|
|
Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity? |
Richard König1,2,Bruno Benedetti3,Peter Rotheneichner1,4,Anna O′ Sullivan1,4,5,Christina Kreutzer1,4,Maria Belles6,Juan Nacher6,Thomas M. Weiger7,Ludwig Aigner1,2,*( ),Sébastien Couillard-Després1,4,*( ) |
1. Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria 2. Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria 3. Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck, Austria 4. Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria 5. Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University Salzburg, Salzburg, Austria 6. Neurobiology Unit, Interdisciplinary Research Structure for Biotechnology and Biomedicine Valencia, Universitat de Valencia, Comunitat Valenciana, Spain 7. Division of Cellular and Molecular Neurobiology, Department of Cell Biology, University of Salzburg, Salzburg, Austria |
|
|
Abstract The expression of early developmental markers such as doublecortin (DCX) and the polysialylated-neural cell adhesion molecule (PSA-NCAM) has been used to identify immature neurons within canonical neurogenic niches. Additionally, DCX/PSA-NCAM+ immature neurons reside in cortical layer II of the paleocortex and in the paleo- and entorhinal cortex of mice and rats, respectively. These cells are also found in the neocortex of guinea pigs, rabbits, some afrotherian mammals, cats, dogs, non-human primates, and humans. The population of cortical DCX/PSA-NCAM+ immature neurons is generated prenatally as conclusively demonstrated in mice, rats, and guinea pigs. Thus, the majority of these cells do not appear to be the product of adult proliferative events. The immature neurons in cortical layer II are most abundant in the cortices of young individuals, while very few DCX/PSA-NCAM+ cortical neurons can be detected in aged mammals. Maturation of DCX/PSA-NCAM+ cells into glutamatergic and GABAergic neurons has been proposed as an explanation for the age-dependent reduction in their population over time. In this review, we compile the recent information regarding the age-related decrease in the number of cortical DCX/PSA-NCAM+ neurons. We compare the distribution and fates of DCX/PSA-NCAM+ neurons among mammalian species and speculate their impact on cognitive function. To respond to the diversity of adult neurogenesis research produced over the last number of decades, we close this review by discussing the use and precision of the term “adult non-canonical neurogenesis.”
|
Keywords
aging
cognition
doublecortin
piriform cortex
plasticity
neurogenesis
|
Corresponding Author(s):
Ludwig Aigner,Sébastien Couillard-Després
|
Just Accepted Date: 01 June 2016
Online First Date: 21 June 2016
Issue Date: 05 July 2016
|
|
1 |
Abrous D N, Montaron M F, Petry K G, Rougon G, Darnaudéry M, Le Moal M, Mayo W (1997). Decrease in highly polysialylated neuronal cell adhesion molecules and in spatial learning during ageing are not correlated. Brain Res, 744(2): 285–292
https://doi.org/10.1016/S0006-8993(96)01115-8
pmid: 9027388
|
2 |
Ambrogini P, Cuppini R, Cuppini C, Ciaroni S, Cecchini T, Ferri P, Sartini S, Del Grande P (2000). Spatial learning affects immature granule cell survival in adult rat dentate gyrus. Neurosci Lett, 286(1): 21–24
https://doi.org/10.1016/S0304-3940(00)01074-0
pmid: 10822143
|
3 |
Bédard A, Lévesque M, Bernier P J, Parent A (2002). The rostral migratory stream in adult squirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein Bcl-2. Eur J Neurosci, 16(10): 1917–1924
https://doi.org/10.1046/j.1460-9568.2002.02263.x
pmid: 12453055
|
4 |
Bekkers J M, Suzuki N (2013). Neurons and circuits for odor processing in the piriform cortex. Trends Neurosci, 36(7): 429–438
https://doi.org/10.1016/j.tins.2013.04.005
pmid: 23648377
|
5 |
Bernier P J, Bedard A, Vinet J, Levesque M, Parent A (2002). Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci USA, 99(17): 11464–11469
https://doi.org/10.1073/pnas.172403999
pmid: 12177450
|
6 |
Betarbet R, Zigova T, Bakay R A, Luskin M B (1996). Dopaminergic and GABAergic interneurons of the olfactory bulb are derived from the neonatal subventricular zone. Int J Dev Neurosci, 14(7-8): 921–930
https://doi.org/10.1016/S0736-5748(96)00066-4
pmid: 9010735
|
7 |
Biebl M, Cooper C M, Winkler J, Kuhn H G (2000). Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett, 291(1): 17–20
https://doi.org/10.1016/S0304-3940(00)01368-9
pmid: 10962143
|
8 |
Bizon J L, Gallagher M (2005). More is less: neurogenesis and age-related cognitive decline in Long-Evans rats. Sci SAGE KE, 2005(7): re2
https://doi.org/10.1126/sageke.2005.7.re2
pmid: 15716513
|
9 |
Bizon J L, Lee H J, Gallagher M (2004). Neurogenesis in a rat model of age-related cognitive decline. Aging Cell, 3(4): 227–234
https://doi.org/10.1111/j.1474-9728.2004.00099.x
pmid: 15268756
|
10 |
Bloch J, Kaeser M, Sadeghi Y, Rouiller E M, Redmond D EJr, Brunet J F (2011). Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development. J Comp Neurol, 519(4): 775–789
https://doi.org/10.1002/cne.22547
pmid: 21246554
|
11 |
Bondolfi L, Ermini F, Long J M, Ingram D K, Jucker M (2004). Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging, 25(3): 333–340
https://doi.org/10.1016/S0197-4580(03)00083-6
pmid: 15123339
|
12 |
Bonfanti L (2013).The (real) neurogenic/gliogenic potential of the postnatal and adult brain parenchyma. ISRN Neurosci, 2013: 354136
https://doi.org/10.1155/2013/354136
pmid: 24967310
|
13 |
Bonfanti L, Nacher J (2012). New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: the case of cortical layer II immature neurons. Prog Neurobiol, 98(1): 1–15
https://doi.org/10.1016/j.pneurobio.2012.05.002
pmid: 22609484
|
14 |
Bonfanti L, Olive S, Poulain D A, Theodosis D T (1992). Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience, 49(2): 419–436
https://doi.org/10.1016/0306-4522(92)90107-D
pmid: 1436474
|
15 |
Bonfanti L, Peretto P (2011). Adult neurogenesis in mammals—a theme with many variations. Eur J Neurosci, 34(6): 930–950
https://doi.org/10.1111/j.1460-9568.2011.07832.x
pmid: 21929626
|
16 |
Breunig J J, Arellano J I, Macklis J D, Rakic P (2007). Everything that glitters isn’t gold: a critical review of postnatal neural precursor analyses. Cell Stem Cell, 1(6): 612–627
https://doi.org/10.1016/j.stem.2007.11.008
pmid: 18371403
|
17 |
Brown J, Cooper-Kuhn C M, Kempermann G, Van Praag H, Winkler J, Gage F H, Kuhn H G (2003). Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci, 17(10): 2042–2046
https://doi.org/10.1046/j.1460-9568.2003.02647.x
pmid: 12786970
|
18 |
Burns K A, Ayoub A E, Breunig J J, Adhami F, Weng W L, Colbert M C, Rakic P, Kuan C Y (2007). Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia hypoxia. Cereb Cortex, 17(11): 2585–2592
https://doi.org/10.1093/cercor/bhl164
pmid: 17259645
|
19 |
Burns T C, Ortiz-González X R, Gutiérrez-Pérez M, Keene C D, Sharda R, Demorest Z L, Jiang Y, Nelson-Holte M, Soriano M, Nakagawa Y, Luquin M R, Garcia-Verdugo J M, Prósper F, Low W C, Verfaillie C M (2006). Thymidine analogs are transferred from prelabeled donor to host cells in the central nervous system after transplantation: a word of caution. Stem Cells, 24(4): 1121–1127
https://doi.org/10.1634/stemcells.2005-0463
pmid: 16373692
|
20 |
Butt A M, Hamilton N, Hubbard P, Pugh M, Ibrahim M (2005). Synantocytes: the fifth element. J Anat, 207(6): 695–706
https://doi.org/10.1111/j.1469-7580.2005.00458.x
pmid: 16367797
|
21 |
Cai Y, Xiong K, Chu Y, Luo D W, Luo X G, Yuan X Y, Struble R G, Clough R W, Spencer D D, Williamson A, Kordower J H, Patrylo P R, Yan X X (2009). Doublecortin expression in adult cat and primate cerebral cortex relates to immature neurons that develop into GABAergic subgroups. Exp Neurol, 216(2): 342–356
https://doi.org/10.1016/j.expneurol.2008.12.008
pmid: 19166833
|
22 |
Cameron H A, McKay R D (1999). Restoring production of hippocampal neurons in old age. Nat Neurosci, 2(10): 894–897
https://doi.org/10.1038/13197
pmid: 10491610
|
23 |
Carleton A, Petreanu L T, Lansford R, Alvarez-Buylla A, Lledo P M (2003).Becoming a new neuron in the adult olfactory bulb. Nat Neurosci, 6(5): 507–518
pmid: 12704391
|
24 |
Clarke L E, Young K M, Hamilton N B, Li H, Richardson W D, Attwell D (2012). Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse. J Neurosci, 32(24): 8173–8185
https://doi.org/10.1523/JNEUROSCI.0928-12.2012
pmid: 22699898
|
25 |
Costa M R, Kessaris N, Richardson W D, Götz M, Hedin-Pereira C (2007). The marginal zone/layer I as a novel niche for neurogenesis and gliogenesis in developing cerebral cortex. J Neurosci, 27(42): 11376–11388
https://doi.org/10.1523/JNEUROSCI.2418-07.2007
pmid: 17942732
|
26 |
Couillard-Despres S, Winner B, Karl C, Lindemann G, Schmid P, Aigner R, Laemke J, Bogdahn U, Winkler J, Bischofberger J, Aigner L (2006). Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. Eur J Neurosci, 24(6): 1535–1545
https://doi.org/10.1111/j.1460-9568.2006.05039.x
pmid: 17004917
|
27 |
Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn H G, Aigner L (2005). Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci, 21(1): 1–14
https://doi.org/10.1111/j.1460-9568.2004.03813.x
pmid: 15654838
|
28 |
Curtis M A, Eriksson P S, Faull R L (2007). Progenitor cells and adult neurogenesis in neurodegenerative diseases and injuries of the basal ganglia. Clin Exp Pharmacol Physiol, 34(5-6): 528–532
https://doi.org/10.1111/j.1440-1681.2007.04609.x
pmid: 17439428
|
29 |
Dawson M R, Polito A, Levine J M, Reynolds R (2003). NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci, 24(2): 476–488
https://doi.org/10.1016/S1044-7431(03)00210-0
pmid: 14572468
|
30 |
Dayer A G, Cleaver K M, Abouantoun T, Cameron H A (2005). New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol, 168(3): 415–427
https://doi.org/10.1083/jcb.200407053
pmid: 15684031
|
31 |
de la Rosa-Prieto C, Saiz-Sanchez D, Ubeda-Bañon I, Argandoña-Palacios L, Garcia-Muñozguren S, Martinez-Marcos A (2010). Neurogenesis in subclasses of vomeronasal sensory neurons in adult mice. Dev Neurobiol, 70(14): 961–970
https://doi.org/10.1002/dneu.20838
pmid: 20848614
|
32 |
De Marchis S, Fasolo A, Puche A C (2004). Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice. J Comp Neurol, 476(3): 290–300
https://doi.org/10.1002/cne.20217
pmid: 15269971
|
33 |
De Nevi E, Marco-Salazar P, Fondevila D, Blasco E, Pérez L, Pumarola M (2013). Immunohistochemical study of doublecortin and nucleostemin in canine brain. Eur J Histochem, 57(1): e9
https://doi.org/10.4081/ejh.2013.e9
pmid: 23549468
|
34 |
des Portes V, Pinard J M, Billuart P, Vinet M C, Koulakoff A, Carrié A, Gelot A, Dupuis E, Motte J, Berwald-Netter Y, Catala M, Kahn A, Beldjord C, Chelly J (1998). A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell, 92(1): 51–61
https://doi.org/10.1016/S0092-8674(00)80898-3
pmid: 9489699
|
35 |
Dimou L, Simon C, Kirchhoff F, Takebayashi H, Götz M (2008). Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci, 28(41): 10434–10442
https://doi.org/10.1523/JNEUROSCI.2831-08.2008
pmid: 18842903
|
36 |
Dirian L, Galant S, Coolen M, Chen W, Bedu S, Houart C, Bally-Cuif L, Foucher I (2014).Spatial regionalization and heterochrony in the formation of adult pallial neural stem cells. Dev Cell, 30(2): 123–136
https://doi.org/10.1016/j.devcel.2014.05.012
pmid: 25017692
|
37 |
Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N, Nikonenko I, Muller D, Schachner M (2004). Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci, 24(42): 9372–9382
https://doi.org/10.1523/JNEUROSCI.1702-04.2004
pmid: 15496673
|
38 |
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1997).Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 17(13): 5046–5061
pmid: 9185542
|
39 |
Duque A, Rakic P (2011). Different effects of bromodeoxyuridine and [3H]thymidine incorporation into DNA on cell proliferation, position, and fate. J Neurosci, 31(42): 15205–15217
https://doi.org/10.1523/JNEUROSCI.3092-11.2011
pmid: 22016554
|
40 |
Ehninger D, Kempermann G (2008). Neurogenesis in the adult hippocampus. Cell Tissue Res, 331(1): 243–250
https://doi.org/10.1007/s00441-007-0478-3
pmid: 17938969
|
41 |
Ehninger D, Wang L P, Klempin F, Römer B, Kettenmann H, Kempermann G (2011). Enriched environment and physical activity reduce microglia and influence the fate of NG2 cells in the amygdala of adult mice. Cell Tissue Res, 345(1): 69–86
https://doi.org/10.1007/s00441-011-1200-z
pmid: 21688212
|
42 |
Ekstrand J J, Domroese M E, Feig S L, Illig K R, Haberly L B (2001). Immunocytochemical analysis of basket cells in rat piriform cortex. J Comp Neurol, 434(3): 308–328
https://doi.org/10.1002/cne.1179
pmid: 11331531
|
43 |
Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566–579
https://doi.org/10.1016/j.stem.2011.03.010
pmid: 21549330
|
44 |
Englund C, Fink A, Lau C, Pham D, Daza R A, Bulfone A, Kowalczyk T, Hevner R F (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci, 25(1): 247–251
https://doi.org/10.1523/JNEUROSCI.2899-04.2005
pmid: 15634788
|
45 |
Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998).Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
https://doi.org/10.1038/3305
pmid: 9809557
|
46 |
Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisén J (2014). Neurogenesis in the striatum of the adult human brain. Cell, 156(5): 1072–1083
https://doi.org/10.1016/j.cell.2014.01.044
pmid: 24561062
|
47 |
Feliciano D M, Bordey A (2013). Newborn cortical neurons: only for neonates? Trends Neurosci, 36(1): 51–61
https://doi.org/10.1016/j.tins.2012.09.004
pmid: 23062965
|
48 |
Feliciano D M, Bordey A, Bonfanti L (2015). Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain. Cold Spring Harb Perspect Biol, 7(10): a018846
https://doi.org/10.1101/cshperspect.a018846
pmid: 26384869
|
49 |
Fox G B, Fichera G, Barry T, O’Connell A W, Gallagher H C, Murphy K J, Regan C M (2000). Consolidation of passive avoidance learning is associated with transient increases of polysialylated neurons in layer II of the rat medial temporal cortex. J Neurobiol, 45(3): 135–141
https://doi.org/10.1002/1097-4695(20001115)45:3<135::AID-NEU1>3.0.CO;2-#
pmid: 11074459
|
50 |
Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet M C, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell S K, Berwald-Netter Y, Denoulet P, Chelly J (1999). Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron, 23(2): 247–256
https://doi.org/10.1016/S0896-6273(00)80777-1
pmid: 10399932
|
51 |
Friocourt G, Liu J S, Antypa M, Rakic S, Walsh C A, Parnavelas J G (2007). Both doublecortin and doublecortin-like kinase play a role in cortical interneuron migration. J Neurosci, 27(14): 3875–3883
https://doi.org/10.1523/JNEUROSCI.4530-06.2007
pmid: 17409252
|
52 |
Gage F H, Kempermann G, Song H (2008). Adult Neurogenesis, Vol 52. Cold Spring Harbor Laboratory Press
|
53 |
Ge S, Goh E L, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589–593
https://doi.org/10.1038/nature04404
pmid: 16341203
|
54 |
Gómez-Climent M A, Castillo-Gómez E, Varea E, Guirado R, Blasco-Ibáñez J M, Crespo C, Martínez-Guijarro F J, Nácher J (2008). A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood. Cereb Cortex, 18(10): 2229–2240
https://doi.org/10.1093/cercor/bhm255
pmid: 18245040
|
55 |
Gomez-Climent M A, Guirado R, Varea E, Nàcher J (2010). “Arrested development”. Immature, but not recently generated, neurons in the adult brain. Arch Ital Biol, 148(2): 159–172
pmid: 20830977
|
56 |
Gottfried J A, Winston J S, Dolan R J (2006). Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron, 49(3): 467–479
https://doi.org/10.1016/j.neuron.2006.01.007
pmid: 16446149
|
57 |
Gould E (2007).How widespread is adult neurogenesis in mammals? Nat Rev Neurosci, 8(6): 481–488
https://doi.org/10.1038/nrn2147
pmid: 17514200
|
58 |
Gould E, Tanapat P, Hastings N B, Shors T J (1999). Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci, 3(5): 186–192
https://doi.org/10.1016/S1364-6613(99)01310-8
pmid: 10322475
|
59 |
Gritti A, Vescovi A L, Galli R (2002). Adult neural stem cells: plasticity and developmental potential. J Physiol Paris, 96(1-2): 81–90
https://doi.org/10.1016/S0928-4257(01)00083-3
pmid: 11755786
|
60 |
Guo F, Maeda Y, Ma J, Xu J, Horiuchi M, Miers L, Vaccarino F, Pleasure D (2010). Pyramidal neurons are generated from oligodendroglial progenitor cells in adult piriform cortex. J Neurosci, 30(36): 12036–12049
https://doi.org/10.1523/JNEUROSCI.1360-10.2010
pmid: 20826667
|
61 |
Hastings N B, Gould E (1999). Rapid extension of axons into the CA3 region by adult-generated granule cells. J Comp Neurol, 413(1): 146–154
https://doi.org/10.1002/(SICI)1096-9861(19991011)413:1<146::AID-CNE10>3.0.CO;2-B
pmid: 10464376
|
62 |
He X, Zhang X M, Wu J, Fu J, Mou L, Lu D H, Cai Y, Luo X G, Pan A, Yan X X (2014). Olfactory experience modulates immature neuron development in postnatal and adult guinea pig piriform cortex. Neuroscience, 259: 101–112
https://doi.org/10.1016/j.neuroscience.2013.11.056
pmid: 24316472
|
63 |
Hevner R F, Hodge R D, Daza R A, Englund C (2006). Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res, 55(3): 223–233
https://doi.org/10.1016/j.neures.2006.03.004
pmid: 16621079
|
64 |
Johnson C P, Fujimoto I, Rutishauser U, Leckband D E (2005). Direct evidence that neural cell adhesion molecule (NCAM) polysialylation increases intermembrane repulsion and abrogates adhesion. J Biol Chem, 280(1): 137–145
https://doi.org/10.1074/jbc.M410216200
pmid: 15504723
|
65 |
Kadohisa M, Wilson D A (2006a). Olfactory cortical adaptation facilitates detection of odors against background. J Neurophysiol, 95(3): 1888–1896
https://doi.org/10.1152/jn.00812.2005
pmid: 16251260
|
66 |
Kadohisa M, Wilson D A (2006b). Separate encoding of identity and similarity of complex familiar odors in piriform cortex. Proc Natl Acad Sci USA, 103(41): 15206–15211
https://doi.org/10.1073/pnas.0604313103
pmid: 17005727
|
67 |
Kang S H, Fukaya M, Yang J K, Rothstein J D, Bergles D E (2010). NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron, 68(4): 668–681
https://doi.org/10.1016/j.neuron.2010.09.009
pmid: 21092857
|
68 |
Kaplan M S (1981). Neurogenesis in the 3-month-old rat visual cortex. J Comp Neurol, 195(2): 323–338
https://doi.org/10.1002/cne.901950211
pmid: 7251929
|
69 |
Kapur A, Pearce R A, Lytton W W, Haberly L B (1997). GABAA-mediated IPSCs in piriform cortex have fast and slow components with different properties and locations on pyramidal cells. J Neurophysiol, 78(5): 2531–2545
pmid: 9356403
|
70 |
Kato T, Yokouchi K, Kawagishi K, Fukushima N, Miwa T, Moriizumi T, Kato T, Yokouchi K, Kawagishi K (2000). Fate of newly formed periglomerular cells in the olfactory bulb. Acta Otolaryngol, 120(7): 876–879
https://doi.org/10.1080/000164800750061769
pmid: 11132724
|
71 |
Kelsch W, Mosley C P, Lin C W, Lois C (2007). Distinct mammalian precursors are committed to generate neurons with defined dendritic projection patterns. PLoS Biol, 5(11): e300
https://doi.org/10.1371/journal.pbio.0050300
pmid: 18001150
|
72 |
Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004). Milestones of neuronal development in the adult hippocampus. Trends Neurosci, 27(8): 447–452
https://doi.org/10.1016/j.tins.2004.05.013
pmid: 15271491
|
73 |
Klempin F, Kronenberg G, Cheung G, Kettenmann H, Kempermann G (2011). Properties of doublecortin-(DCX)-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice. PLoS ONE, 6(10): e25760
https://doi.org/10.1371/journal.pone.0025760
pmid: 22022443
|
74 |
Komitova M, Zhu X, Serwanski D R, Nishiyama A (2009). NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone. J Comp Neurol, 512(5): 702–716
https://doi.org/10.1002/cne.21917
pmid: 19058188
|
75 |
König R, Rotheneichner P, Marschallinger J, Aigner L, Couillard-Despres S (2016). Adult Neurogenesis in the Hippocampus. Elsevier, pp. 145–176
|
76 |
Kornack D R, Rakic P (2001). Cell proliferation without neurogenesis in adult primate neocortex. Science, 294(5549): 2127–2130
https://doi.org/10.1126/science.1065467
pmid: 11739948
|
77 |
Kremer T, Jagasia R, Herrmann A, Matile H, Borroni E, Francis F, Kuhn H G, Czech C (2013). Analysis of adult neurogenesis: evidence for a prominent “non-neurogenic” DCX-protein pool in rodent brain. PLoS ONE, 8(5): e59269
https://doi.org/10.1371/journal.pone.0059269
pmid: 23690918
|
78 |
Kuan C Y, Schloemer A J, Lu A, Burns K A, Weng W L, Williams M T, Strauss K I, Vorhees C V, Flavell R A, Davis R J, Sharp F R, Rakic P (2004). Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. J Neurosci, 24(47): 10763–10772
https://doi.org/10.1523/JNEUROSCI.3883-04.2004
pmid: 15564594
|
79 |
Kunz B A, Kohalmi S E (1991). Modulation of mutagenesis by deoxyribonucleotide levels. Annu Rev Genet, 25(1): 339–359
https://doi.org/10.1146/annurev.ge.25.120191.002011
pmid: 1812810
|
80 |
Lehner B, Sandner B, Marschallinger J, Lehner C, Furtner T, Couillard-Despres S, Rivera F J, Brockhoff G, Bauer H C, Weidner N, Aigner L (2011). The dark side of BrdU in neural stem cell biology: detrimental effects on cell cycle, differentiation and survival. Cell Tissue Res, 345(3): 313–328
https://doi.org/10.1007/s00441-011-1213-7
pmid: 21837406
|
81 |
Lemaire V, Koehl M, Le Moal M, Abrous D N (2000). Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA, 97(20): 11032–11037
https://doi.org/10.1073/pnas.97.20.11032
pmid: 11005874
|
82 |
Luskin M B, Boone M S (1994). Rate and pattern of migration of lineally-related olfactory bulb interneurons generated postnatally in the subventricular zone of the rat. Chem Senses, 19(6): 695–714
https://doi.org/10.1093/chemse/19.6.695
pmid: 7735848
|
83 |
Luzzati F, Bonfanti L, Fasolo A, Peretto P (2009). DCX and PSA-NCAM expression identifies a population of neurons preferentially distributed in associative areas of different pallial derivatives and vertebrate species. Cereb Cortex, 19(5): 1028–1041
https://doi.org/10.1093/cercor/bhn145
pmid: 18832334
|
84 |
Luzzati F, Nato G, Oboti L, Vigna E, Rolando C, Armentano M, Bonfanti L, Fasolo A, Peretto P (2014). Quiescent neuronal progenitors are activated in the juvenile guinea pig lateral striatum and give rise to transient neurons. Development, 141(21): 4065–4075
https://doi.org/10.1242/dev.107987
pmid: 25336736
|
85 |
Luzzati F, Peretto P, Aimar P, Ponti G, Fasolo A, Bonfanti L (2003). Glia-independent chains of neuroblasts through the subcortical parenchyma of the adult rabbit brain. Proc Natl Acad Sci USA, 100(22): 13036–13041
https://doi.org/10.1073/pnas.1735482100
pmid: 14559968
|
86 |
Manganas L N, Zhang X, Li Y, Hazel R D, Smith S D, Wagshul M E, Henn F, Benveniste H, Djuric P M, Enikolopov G, Maletic-Savatic M (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318(5852): 980–985
https://doi.org/10.1126/science.1147851
pmid: 17991865
|
87 |
Markakis E A, Gage F H (1999). Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol, 406(4): 449–460
https://doi.org/10.1002/(SICI)1096-9861(19990419)406:4<449::AID-CNE3>3.0.CO;2-I
pmid: 10205022
|
88 |
Martí-Mengual U, Varea E, Crespo C, Blasco-Ibáñez J M, Nacher J (2013). Cells expressing markers of immature neurons in the amygdala of adult humans. Eur J Neurosci, 37(1): 10–22
https://doi.org/10.1111/ejn.12016
pmid: 23066968
|
89 |
Mikkonen M, Soininen H, Kälviänen R, Tapiola T, Ylinen A, Vapalahti M, Paljärvi L, Pitkänen A (1998). Remodeling of neuronal circuitries in human temporal lobe epilepsy: increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex. Ann Neurol, 44(6): 923–934
https://doi.org/10.1002/ana.410440611
pmid: 9851437
|
90 |
Murphy K J, Fox G B, Foley A G, Gallagher H C, O’Connell A, Griffin A M, Nau H, Regan C M (2001). Pentyl-4-yn-valproic acid enhances both spatial and avoidance learning, and attenuates age-related NCAM-mediated neuroplastic decline within the rat medial temporal lobe. J Neurochem, 78(4): 704–714
https://doi.org/10.1046/j.1471-4159.2001.00411.x
pmid: 11520891
|
91 |
Nacher J, Bonfanti L (2015). New neurons from old beliefs in the adult piriform cortex? A Commentary on: “Occurrence of new neurons in the piriform cortex”. Front Neuroanat, 9: 62
https://doi.org/10.3389/fnana.2015.00062
pmid: 26052272
|
92 |
Nacher J, Crespo C, McEwen B S (2001). Doublecortin expression in the adult rat telencephalon. Eur J Neurosci, 14(4): 629–644
https://doi.org/10.1046/j.0953-816x.2001.01683.x
pmid: 11556888
|
93 |
Nacher J, Lanuza E, McEwen B S (2002). Distribution of PSA-NCAM expression in the amygdala of the adult rat. Neuroscience, 113(3): 479–484
https://doi.org/10.1016/S0306-4522(02)00219-1
pmid: 12150768
|
94 |
Neville K R, Haberly L B (2003). Beta and gamma oscillations in the olfactory system of the urethane-anesthetized rat. J Neurophysiol, 90(6): 3921–3930
https://doi.org/10.1152/jn.00475.2003
pmid: 12917385
|
95 |
Ní Dhúill C M, Fox G B, Pittock S J, O’Connell A W, Murphy K J, Regan C M (1999). Polysialylated neural cell adhesion molecule expression in the dentate gyrus of the human hippocampal formation from infancy to old age. J Neurosci Res, 55(1): 99–106
https://doi.org/10.1002/(SICI)1097-4547(19990101)55:1<99::AID-JNR11>3.0.CO;2-S
pmid: 9890438
|
96 |
Nishiyama A, Komitova M, Suzuki R, Zhu X (2009). Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci, 10(1): 9–22
https://doi.org/10.1038/nrn2495
pmid: 19096367
|
97 |
Nishiyama A, Suzuki R, Zhu X (2014). NG2 cells (polydendrocytes) in brain physiology and repair. Front Neurosci, 8: 133
https://doi.org/10.3389/fnins.2014.00133
pmid: 25018689
|
98 |
Nowakowski R S, Hayes N L (2000). New neurons: extraordinary evidence or extraordinary conclusion? Science, 288(5467): 771
https://doi.org/10.1126/science.288.5467.771a
pmid: 10809639
|
99 |
Nowakowski R S, Lewin S B, Miller M W (1989). Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol, 18(3): 311–318
https://doi.org/10.1007/BF01190834
pmid: 2746304
|
100 |
Okuda H, Tatsumi K, Makinodan M, Yamauchi T, Kishimoto T, Wanaka A (2009). Environmental enrichment stimulates progenitor cell proliferation in the amygdala. J Neurosci Res, 87(16): 3546–3553
https://doi.org/10.1002/jnr.22160
pmid: 19565652
|
101 |
Patzke N, LeRoy A, Ngubane N W, Bennett N C, Medger K, Gravett N, Kaswera-Kyamakya C, Gilissen E, Chawana R, Manger P R (2014). The distribution of doublecortin-immunopositive cells in the brains of four afrotherian mammals: the Hottentot golden mole (Amblysomus hottentotus), the rock hyrax (Procavia capensis), the eastern rock sengi (Elephantulus myurus) and the four-toed sengi (Petrodromus tetradactylus). Brain Behav Evol, 84(3): 227–241
https://doi.org/10.1159/000367934
pmid: 25377859
|
102 |
Peretto P, Bonfanti L (2014). Major unsolved points in adult neurogenesis: doors open on a translational future? Front Neurosci, 8: 154
https://doi.org/10.3389/fnins.2014.00154
pmid: 24966812
|
103 |
Petreanu L, Alvarez-Buylla A (2002). Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci, 22(14): 6106–6113
pmid: 12122071
|
104 |
Pierce A A, Xu A W (2010). De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci, 30(2): 723–730
https://doi.org/10.1523/JNEUROSCI.2479-09.2010
pmid: 20071537
|
105 |
Psachoulia K, Jamen F, Young K M, Richardson W D (2009). Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol, 5(3-4): 57–67
https://doi.org/10.1017/S1740925X09990354
pmid: 20346197
|
106 |
Purves D, Augustine G J, Flitzpatrick D, Katz L C, LaMantia A S, McNamara J O, Williams S M (2001). Neuroscience, 2nd edition. Sunderland (MA): Sinauer Associates
|
107 |
Richardson W D, Young K M, Tripathi R B, McKenzie I (2011). NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron, 70(4): 661–673
https://doi.org/10.1016/j.neuron.2011.05.013
pmid: 21609823
|
108 |
Rivers L E, Young K M, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson W D (2008). PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci, 11(12): 1392–1401
https://doi.org/10.1038/nn.2220
pmid: 18849983
|
109 |
Robins S C, Trudel E, Rotondi O, Liu X, Djogo T, Kryzskaya D, Bourque C W, Kokoeva M V (2013). Evidence for NG2-glia derived, adult-born functional neurons in the hypothalamus. PLoS ONE, 8(10): e78236
https://doi.org/10.1371/journal.pone.0078236
pmid: 24205170
|
110 |
Rosselli-Austin L, Altman J (1979). The postnatal development of the main olfactory bulb of the rat. J Dev Physiol, 1(4): 295–313
pmid: 551115
|
111 |
Rossi S L, Mahairaki V, Zhou L, Song Y, Koliatsos V E (2014). Remodeling of the piriform cortex after lesion in adult rodents. Neuroreport, 25(13): 1006–1012
https://doi.org/10.1097/WNR.0000000000000203
pmid: 25026533
|
112 |
Rubio A, Belles M, Belenguer G, Vidueira S, Fariñas I, Nacher J (2015). Characterization and isolation of immature neurons of the adult mouse piriform cortex. Dev Neurobiol, doi: 10.1002/dneu.22357
pmid: 26487449
|
113 |
Rutishauser U (2008). Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci, 9(1): 26–35
https://doi.org/10.1038/nrn2285
pmid: 18059411
|
114 |
Saegusa T, Mine S, Iwasa H, Murai H, Seki T, Yamaura A, Yuasa S (2004). Involvement of highly polysialylated neural cell adhesion molecule (PSA-NCAM)-positive granule cells in the amygdaloid-kindling-induced sprouting of a hippocampal mossy fiber trajectory. Neurosci Res, 48(2): 185–194
https://doi.org/10.1016/j.neures.2003.10.010
pmid: 14741393
|
115 |
Sairanen M, O’Leary O F, Knuuttila J E, Castrén E (2007). Chronic antidepressant treatment selectively increases expression of plasticity-related proteins in the hippocampus and medial prefrontal cortex of the rat. Neuroscience, 144(1): 368–374
https://doi.org/10.1016/j.neuroscience.2006.08.069
pmid: 17049169
|
116 |
Sanai N, Nguyen T, Ihrie R A, Mirzadeh Z, Tsai H H, Wong M, Gupta N, Berger M S, Huang E, Garcia-Verdugo J M, Rowitch D H, Alvarez-Buylla A (2011). Corridors of migrating neurons in the human brain and their decline during infancy. Nature, 478(7369): 382–386
https://doi.org/10.1038/nature10487
pmid: 21964341
|
117 |
Seki T, Arai Y (1999). Temporal and spacial relationships between PSA-NCAM-expressing, newly generated granule cells, and radial glia-like cells in the adult dentate gyrus. J Comp Neurol, 410(3): 503–513
https://doi.org/10.1002/(SICI)1096-9861(19990802)410:3<503::AID-CNE11>3.0.CO;2-H
pmid: 10404415
|
118 |
Shapiro L A, Ng K, Zhou Q Y, Ribak C E (2009). Subventricular zone-derived, newly generated neurons populate several olfactory and limbic forebrain regions. Epilepsy Behav, 14(Suppl 1): 74–80
https://doi.org/10.1016/j.yebeh.2008.09.011
pmid: 18849007
|
119 |
Shapiro L A, Ng K L, Kinyamu R, Whitaker-Azmitia P, Geisert E E, Blurton-Jones M, Zhou Q Y, Ribak C E (2007a). Origin, migration and fate of newly generated neurons in the adult rodent piriform cortex. Brain Struct Funct, 212(2): 133–148
https://doi.org/10.1007/s00429-007-0151-3
pmid: 17764016
|
120 |
Shapiro L A, Ng K L, Zhou Q Y, Ribak C E (2007b). Olfactory enrichment enhances the survival of newly born cortical neurons in adult mice. Neuroreport, 18(10): 981–985
https://doi.org/10.1097/WNR.0b013e3281532bc1
pmid: 17558281
|
121 |
Shechter R, Ziv Y, Schwartz M (2007). New GABAergic interneurons supported by myelin-specific T cells are formed in intact adult spinal cord. Stem Cells, 25(9): 2277–2282
https://doi.org/10.1634/stemcells.2006-0705
pmid: 17540856
|
122 |
Shors T J, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001). Neurogenesis in the adult is involved in the formation of trace memories. Nature, 410(6826): 372–376
https://doi.org/10.1038/35066584
pmid: 11268214
|
123 |
Shors T J, Townsend D A, Zhao M, Kozorovitskiy Y, Gould E (2002). Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 12(5): 578–584
https://doi.org/10.1002/hipo.10103
pmid: 12440573
|
124 |
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
https://doi.org/10.1016/j.cell.2013.05.002
pmid: 23746839
|
125 |
Suzuki N, Bekkers J M (2007). Inhibitory interneurons in the piriform cortex. Clin Exp Pharmacol Physiol, 34(10): 1064–1069
https://doi.org/10.1111/j.1440-1681.2007.04723.x
pmid: 17714095
|
126 |
Suzuki N, Bekkers J M (2010a). Distinctive classes of GABAergic interneurons provide layer-specific phasic inhibition in the anterior piriform cortex. Cereb Cortex, 20(12): 2971–2984
https://doi.org/10.1093/cercor/bhq046
pmid: 20457693
|
127 |
Suzuki N, Bekkers J M (2010b). Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J Comp Neurol, 518(10): 1670–1687
https://doi.org/10.1002/cne.22295
pmid: 20235162
|
128 |
Takemura N U (2005). Evidence for neurogenesis within the white matter beneath the temporal neocortex of the adult rat brain. Neuroscience, 134(1): 121–132
https://doi.org/10.1016/j.neuroscience.2005.04.033
pmid: 15964698
|
129 |
Toni N, Laplagne D A, Zhao C, Lombardi G, Ribak C E, Gage F H, Schinder A F (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11(8): 901–907
https://doi.org/10.1038/nn.2156
pmid: 18622400
|
130 |
Toni N, Teng E M, Bushong E A, Aimone J B, Zhao C, Consiglio A, van Praag H, Martone M E, Ellisman M H, Gage F H (2007). Synapse formation on neurons born in the adult hippocampus. Nat Neurosci, 10(6): 727–734
https://doi.org/10.1038/nn1908
pmid: 17486101
|
131 |
van Praag H, Schinder A F, Christie B R, Toni N, Palmer T D, Gage F H (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(6875): 1030–1034
https://doi.org/10.1038/4151030a
pmid: 11875571
|
132 |
Varea E, Belles M, Vidueira S, Blasco-Ibáñez J M, Crespo C, Pastor A M, Nacher J (2011). PSA-NCAM is Expressed in Immature, but not Recently Generated, Neurons in the Adult Cat Cerebral Cortex Layer II. Front Neurosci, 5: 17
https://doi.org/10.3389/fnins.2011.00017
pmid: 21415912
|
133 |
Varea E, Castillo-Gómez E, Gómez-Climent M A, Blasco-Ibáñez J M, Crespo C, Martínez-Guijarro F J, Nàcher J (2007).PSA-NCAM expression in the human prefrontal cortex. J Chem Neuroanat, 33(4): 202–209
https://doi.org/10.1016/j.jchemneu.2007.03.006
pmid: 17467233
|
134 |
Varea E, Castillo-Gómez E, Gómez-Climent M A, Guirado R, Blasco-Ibáñez J M, Crespo C, Martínez-Guijarro F J, Nácher J (2009). Differential evolution of PSA-NCAM expression during aging of the rat telencephalon. Neurobiol Aging, 30(5): 808–818
https://doi.org/10.1016/j.neurobiolaging.2007.08.016
pmid: 17904697
|
135 |
Vessal M, Aycock A, Garton M T, Ciferri M, Darian-Smith C (2007). Adult neurogenesis in primate and rodent spinal cord: comparing a cervical dorsal rhizotomy with a dorsal column transection. Eur J Neurosci, 26(10): 2777–2794
https://doi.org/10.1111/j.1460-9568.2007.05871.x
pmid: 18001275
|
136 |
Vivar C, van Praag H (2013). Functional circuits of new neurons in the dentate gyrus. Front Neural Circuits, 7: 15
https://doi.org/10.3389/fncir.2013.00015
pmid: 23443839
|
137 |
Winner B, Cooper-Kuhn C M, Aigner R, Winkler J, Kuhn H G (2002). Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci, 16(9): 1681–1689
https://doi.org/10.1046/j.1460-9568.2002.02238.x
pmid: 12431220
|
138 |
Xiong K, Cai Y, Zhang X M, Huang J F, Liu Z Y, Fu G M, Feng J C, Clough R W, Patrylo P R, Luo X G, Hu C H, Yan X X (2010). Layer I as a putative neurogenic niche in young adult guinea pig cerebrum. Mol Cell Neurosci, 45(2): 180–191
https://doi.org/10.1016/j.mcn.2010.06.009
pmid: 20599617
|
139 |
Xiong K, Luo D W, Patrylo P R, Luo X G, Struble R G, Clough R W, Yan X X (2008). Doublecortin-expressing cells are present in layer II across the adult guinea pig cerebral cortex: partial colocalization with mature interneuron markers. Exp Neurol, 211(1): 271–282
https://doi.org/10.1016/j.expneurol.2008.02.003
pmid: 18378231
|
140 |
Yang Y, Geldmacher D S, Herrup K (2001). DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci, 21(8): 2661–2668
pmid: 11306619
|
141 |
Yang Y, Xie M X, Li J M, Hu X, Patrylo P R, Luo X G, Cai Y, Li Z, Yan X X (2015). Prenatal genesis of layer II doublecortin expressing neurons in neonatal and young adult guinea pig cerebral cortex. Front Neuroanat, 9: 109
https://doi.org/10.3389/fnana.2015.00109
pmid: 26321922
|
142 |
Yuan T F, Liang Y X, So K F (2014). Occurrence of new neurons in the piriform cortex. Front Neuroanat, 8: 167
pmid: 25653597
|
143 |
Yuan T F, Liang Y X, So K F (2015). Response: New neurons from old beliefs in the adult piriform cortex? A Commentary on: “Occurrence of new neurons in the piriform cortex”. Front Neuroanat, 9: 79
https://doi.org/10.3389/fnana.2015.00079
pmid: 26106305
|
144 |
Zhang J, Giesert F, Kloos K, Vogt Weisenhorn D M, Aigner L, Wurst W, Couillard-Despres S (2010). A powerful transgenic tool for fate mapping and functional analysis of newly generated neurons. BMC Neurosci, 11(1): 158
https://doi.org/10.1186/1471-2202-11-158
pmid: 21194452
|
145 |
Zhang X M, Cai Y, Chu Y, Chen E Y, Feng J C, Luo X G, Xiong K, Struble R G, Clough R W, Patrylo P R, Kordower J H, Yan X X (2009). Doublecortin-expressing cells persist in the associative cerebral cortex and amygdala in aged nonhuman primates. Front Neuroanat, 3: 17
https://doi.org/10.3389/neuro.05.017.2009
pmid: 19862344
|
146 |
Zhu X, Bergles D E, Nishiyama A (2008). NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development, 135(1): 145–157
https://doi.org/10.1242/dev.004895
pmid: 18045844
|
147 |
Zhu X, Hill R A, Dietrich D, Komitova M, Suzuki R, Nishiyama A (2011). Age-dependent fate and lineage restriction of single NG2 cells. Development, 138(4): 745–753
https://doi.org/10.1242/dev.047951
pmid: 21266410
|
148 |
Zigova T, Betarbet R, Soteres B J, Brock S, Bakay R A, Luskin M B (1996). A comparison of the patterns of migration and the destinations of homotopically transplanted neonatal subventricular zone cells and heterotopically transplanted telencephalic ventricular zone cells. Dev Biol, 173(2): 459–474
https://doi.org/10.1006/dbio.1996.0040
pmid: 8606005
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|