana.2011.00031 pmid: 21747759
70 Phillips A G, Ahn S, Floresco S B (2004). Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task. J Neurosci, 24(2): 547–553
https://doi.org/10.1523/JNEUROSCI.4653-03.2004 pmid: 14724255
71 Pifl C, Nanoff C, Schingnitz G, Schütz W, Hornykiewicz O (1992). Sensitization of dopamine-stimulated adenylyl cyclase in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys and patients with idiopathic Parkinson’s disease. J Neurochem, 58(6): 1997–2004
https://doi.org/10.1111/j.1471-4159.1992.tb10939.x pmid: 1349341
72 Pisani A, Shen J (2009). Levodopa-induced dyskinesia and striatal signaling pathways. Proc Natl Acad Sci USA, 106(9): 2973–2974
https://doi.org/10.1073/pnas.0900802106 pmid: 19251671
73 Pizzolato G, Chierichetti F, Fabbri M, Cagnin A, Dam M, Ferlin G, Battistin L (1996). Reduced striatal dopamine receptors in Alzheimer’s disease: single photon emission tomography study with the D2 tracer [123I]-IBZM. Neurology, 47(4): 1065–1068
https://doi.org/10.1212/WNL.47.4.1065 pmid: 8857746
74 Porras G, Berthet A, Dehay B, Li Q, Ladepeche L, Normand E, Dovero S, Martinez A, Doudnikoff E, Martin-Négrier M L, Chuan Q, Bloch B, Choquet D, Boué-Grabot E, Groc L, Bezard E (2012). PSD-95 expression controls L-DOPA dyskinesia through dopamine D1 receptor trafficking. J Clin Invest, 122(11): 3977–3989
https://doi.org/10.1172/JCI59426 pmid: 23041629
75 Rashid A J, So C H, Kong M M C, Furtak T, El-Ghundi M, Cheng R, O’Dowd B F, George S R (2007). D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci USA, 104(2): 654–659
https://doi.org/10.1073/pnas.0604049104 pmid: 17194762
76 Rektorová I, Rektor I, Bares M, Dostál V, Ehler E, Fanfrdlová Z, Fiedler J, Klajblová H, Kulist’ák P, Ressner P, Svátová J, Urbánek K, Velísková J (2005). Cognitive performance in people with Parkinson’s disease and mild or moderate depression: effects of dopamine agonists in an add-on to L-dopa therapy. Eur J Neurol, 12(1): 9–15
https://doi.org/10.1111/j.1468-1331.2004.00966.x pmid: 15613141
77 Roberts B M, Seymour P A, Schmidt C J, Williams G V, Castner S A (2010). Amelioration of ketamine-induced working memory deficits by dopamine D1 receptor agonists. Psychopharmacology (Berl), 210(3): 407–418
https://doi.org/10.1007/s00213-010-1840-9 pmid: 20401749
78 Rodnitzky R L, Narayanan N S (2014). Amantadine’s role in the treatment of levodopa-induced dyskinesia. Neurology, 82(4): 288–289
https://doi.org/10.1212/WNL.0000000000000068 pmid: 24371305
79 Rossetti Z L, Carboni S (2005). Noradrenaline and dopamine elevations in the rat prefrontal cortex in spatial working memory. J Neurosci, 25(9): 2322–2329
https://doi.org/10.1523/JNEUROSCI.3038-04.2005 pmid: 15745958
80 Santana N, Mengod G, Artigas F (2009). Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex, 19(4): 849–860
https://doi.org/10.1093/cercor/bhn134 pmid: 18689859
81 Santini E, Valjent E, Usiello A, Carta M, Borgkvist A, Girault J A, Hervé D, Greengard P, Fisone G (2007). Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci, 27(26): 6995–7005
https://doi.org/10.1523/JNEUROSCI.0852-07.2007 pmid: 17596448
82 Sawaguchi T, Goldman-Rakic P S (1991). D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science, 251(4996): 947–950
https://doi.org/10.1126/science.1825731 pmid: 1825731
83 Sawaguchi T, Goldman-Rakic P S (1994). The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol, 71(2): 515–528
pmid: 7909839
84 Schultz W (1997). Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol, 7(2): 191–197
https://doi.org/10.1016/S0959-4388(97)80007-4 pmid: 9142754
85 Schultz W (2001). Reward signaling by dopamine neurons. Neuroscientist, 7(4): 293–302
https://doi.org/10.1177/107385840100700406 pmid: 11488395
86 Seeman P (1987). Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse, 1(2): 133–152
https://doi.org/10.1002/syn.890010203 pmid: 2905529
87 Seeman P, Chau-Wong M, Tedesco J, Wong K (1975). Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA, 72(11): 4376–4380
https://doi.org/10.1073/pnas.72.11.4376 pmid: 1060115
88 Sesack S R, Carr D B, Omelchenko N, Pinto A (2003). Anatomical substrates for glutamate-dopamine interactions: evidence for specificity of connections and extrasynaptic actions. Ann N Y Acad Sci, 1003(1): 36–52
https://doi.org/10.1196/annals.1300.066 pmid: 14684434
89 Shuen J A, Chen M, Gloss B, Calakos N (2008). Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J Neurosci, 28(11): 2681–2685
https://doi.org/10.1523/JNEUROSCI.5492-07.2008 pmid: 18337395
90 Soriano A, Vendrell M, Gonzalez S, Mallol J, Albericio F, Royo M, Lluís C, Canela E I, Franco R, Cortés A, Casadó V (2010). A hybrid indoloquinolizidine peptide as allosteric modulator of dopamine D1 receptors. J Pharmacol Exp Ther, 332(3): 876–885
https://doi.org/10.1124/jpet.109.158824 pmid: 20026675
91 Sun P, Wang J, Gu W, Cheng W, Jin G Z, Friedman E, Zheng J, Zhen X (2009). PSD-95 regulates D1 dopamine receptor resensitization, but not receptor-mediated Gs-protein activation. Cell Res, 19(5): 612–624
https://doi.org/10.1038/cr.2009.30 pmid: 19274064
92 Takahashi H, Kato M, Takano H, Arakawa R, Okumura M, Otsuka T, Kodaka F, Hayashi M, Okubo Y, Ito H, Suhara T (2008). Differential contributions of prefrontal and hippocampal dopamine D(1) and D(2) receptors in human cognitive functions. J Neurosci, 28(46): 12032–12038
https://doi.org/10.1523/JNEUROSCI.3446-08.2008 pmid: 19005068
93 Taylor J L, Bishop C, Walker P D (2005). Dopamine D1 and D2 receptor contributions to L-DOPA-induced dyskinesia in the dopamine-depleted rat. Pharmacol Biochem Behav, 81(4): 887–893
https://doi.org/10.1016/j.pbb.2005.06.013 pmid: 16023708
94 Taymans J M, Kia H K, Groenewegen H J, Leysen J E, Langlois X (2005). Bilateral control of brain activity by dopamine D1 receptors: evidence from induction patterns of regulator of G protein signaling 2 and c-fos mRNA in D1-challenged hemiparkinsonian rats. Neuroscience, 134(2): 643–656
https://doi.org/10.1016/j.neuroscience.2005.04.047 pmid: 15964700
95 Ungless M A, Magill P J, Bolam J P (2004). Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science, 303(5666): 2040–2042
https://doi.org/10.1126/science.1093360 pmid: 15044807
96 Vijayraghavan S, Wang M, Birnbaum S G, Williams G V, Arnsten A F T (2007). Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci, 10(3): 376–384
https://doi.org/10.1038/nn1846 pmid: 17277774
97 Watanabe M, Kodama T, Hikosaka K (1997). Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. J Neurophysiol, 78(5): 2795–2798
pmid: 9356427
98 Westin J E, Vercammen L, Strome E M, Konradi C, Cenci M A (2007). Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiatry, 62(7): 800–810
https://doi.org/10.1016/j.biopsych.2006.11.032 pmid: 17662258
99 Wilkinson L S, Humby T, Killcross A S, Torres E M, Everitt B J, Robbins T W (1998). Dissociations in dopamine release in medial prefrontal cortex and ventral striatum during the acquisition and extinction of classical aversive conditioning in the rat. Eur J Neurosci, 10(3): 1019–1026
https://doi.org/10.1046/j.1460-9568.1998.00119.x pmid: 9753169
100 Williams G V, Goldman-Rakic P S (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature, 376(6541): 572–575
https://doi.org/10.1038/376572a0 pmid: 7637804
101 Yoshioka M, Matsumoto M, Togashi H, Saito H (1996). Effect of conditioned fear stress on dopamine release in the rat prefrontal cortex. Neurosci Lett, 209(3): 201–203
https://doi.org/10.1016/0304-3940(96)12631-8 pmid: 8736645
102 Zahrt J, Taylor J R, Mathew R G, Arnsten A F T (1997). Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci, 17(21): 8528–8535
pmid: 9334425
[1] Richard König,Bruno Benedetti,Peter Rotheneichner,Anna O′ Sullivan,Christina Kreutzer,Maria Belles,Juan Nacher,Thomas M. Weiger,Ludwig Aigner,Sébastien Couillard-Després. Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity?[J]. Front. Biol., 2016, 11(3): 193-213.
[2] Paul J. Lucassen,Charlotte A. Oomen. Stress, hippocampal neurogenesis and cognition: functional correlations[J]. Front. Biol., 2016, 11(3): 182-192.
[3] Afsar U. AHMED. An overview of inflammation: mechanism and consequences[J]. Front Biol, 2011, 6(4): 274-281.
[4] LIU Xiang, WANG Yifei. A modified resonant recognition model to predict protein-protein interaction[J]. Front. Biol., 2007, 2(3): 268-271.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed