Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2016, Vol. 11 Issue (3) : 193-213    https://doi.org/10.1007/s11515-016-1403-5
REVIEW
Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity?
Richard König1,2,Bruno Benedetti3,Peter Rotheneichner1,4,Anna O′ Sullivan1,4,5,Christina Kreutzer1,4,Maria Belles6,Juan Nacher6,Thomas M. Weiger7,Ludwig Aigner1,2,*(),Sébastien Couillard-Després1,4,*()
1. Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
2. Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
3. Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck, Austria
4. Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
5. Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University Salzburg, Salzburg, Austria
6. Neurobiology Unit, Interdisciplinary Research Structure for Biotechnology and Biomedicine Valencia, Universitat de Valencia, Comunitat Valenciana, Spain
7. Division of Cellular and Molecular Neurobiology, Department of Cell Biology, University of Salzburg, Salzburg, Austria
 Download: PDF(1239 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The expression of early developmental markers such as doublecortin (DCX) and the polysialylated-neural cell adhesion molecule (PSA-NCAM) has been used to identify immature neurons within canonical neurogenic niches. Additionally, DCX/PSA-NCAM+ immature neurons reside in cortical layer II of the paleocortex and in the paleo- and entorhinal cortex of mice and rats, respectively. These cells are also found in the neocortex of guinea pigs, rabbits, some afrotherian mammals, cats, dogs, non-human primates, and humans. The population of cortical DCX/PSA-NCAM+ immature neurons is generated prenatally as conclusively demonstrated in mice, rats, and guinea pigs. Thus, the majority of these cells do not appear to be the product of adult proliferative events. The immature neurons in cortical layer II are most abundant in the cortices of young individuals, while very few DCX/PSA-NCAM+ cortical neurons can be detected in aged mammals. Maturation of DCX/PSA-NCAM+ cells into glutamatergic and GABAergic neurons has been proposed as an explanation for the age-dependent reduction in their population over time. In this review, we compile the recent information regarding the age-related decrease in the number of cortical DCX/PSA-NCAM+ neurons. We compare the distribution and fates of DCX/PSA-NCAM+ neurons among mammalian species and speculate their impact on cognitive function. To respond to the diversity of adult neurogenesis research produced over the last number of decades, we close this review by discussing the use and precision of the term “adult non-canonical neurogenesis.”

Keywords aging      cognition      doublecortin      piriform cortex      plasticity      neurogenesis     
Corresponding Author(s): Ludwig Aigner,Sébastien Couillard-Després   
Just Accepted Date: 01 June 2016   Online First Date: 21 June 2016    Issue Date: 05 July 2016
 Cite this article:   
Richard König,Bruno Benedetti,Peter Rotheneichner, et al. Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity?[J]. Front. Biol., 2016, 11(3): 193-213.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-016-1403-5
https://academic.hep.com.cn/fib/EN/Y2016/V11/I3/193
Fig.1  Schematic representation of the proliferative neurogenic sites within the adult mouse brain. Adult-born neurons generated in the subventricular zone migrate dorsally to the olfactory bulb to mature and integrate as inhibitory neurons. In the dentate gyrus, newly born neuroblasts differentiate locally into granular cells. In light blue presumptive regions supporting low-level adult neurogenesis are marked (reviewed in: (Gould, 2007)), defined as regions were proliferation markers co-occur in immunohistologically labelled neurons. The piriform cortex, which is part of the paleocortex, is highlighted in green.
Fig.2  In the young adult mouse brain, immature neurons are most abundant in the canonical neurogenic niches and within paleocortical regions. Transgenic DCX-CreERT2 mouse line allowed for the detection of DCX/PSA-NCAM IN. In this picture, immature neurons expressing the transgene under the DCX promoter are visualized by 3,3'-Diaminobenzidine (DAB) staining. The amount of DAB positive cells is the highest within the dentate gyrus (DG), the lateral ventricular (LV) wall, and the posterior part of the piriform cortex layer II. In the piriform cortex most DAB positive cells are accumulated in the posterior part, extending into the amygdaloidal transitional area (CxA), and the ventral claustrum (VEn). It was demonstrated that most immature neurons in the layer II of the murine piriform cortex do express PSA-NCAM (Rubio et al., 2015). In contrast, the evenly distributed DAB positive cells present throughout all cortical regions, co-express the NG2 antigen, but mostly lack PSA-NCAM expression (own observation). Abbreviations: agranular insular cortex dorsal part (AID), agranular insular corte, ventral part (AIV), basolateral amygdaloid nucleus anterior part (BLA), basolateral amygdaloid nucleus posterior part (BLP), basomedial amygdaloid nucleus anterior part (BMA), basomedial amygdaloid nucleus posterior part (BMP), field cornu ammonis (CA) 1 of the hippocampus (CA1), field CA2 of the hippocampus (CA2), field CA3 of the hippocampus (CA3), corpus callosum (cc), caudomedial entorhinal cortex (CEnt), claustrum (Cl), caudate putamen (CPu), crus 1 of the ansiform lobule (Crus1), crus 2 of the ansiform lobule (Crus2), cortex-amygdala transition zone (CxA), dorsal endopiriform claustrum (DEn), dysgranular insular cortex (DI), dorsolateral entorhinal cortex (DLEnt), dorsal subiculum (DS), fimbria of the hippocampus (fi), flocculus (Fl), granular insular cortex (GI), dentate gyrus (DG), globus pallidus (GP), internal capsule (ic), lateral ventricle (LV), paraflocculus (PFl), posterolateral cortical amygdaloid area (PLCo), paramedian lobule (PM), posteriormedial cortical amygdaloid area (PMCo), presubiculum (PrS), parietal cortex, posterior area dorsalis (PtPD), parietal cortex, posterior area rostralis (PtPR), rhinal fissure (rf), primary somatosensory cortex (S1), primary somatosensory cortex, barrel field (S1BF), primary somatosensory cortex, jaw region (S1J), primary somatosensory cortex, upper lip region (S1ULp), simple lobule (Sim), primary visual cortex (V1), ventral endopiriform claustrum (VEn), ventral subiculum (VS); (Paxinos and Franklin, 2012).
Fig.3  Schematic cytoarchitecture of the piriform cortex. (a) GFP/DCX positive cell in the piriform cortex of a mouse stained for PSA-NCAM (yellow). Most of these cells show small soma size and lack synaptic input. (b) Transgenic DCX-CreERT2 mouse line allowed for the detection of DCX/PSA-NCAM IN which predominantly resided in the layer IIa of the mouse piriform cortex. This mouse model enables fate mapping of DCX expressing cells (Zhang et al., 2010). (c) SL and SP have their somata concentrated in layers IIa and IIb, respectively. DP and MS are found at lower density in layer II. (d) GABA-releasing interneurons are distributed more sparsely and uniformly, but are less abundant in layer II. (e) Detection of the cell layer of the piriform cortex by DAPI (blue) staining. Main (f) output and (g) input regions of the piriform cortex. Abbreviations: superficial pyramidal cells (SP), semilunar cells (SL), multipolar spiny cells (MS), deep pyramidal cells (DP), bitufted cells (BT), fast spiking cells (FS), chandelier cells (CH), regular-spiking cells (RS), neuroglial-like cells (NL), lateral olfactory tract (LOT); nomenclature following (Bekkers and Suzuki, 2013).
Mammal Location Expected fate Are-related reduction? Overlap with fate-specific or mature neural markers? Prenatal birth dating? Antigens Proliferationin the adult? Morphologies Reference
Mouse Piriform cortex (posterior) Glutamatergic n.a. DCX expression overlapped with Tbr1. No co-expression with interneuronal markers n.a. Ki67; TUJ1;NeuN; DCX; PSA-NCAM; Parvalbumin; Somatostatin; Calbindin; GABA); GAD67; pan DLL; Lhx6; Tbr1; BrdU No adult DNA synthesis DCX/PSA-NCAM:Type 1 cells: bipolar and relatively smallType 2 cells: larger cell bodies; wide and well-developed dendritic arborisation; referred as “extraverted neurons” (Nieuwenhuys, 1994; Sanides and Sanides, 1972) Luzzati et al., 2009
Piriform cortex n.a. Reduction of DCX-DsRed cell number following bulbectomy DCX-DsRed expression overlapped with NeuN n.a. BrdU; DCX; PSA-NCAM; NeuN; Iba-1;Transgenic mice expressing red fluorescent protein (DsRed) under the control of the DCX promoter [C57BL/6J-Tg(DCX-DsRed)14Qlu/J n.a.in transgenic mice n.a. Rossi et al., 2014
Piriform cortex Glutamatergic n.a. PSA-NCAM expression overlapped with Tbr1 (77.7%). No co-expression with interneuronal markers Mainly in E13.5-E14.5 BrdU; DCX; GAD67); GFAP; Ki67; NeuN; NG2; PSA-NCAM; RIP; Tbr1 Prenatal DNA-synthesis, and no adult DNA synthesis DCX/PSA-NCAM:Small cells (6.21µm) – “Tangled Cells”Larger cells (9.64µm) – “semilunar-pyramidal transitional neurons”10% of all cells in layer II of the piriform cortex did express PSA-NCAM Rubio et al., 2015
Rat Piriform cortex and entorhinal cortex(perirhinal cortex, agranular insular, ectorhinal cortices) n.a.(Suggested by the authors: Glutamatergic fate) n.a. PSA-NCAM expression in larger cells overlapped with faint NeuN expression, and the expression of the NR1 subunit of the NMDA receptor. No co-expression with interneuronal markers Mainly in E15.5 Alpha-actinin, Arc, GABA, BrdU, CaMKII, Calbindin, Calretinin, c-Fos, Cholecytstokinin; CNGA-3, DCX, GFAP, Glucocorticoid receptor, GAD-67, MAP2, NG2, Nestin, NeuN, Neuropeptide Y; NMDA receptor 1; Parvalbumin; Pax6; Phospho-CREB, RIP; PSA-NCAM; Somatostatin; TUC-4; Vasoactive intestinal peptide Prenatal DNA-synthesis, and no adult or perinatal DNA synthesis DCX/PSA-NCAM:Small cells (soma diameter 8.9µm) – “Tangled Cells”Small cells mostly co-expressed DCX, TUC-4, CNGA-3, which is strongly expressed by migrating neuroblasts of the rostral migratory stream (Guiterrez-Mecinas et al., 2007), and p-CREB, a molecule expressed transiently in differentiating granule neurons the adult hippocampus (Nakagawa et al., 2002)Larger cells (14.8µm) – “semilunar-pyramidal transitional neurons” Gomez-Climent et al., 2008
Piriform cortex (DCX staining mostly present in the part of the piriform cortex) Scarce DCX expressing cells in the neocortex Glutamatergic n.a. DCX expression overlapped with Tbr1. No co-expression with interneuronal markers n.a. Ki67; TUJ1;NeuN; DCX; PSA-NCAM; Parvalbumin; Somatostatin; Calbindin; GABA); GAD67; pan DLL; Lhx6; Tbr1; BrdU No adult DNA synthesis DCX/PSA-NCAM:Type 1 cells: bipolar and relatively smallType 2 cells: larger cell bodies; wide and well-developed dendritic arborisation; referred as “extraverted neurons” (Nieuwenhuys, 1994; Sanides and Sanides, 1972) Luzzati et al., 2009
Piriform cortex n.a. n.a. BrdU overlapped with NeuN, but no BrdU/NeuN positive cells 12 weeks after BrdU administration n.a. BrdU; NeuN; PSA-NCAM; DCX; TUC-4 Adult-born NeuN expressing cells that do not survive Pyramidal morphology of BrdU/NeuN positive cells in layer II Pekcec et al., 2006
Allocortex, medial prefontal cortex, and (Amygdala) n.a.(Suggested by the authors: Glutamatergic fate) Age related reduction of “s cells” (small PSA-NCAM expressing cells) but not of “L cells” n.a. n.a. PSA-NCAM n.a. PSA-NCAM:Smaller PSA-NCAM expressing cells (“s cells”) were found only in the dentate gyrus, and only in the layer II of the piriform, entorhinal, perirhinal and insular cortices. “L cells” with comparatively larger soma, found in the hippocampus, the entorhinal and piriform cortices, and in all the extension of the neocortex and in different amygdaloid nucleus. The L cells were not present within the layer II of the piriform cortex. Number of “L cells” did not decrease dramatically in adulthood. Varea et al., 2009
Afrotherian mammals (hottentot golden mole, rock hyrax, eastern rock sengi, four toed sengi) Allocortex andneocortex n.a. n.a. n.a. n.a. DCX; Ki-67 No Ki67 immunoreactivity of DCX expressing cells in cortical layer II DCX:Mostly bipolar or multi-polar in shape, occasionally unipolar DCX expressing cells in cortical layer II Patzke et al., 2014
Guinea Pig Allocortex and neocortex with a dorsal to ventral high to low gradient;(Amygdala) n.a. n.a. n.a. E21-28 in the piriform cortex, E35 in the neocortex DCX, BrdU Only scare DNA-synthesis in DCX expressing cortical layer II cells DCX:Comparable to Xiong et al., 2008 Yang et al., 2015
Paleocortex n.a. n.a. n.a. n.a. DCX, NeuN n.a. He et al., 2014
Allocortex and neocortex GABAergic From 3 month to 3 years of age DCX+ cell number decreased about 50% for all observed areas (piriform, entorhinal, temporal, and parietal cortex) DCX/PSA-NCAM/TuJ1 in small cellsDCX/NeuN in large cells; subpopulation of DCX+ cells showed weak to moderate GABA labelling; large cells with faint DCX expression showed robust GAD67, GAD65/67; some larger DCX+ cells co-expressed NADPH-D or NOS n.a. DCX; PSA-NCAM; beta tubulin III; NeuN; GFAP; Reelin; GABA; GAD67; GAD 65/67; Calbindin; Calretinin; Neurogranin; Nitric oxidase); TuJ n.a. DCX:Small DCX expressing cells:(5µm soma diameter) with no/one/two processes that extended from one or opposite poles of the somata (most abundant DCX+ cell type)Medium-sized DCX expressing cells:(5-10µm) displayed moderate to heavy DCX reactivity and 2-4 processes radiating from the somataLarge-sized DCX expressing cells: (10-20µm in soma diameter) had branched dendrite-like processes for several hundred micrometres Xiong et al., 2008
Piriform cortex, neocortex, amigdalo-pyriform transition area(Amygdala) Glutamatergic n.a. DCX expression overlapped with Tbr1. No co-expression with interneuronal markers n.a. Ki67; TUJ1;NeuN; DCX; PSA-NCAM; Parvalbumin; Somatostatin; Calbindin; GABA); GAD67; pan DLL; Lhx6; Tbr1; BrdU No adult DNA synthesis DCX/PSA-NCAM:Type 1 cells: bipolar and relatively smallType 2 cells: larger cell bodies; wide and well-developed dendritic arborisation; referred as “extraverted neurons” (Nieuwenhuys, 1994; Sanides and Sanides, 1972) Luzzati et al., 2009
Rabbit Piriform cortex, neocortex, amygdalo-piriform transition area(Amygdala) Glutamatergic n.a. DCX expression overlapped with Tbr1. No co-expression with interneuronal markers n.a. Ki67; TUJ1;NeuN; DCX; PSA-NCAM; Parvalbumin; Somatostatin; Calbindin; GABA); GAD67; pan DLL; Lhx6; Tbr1; BrdU No adult DNA synthesis DCX/PSA-NCAM:Type 1 cells: bipolar and relatively smallType 2 cells: larger cell bodies; wide and well-developed dendritic arborisation; referred as “extraverted neurons” (Nieuwenhuys, 1994; Sanides and Sanides, 1972) Luzzati et al., 2009
Cat Allocortex and neocortex; ventrodorsal high to low gradient Glutamatergic n.a. PSA-NCAM expression overlapped with Tbr1 in small cells. No co-expression with interneuronal markers n.a. PSA-NCAM; NeuN; GAD67; DCX; CNGA3; CaMKII; Tbr1; Calbindin; Calretinin; Parvalbumin; Cholecystokinin; Vasoactive Intestinal Peptide; Neuropeptide Y; Somatostatin; Nitric Oxide Synthase Neural No adult DNA synthesis PSA-NCAM:“S” cells (small) PSA-NCAM/DCX/TBR1/CNGA3 (12 µm soma size), present in layer II of various cortices“L” cells (large) PSA-NCAM/NeuN(Gad67/CB/CR) (21 µm soma size), not present within the layer II Varea et al., 2011
Allocortex and neocortex; ventrodorsal high to low gradient GABAergic E.g. entorhinal cortex: Are-related reduction in cell number of about 60% (young=1.5 years; old=4.5 years) In small cells of the layer II: DCX is coexpressed with PSA-NCAM and TuJ1; In larger cells: DCX is co-expressed with NeuN, and different interneuron markers n.a. DCX; PSA-NCAM; Tuj-1); NeuN; GFAP; Oligodendrocyte Protein; OX42; Neurogranin; GABA; GAD67; Calbindin; Parvalbumin; Calretinin; Somatostatin; nNOS n.a. DCX:Heterogenic population, ranging from small DCX expressing cells (5µm) up to larger cells (20µm) Cai et al., 2009
Dog Paleocortex, neocortex (mostly frontal), (and cerebellum) n.a. Age-related reduction (from 3 month to 5 year and 17 year old lupines) in DCX expressing cell number in the layer II of the frontal neocortex, paleocortex and piriform lobe. n.a. n.a. DCX; Nucleostemin; tubulin beta III; NeuN; GFAP n.a. DCX:Irregular cells having a small cellular body and short extensions, but with more mature morphologies in neocortical layer II De Nevi et al., 2013
Hesus monkey Neocortex, entorhinal cortex, (and amygdala)ventrodorsal high to low gradient;only occasionally detected DCX expressing cells in primary motor and sensory cortical areas GABAergic Age-related reduction (from 12 to 21 and 31 years): 32%, and 13% Partial co-localisation of DCX/NeuN, DCX/GABA, and DCX/TH n.a. DCX; PSA-NCAM; NeuN; GABA; TyrosinHydroxilase (TH) n.a. Most DCX expressing cells were small and bipolar, often arranged in clusters (like observed within all species investigated so far (Gomez-Climent et al., 2008; Marti-Mengual et al., 2013; Nacher et al., 2001; Varea et al., 2011); complete co-localization of DCX with PSA-NCAMA few relatively large cells with reduced DCX reactivity were present in layer II/III in temporal lobe cortical areas Zhang et al., 2009
Allocortex and neocortex; ventrodorsal high to low gradient n.a.(Suggested by the authors: GABAergic fate) n.a. n.a. n.a. DCX n.a. DCX: Most DCX expressing cells in layer II/III were bipolar, while some appeared to be multipolar. Cai et al., 2009
Human n.a. Age-related reduction (from 1 year to 3.7, and 6 years of age) n.a. n.a. DCX, GAD65/67; PSA-NCAM, NeuN Either DCX, or PSA-NCAMDCX: Small cells (8µm diameter) with mostly one/two long processes were present in layer II of the cortex in the principal sulcus, gyrus rectus and, most abundantly, around the inferior arcuate sulcus and lateral orbital sulcus. While these layer II DCX expressing cells were present in the neonatal rhesus macaque brain, and in the 1 month old brain, the density of these cells were reduced in 3.7 and 6 year old monkeys. PSA-NCAM:Heterogeneous population; co-expression of GAD65/67 in some cortical layers Srikandarajah et al., 2009
Entorhinal cortex (Hippocampus) n.a. n.a. (for the entorhinal cortex) n.a. n.a. PSA-NCAM n.a. In the hippocampal formation,immunoreactivity was occasionally observed as a band of cells in the entorhinal cortex, in 7 month old humans. Ni Dhuill et al., 1999
Neocortex (temporal and frontal lopes) n.a.(Suggested by the authors: GABAergic fate) n.a. n.a. n.a. DCX n.a. DCX: DCX expressing cells varied in soma size, shape, staining intensity and neuritic appearance. Anyhow, many small cells showed small bipolar and a few multipolar cells exhibiting heavy reactivity Medium-sized cells with weak to moderate DCX reactivity Cai et al., 2009
Neocortex (undifferentiated) n.a. n.a. n.a. n.a. BrdU (mouse igG, M0744); DCX (rabbit IgG, ab18723; goat IgG, Sc-8066; guinea pig IgG, AB2253; guinea pig IgG, AB5910); GFAP (mouse IgG1, G3893; chicken IgY, AB5541; rabbit IgG, Z0334); Nestin (rabbit IgG, AB5922; mouse IgG1, MAB377); vimentin (IgG1, M0725); NeuN, Iba-1; n.a. DCX:DCX was found in the cerebral cortex, highly localized at the glia limitans, layer II and layer V (non-human primate, and humans); 4.55+/− 1.58% of total cells expressed DCX in the neocortex in nonhuman primates; DCX-positive cells with long processes were observed in the glia limitans and in the layer I;DCX-positive cells with pyramidal cell bodies were stained in layer II;DCX-positive cells with small stellar morphology were located at the limit between GM and WMSmall cells, negative for Nestin, NeuN, GFAP, Iba-1, and vimentin, represented about 18% of the total DCX-positive cells in the cortex. Larger DCX-positive cells were either described to express NeuN (26%), with the shape of Cajal-Retzius cells, or to express GFAP (26%), or are positive or DCX/NeuN/GFAP (30%).DCX-positive cells in adult brain cell cultures from human brain biopsies:In-vitro 9.8% of cortical cells in-cooperated BrdU at day 35, and nearly all of the BrdU-positive cells expressed DCX/GFAP. Bloch et al., 2011
Tab.1  An overview of the various reports on cortical layer II immature neurons
Fig.4  Box 1Do different fates and distributions of DCX/PSA-NCAM IN reflect phylogenetic adaptations and are therefore species-specific? The fate of DCX/PSA-NCAM IN is not resolved yet, current reports are inconsistent. Species-specific variation in fate and distribution of DCX/PSA-NCAM IN may reflect phylogenetic differences in corticogenesis and/or cortical network physiology. The distribution of DCX/PSA-NCAM IN (green) and the locations of the canonical neurogenic niches (red) are schematically shown in different mammalian species. The order of the illustrated species reflects absolute cortical volume, but not the taxonomy of the listed mammals. While DCX/PSA-NCAM IN in mammals with relatively smaller cortices are mostly limited to allocortical regions, the numbers of DCX/PSA-NCAM IN and the number of regions bearing these cells in mammals with comparatively bigger cerebrums are higher. Since about 10% of all the cells in the layer II of the posterior piriform cortex in young adult mice are described as PSA-NCAM expressing cells with immature morphology (Rubio et al., 2015), it is suggested that the overall number of DCX/PSA-NCAM IN in mammals with large neocortical lobes is scaling proportional with bigger cortices and therefore the functional relevance of DCX/PSA-NCAM IN upon maturation is expected to be higher for large-brained species. Despite maturation, it is unresolved whether DCX/PSA-NCAM IN develop into GABAergic neurons in some species and glutamatergic neurons in others, or if both fates are covered in some species. We can speculate that these variances reflect species-specific assignments of DCX/PSA-NCAM IN. Alternatively, different types of neurons hypothetically originate from DCX/PSA-NCAM IN in mammals with large cerebrum, as opposed to those with small cerebrums. Nevertheless, it is also possible that the reported discrepancy in the fate of these cortical progenitors is a matter of unstandardized fixation, staining, counting, and fate-mapping methods.
1 Abrous D N, Montaron M F, Petry K G, Rougon G, Darnaudéry M, Le Moal M, Mayo W (1997). Decrease in highly polysialylated neuronal cell adhesion molecules and in spatial learning during ageing are not correlated. Brain Res, 744(2): 285–292
https://doi.org/10.1016/S0006-8993(96)01115-8 pmid: 9027388
2 Ambrogini P, Cuppini R, Cuppini C, Ciaroni S, Cecchini T, Ferri P, Sartini S, Del Grande P (2000). Spatial learning affects immature granule cell survival in adult rat dentate gyrus. Neurosci Lett, 286(1): 21–24
https://doi.org/10.1016/S0304-3940(00)01074-0 pmid: 10822143
3 Bédard A, Lévesque M, Bernier P J, Parent A (2002). The rostral migratory stream in adult squirrel monkeys: contribution of new neurons to the olfactory tubercle and involvement of the antiapoptotic protein Bcl-2. Eur J Neurosci, 16(10): 1917–1924
https://doi.org/10.1046/j.1460-9568.2002.02263.x pmid: 12453055
4 Bekkers J M, Suzuki N (2013). Neurons and circuits for odor processing in the piriform cortex. Trends Neurosci, 36(7): 429–438
https://doi.org/10.1016/j.tins.2013.04.005 pmid: 23648377
5 Bernier P J, Bedard A, Vinet J, Levesque M, Parent A (2002). Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci USA, 99(17): 11464–11469
https://doi.org/10.1073/pnas.172403999 pmid: 12177450
6 Betarbet R, Zigova T, Bakay R A, Luskin M B (1996). Dopaminergic and GABAergic interneurons of the olfactory bulb are derived from the neonatal subventricular zone. Int J Dev Neurosci, 14(7-8): 921–930
https://doi.org/10.1016/S0736-5748(96)00066-4 pmid: 9010735
7 Biebl M, Cooper C M, Winkler J, Kuhn H G (2000). Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett, 291(1): 17–20
https://doi.org/10.1016/S0304-3940(00)01368-9 pmid: 10962143
8 Bizon J L, Gallagher M (2005). More is less: neurogenesis and age-related cognitive decline in Long-Evans rats. Sci SAGE KE, 2005(7): re2
https://doi.org/10.1126/sageke.2005.7.re2 pmid: 15716513
9 Bizon J L, Lee H J, Gallagher M (2004). Neurogenesis in a rat model of age-related cognitive decline. Aging Cell, 3(4): 227–234
https://doi.org/10.1111/j.1474-9728.2004.00099.x pmid: 15268756
10 Bloch J, Kaeser M, Sadeghi Y, Rouiller E M, Redmond D EJr, Brunet J F (2011). Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development. J Comp Neurol, 519(4): 775–789
https://doi.org/10.1002/cne.22547 pmid: 21246554
11 Bondolfi L, Ermini F, Long J M, Ingram D K, Jucker M (2004). Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging, 25(3): 333–340
https://doi.org/10.1016/S0197-4580(03)00083-6 pmid: 15123339
12 Bonfanti L (2013).The (real) neurogenic/gliogenic potential of the postnatal and adult brain parenchyma. ISRN Neurosci, 2013: 354136
https://doi.org/10.1155/2013/354136 pmid: 24967310
13 Bonfanti L, Nacher J (2012). New scenarios for neuronal structural plasticity in non-neurogenic brain parenchyma: the case of cortical layer II immature neurons. Prog Neurobiol, 98(1): 1–15
https://doi.org/10.1016/j.pneurobio.2012.05.002 pmid: 22609484
14 Bonfanti L, Olive S, Poulain D A, Theodosis D T (1992). Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience, 49(2): 419–436
https://doi.org/10.1016/0306-4522(92)90107-D pmid: 1436474
15 Bonfanti L, Peretto P (2011). Adult neurogenesis in mammals—a theme with many variations. Eur J Neurosci, 34(6): 930–950
https://doi.org/10.1111/j.1460-9568.2011.07832.x pmid: 21929626
16 Breunig J J, Arellano J I, Macklis J D, Rakic P (2007). Everything that glitters isn’t gold: a critical review of postnatal neural precursor analyses. Cell Stem Cell, 1(6): 612–627
https://doi.org/10.1016/j.stem.2007.11.008 pmid: 18371403
17 Brown J, Cooper-Kuhn C M, Kempermann G, Van Praag H, Winkler J, Gage F H, Kuhn H G (2003). Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci, 17(10): 2042–2046
https://doi.org/10.1046/j.1460-9568.2003.02647.x pmid: 12786970
18 Burns K A, Ayoub A E, Breunig J J, Adhami F, Weng W L, Colbert M C, Rakic P, Kuan C Y (2007). Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia hypoxia. Cereb Cortex, 17(11): 2585–2592
https://doi.org/10.1093/cercor/bhl164 pmid: 17259645
19 Burns T C, Ortiz-González X R, Gutiérrez-Pérez M, Keene C D, Sharda R, Demorest Z L, Jiang Y, Nelson-Holte M, Soriano M, Nakagawa Y, Luquin M R, Garcia-Verdugo J M, Prósper F, Low W C, Verfaillie C M (2006). Thymidine analogs are transferred from prelabeled donor to host cells in the central nervous system after transplantation: a word of caution. Stem Cells, 24(4): 1121–1127
https://doi.org/10.1634/stemcells.2005-0463 pmid: 16373692
20 Butt A M, Hamilton N, Hubbard P, Pugh M, Ibrahim M (2005). Synantocytes: the fifth element. J Anat, 207(6): 695–706
https://doi.org/10.1111/j.1469-7580.2005.00458.x pmid: 16367797
21 Cai Y, Xiong K, Chu Y, Luo D W, Luo X G, Yuan X Y, Struble R G, Clough R W, Spencer D D, Williamson A, Kordower J H, Patrylo P R, Yan X X (2009). Doublecortin expression in adult cat and primate cerebral cortex relates to immature neurons that develop into GABAergic subgroups. Exp Neurol, 216(2): 342–356
https://doi.org/10.1016/j.expneurol.2008.12.008 pmid: 19166833
22 Cameron H A, McKay R D (1999). Restoring production of hippocampal neurons in old age. Nat Neurosci, 2(10): 894–897
https://doi.org/10.1038/13197 pmid: 10491610
23 Carleton A, Petreanu L T, Lansford R, Alvarez-Buylla A, Lledo P M (2003).Becoming a new neuron in the adult olfactory bulb. Nat Neurosci, 6(5): 507–518
pmid: 12704391
24 Clarke L E, Young K M, Hamilton N B, Li H, Richardson W D, Attwell D (2012). Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse. J Neurosci, 32(24): 8173–8185
https://doi.org/10.1523/JNEUROSCI.0928-12.2012 pmid: 22699898
25 Costa M R, Kessaris N, Richardson W D, Götz M, Hedin-Pereira C (2007). The marginal zone/layer I as a novel niche for neurogenesis and gliogenesis in developing cerebral cortex. J Neurosci, 27(42): 11376–11388
https://doi.org/10.1523/JNEUROSCI.2418-07.2007 pmid: 17942732
26 Couillard-Despres S, Winner B, Karl C, Lindemann G, Schmid P, Aigner R, Laemke J, Bogdahn U, Winkler J, Bischofberger J, Aigner L (2006). Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. Eur J Neurosci, 24(6): 1535–1545
https://doi.org/10.1111/j.1460-9568.2006.05039.x pmid: 17004917
27 Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn H G, Aigner L (2005). Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci, 21(1): 1–14
https://doi.org/10.1111/j.1460-9568.2004.03813.x pmid: 15654838
28 Curtis M A, Eriksson P S, Faull R L (2007). Progenitor cells and adult neurogenesis in neurodegenerative diseases and injuries of the basal ganglia. Clin Exp Pharmacol Physiol, 34(5-6): 528–532
https://doi.org/10.1111/j.1440-1681.2007.04609.x pmid: 17439428
29 Dawson M R, Polito A, Levine J M, Reynolds R (2003). NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci, 24(2): 476–488
https://doi.org/10.1016/S1044-7431(03)00210-0 pmid: 14572468
30 Dayer A G, Cleaver K M, Abouantoun T, Cameron H A (2005). New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol, 168(3): 415–427
https://doi.org/10.1083/jcb.200407053 pmid: 15684031
31 de la Rosa-Prieto C, Saiz-Sanchez D, Ubeda-Bañon I, Argandoña-Palacios L, Garcia-Muñozguren S, Martinez-Marcos A (2010). Neurogenesis in subclasses of vomeronasal sensory neurons in adult mice. Dev Neurobiol, 70(14): 961–970
https://doi.org/10.1002/dneu.20838 pmid: 20848614
32 De Marchis S, Fasolo A, Puche A C (2004). Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice. J Comp Neurol, 476(3): 290–300
https://doi.org/10.1002/cne.20217 pmid: 15269971
33 De Nevi E, Marco-Salazar P, Fondevila D, Blasco E, Pérez L, Pumarola M (2013). Immunohistochemical study of doublecortin and nucleostemin in canine brain. Eur J Histochem, 57(1): e9
https://doi.org/10.4081/ejh.2013.e9 pmid: 23549468
34 des Portes V, Pinard J M, Billuart P, Vinet M C, Koulakoff A, Carrié A, Gelot A, Dupuis E, Motte J, Berwald-Netter Y, Catala M, Kahn A, Beldjord C, Chelly J (1998). A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell, 92(1): 51–61
https://doi.org/10.1016/S0092-8674(00)80898-3 pmid: 9489699
35 Dimou L, Simon C, Kirchhoff F, Takebayashi H, Götz M (2008). Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci, 28(41): 10434–10442
https://doi.org/10.1523/JNEUROSCI.2831-08.2008 pmid: 18842903
36 Dirian L, Galant S, Coolen M, Chen W, Bedu S, Houart C, Bally-Cuif L, Foucher I (2014).Spatial regionalization and heterochrony in the formation of adult pallial neural stem cells. Dev Cell, 30(2): 123–136
https://doi.org/10.1016/j.devcel.2014.05.012 pmid: 25017692
37 Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N, Nikonenko I, Muller D, Schachner M (2004). Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J Neurosci, 24(42): 9372–9382
https://doi.org/10.1523/JNEUROSCI.1702-04.2004 pmid: 15496673
38 Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1997).Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 17(13): 5046–5061
pmid: 9185542
39 Duque A, Rakic P (2011). Different effects of bromodeoxyuridine and [3H]thymidine incorporation into DNA on cell proliferation, position, and fate. J Neurosci, 31(42): 15205–15217
https://doi.org/10.1523/JNEUROSCI.3092-11.2011 pmid: 22016554
40 Ehninger D, Kempermann G (2008). Neurogenesis in the adult hippocampus. Cell Tissue Res, 331(1): 243–250
https://doi.org/10.1007/s00441-007-0478-3 pmid: 17938969
41 Ehninger D, Wang L P, Klempin F, Römer B, Kettenmann H, Kempermann G (2011). Enriched environment and physical activity reduce microglia and influence the fate of NG2 cells in the amygdala of adult mice. Cell Tissue Res, 345(1): 69–86
https://doi.org/10.1007/s00441-011-1200-z pmid: 21688212
42 Ekstrand J J, Domroese M E, Feig S L, Illig K R, Haberly L B (2001). Immunocytochemical analysis of basket cells in rat piriform cortex. J Comp Neurol, 434(3): 308–328
https://doi.org/10.1002/cne.1179 pmid: 11331531
43 Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566–579
https://doi.org/10.1016/j.stem.2011.03.010 pmid: 21549330
44 Englund C, Fink A, Lau C, Pham D, Daza R A, Bulfone A, Kowalczyk T, Hevner R F (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci, 25(1): 247–251
https://doi.org/10.1523/JNEUROSCI.2899-04.2005 pmid: 15634788
45 Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998).Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
https://doi.org/10.1038/3305 pmid: 9809557
46 Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisén J (2014). Neurogenesis in the striatum of the adult human brain. Cell, 156(5): 1072–1083
https://doi.org/10.1016/j.cell.2014.01.044 pmid: 24561062
47 Feliciano D M, Bordey A (2013). Newborn cortical neurons: only for neonates? Trends Neurosci, 36(1): 51–61
https://doi.org/10.1016/j.tins.2012.09.004 pmid: 23062965
48 Feliciano D M, Bordey A, Bonfanti L (2015). Noncanonical Sites of Adult Neurogenesis in the Mammalian Brain. Cold Spring Harb Perspect Biol, 7(10): a018846
https://doi.org/10.1101/cshperspect.a018846 pmid: 26384869
49 Fox G B, Fichera G, Barry T, O’Connell A W, Gallagher H C, Murphy K J, Regan C M (2000). Consolidation of passive avoidance learning is associated with transient increases of polysialylated neurons in layer II of the rat medial temporal cortex. J Neurobiol, 45(3): 135–141
https://doi.org/10.1002/1097-4695(20001115)45:3<135::AID-NEU1>3.0.CO;2-# pmid: 11074459
50 Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet M C, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell S K, Berwald-Netter Y, Denoulet P, Chelly J (1999). Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron, 23(2): 247–256
https://doi.org/10.1016/S0896-6273(00)80777-1 pmid: 10399932
51 Friocourt G, Liu J S, Antypa M, Rakic S, Walsh C A, Parnavelas J G (2007). Both doublecortin and doublecortin-like kinase play a role in cortical interneuron migration. J Neurosci, 27(14): 3875–3883
https://doi.org/10.1523/JNEUROSCI.4530-06.2007 pmid: 17409252
52 Gage F H, Kempermann G, Song H (2008). Adult Neurogenesis, Vol 52. Cold Spring Harbor Laboratory Press
53 Ge S, Goh E L, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589–593
https://doi.org/10.1038/nature04404 pmid: 16341203
54 Gómez-Climent M A, Castillo-Gómez E, Varea E, Guirado R, Blasco-Ibáñez J M, Crespo C, Martínez-Guijarro F J, Nácher J (2008). A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood. Cereb Cortex, 18(10): 2229–2240
https://doi.org/10.1093/cercor/bhm255 pmid: 18245040
55 Gomez-Climent M A, Guirado R, Varea E, Nàcher J (2010). “Arrested development”. Immature, but not recently generated, neurons in the adult brain. Arch Ital Biol, 148(2): 159–172
pmid: 20830977
56 Gottfried J A, Winston J S, Dolan R J (2006). Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron, 49(3): 467–479
https://doi.org/10.1016/j.neuron.2006.01.007 pmid: 16446149
57 Gould E (2007).How widespread is adult neurogenesis in mammals? Nat Rev Neurosci, 8(6): 481–488
https://doi.org/10.1038/nrn2147 pmid: 17514200
58 Gould E, Tanapat P, Hastings N B, Shors T J (1999). Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci, 3(5): 186–192
https://doi.org/10.1016/S1364-6613(99)01310-8 pmid: 10322475
59 Gritti A, Vescovi A L, Galli R (2002). Adult neural stem cells: plasticity and developmental potential. J Physiol Paris, 96(1-2): 81–90
https://doi.org/10.1016/S0928-4257(01)00083-3 pmid: 11755786
60 Guo F, Maeda Y, Ma J, Xu J, Horiuchi M, Miers L, Vaccarino F, Pleasure D (2010). Pyramidal neurons are generated from oligodendroglial progenitor cells in adult piriform cortex. J Neurosci, 30(36): 12036–12049
https://doi.org/10.1523/JNEUROSCI.1360-10.2010 pmid: 20826667
61 Hastings N B, Gould E (1999). Rapid extension of axons into the CA3 region by adult-generated granule cells. J Comp Neurol, 413(1): 146–154
https://doi.org/10.1002/(SICI)1096-9861(19991011)413:1<146::AID-CNE10>3.0.CO;2-B pmid: 10464376
62 He X, Zhang X M, Wu J, Fu J, Mou L, Lu D H, Cai Y, Luo X G, Pan A, Yan X X (2014). Olfactory experience modulates immature neuron development in postnatal and adult guinea pig piriform cortex. Neuroscience, 259: 101–112
https://doi.org/10.1016/j.neuroscience.2013.11.056 pmid: 24316472
63 Hevner R F, Hodge R D, Daza R A, Englund C (2006). Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res, 55(3): 223–233
https://doi.org/10.1016/j.neures.2006.03.004 pmid: 16621079
64 Johnson C P, Fujimoto I, Rutishauser U, Leckband D E (2005). Direct evidence that neural cell adhesion molecule (NCAM) polysialylation increases intermembrane repulsion and abrogates adhesion. J Biol Chem, 280(1): 137–145
https://doi.org/10.1074/jbc.M410216200 pmid: 15504723
65 Kadohisa M, Wilson D A (2006a). Olfactory cortical adaptation facilitates detection of odors against background. J Neurophysiol, 95(3): 1888–1896
https://doi.org/10.1152/jn.00812.2005 pmid: 16251260
66 Kadohisa M, Wilson D A (2006b). Separate encoding of identity and similarity of complex familiar odors in piriform cortex. Proc Natl Acad Sci USA, 103(41): 15206–15211
https://doi.org/10.1073/pnas.0604313103 pmid: 17005727
67 Kang S H, Fukaya M, Yang J K, Rothstein J D, Bergles D E (2010). NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron, 68(4): 668–681
https://doi.org/10.1016/j.neuron.2010.09.009 pmid: 21092857
68 Kaplan M S (1981). Neurogenesis in the 3-month-old rat visual cortex. J Comp Neurol, 195(2): 323–338
https://doi.org/10.1002/cne.901950211 pmid: 7251929
69 Kapur A, Pearce R A, Lytton W W, Haberly L B (1997). GABAA-mediated IPSCs in piriform cortex have fast and slow components with different properties and locations on pyramidal cells. J Neurophysiol, 78(5): 2531–2545
pmid: 9356403
70 Kato T, Yokouchi K, Kawagishi K, Fukushima N, Miwa T, Moriizumi T, Kato T, Yokouchi K, Kawagishi K (2000). Fate of newly formed periglomerular cells in the olfactory bulb. Acta Otolaryngol, 120(7): 876–879
https://doi.org/10.1080/000164800750061769 pmid: 11132724
71 Kelsch W, Mosley C P, Lin C W, Lois C (2007). Distinct mammalian precursors are committed to generate neurons with defined dendritic projection patterns. PLoS Biol, 5(11): e300
https://doi.org/10.1371/journal.pbio.0050300 pmid: 18001150
72 Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004). Milestones of neuronal development in the adult hippocampus. Trends Neurosci, 27(8): 447–452
https://doi.org/10.1016/j.tins.2004.05.013 pmid: 15271491
73 Klempin F, Kronenberg G, Cheung G, Kettenmann H, Kempermann G (2011). Properties of doublecortin-(DCX)-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice. PLoS ONE, 6(10): e25760
https://doi.org/10.1371/journal.pone.0025760 pmid: 22022443
74 Komitova M, Zhu X, Serwanski D R, Nishiyama A (2009). NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone. J Comp Neurol, 512(5): 702–716
https://doi.org/10.1002/cne.21917 pmid: 19058188
75 König R, Rotheneichner P, Marschallinger J, Aigner L, Couillard-Despres S (2016). Adult Neurogenesis in the Hippocampus. Elsevier, pp. 145–176
76 Kornack D R, Rakic P (2001). Cell proliferation without neurogenesis in adult primate neocortex. Science, 294(5549): 2127–2130
https://doi.org/10.1126/science.1065467 pmid: 11739948
77 Kremer T, Jagasia R, Herrmann A, Matile H, Borroni E, Francis F, Kuhn H G, Czech C (2013). Analysis of adult neurogenesis: evidence for a prominent “non-neurogenic” DCX-protein pool in rodent brain. PLoS ONE, 8(5): e59269
https://doi.org/10.1371/journal.pone.0059269 pmid: 23690918
78 Kuan C Y, Schloemer A J, Lu A, Burns K A, Weng W L, Williams M T, Strauss K I, Vorhees C V, Flavell R A, Davis R J, Sharp F R, Rakic P (2004). Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. J Neurosci, 24(47): 10763–10772
https://doi.org/10.1523/JNEUROSCI.3883-04.2004 pmid: 15564594
79 Kunz B A, Kohalmi S E (1991). Modulation of mutagenesis by deoxyribonucleotide levels. Annu Rev Genet, 25(1): 339–359
https://doi.org/10.1146/annurev.ge.25.120191.002011 pmid: 1812810
80 Lehner B, Sandner B, Marschallinger J, Lehner C, Furtner T, Couillard-Despres S, Rivera F J, Brockhoff G, Bauer H C, Weidner N, Aigner L (2011). The dark side of BrdU in neural stem cell biology: detrimental effects on cell cycle, differentiation and survival. Cell Tissue Res, 345(3): 313–328
https://doi.org/10.1007/s00441-011-1213-7 pmid: 21837406
81 Lemaire V, Koehl M, Le Moal M, Abrous D N (2000). Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA, 97(20): 11032–11037
https://doi.org/10.1073/pnas.97.20.11032 pmid: 11005874
82 Luskin M B, Boone M S (1994). Rate and pattern of migration of lineally-related olfactory bulb interneurons generated postnatally in the subventricular zone of the rat. Chem Senses, 19(6): 695–714
https://doi.org/10.1093/chemse/19.6.695 pmid: 7735848
83 Luzzati F, Bonfanti L, Fasolo A, Peretto P (2009). DCX and PSA-NCAM expression identifies a population of neurons preferentially distributed in associative areas of different pallial derivatives and vertebrate species. Cereb Cortex, 19(5): 1028–1041
https://doi.org/10.1093/cercor/bhn145 pmid: 18832334
84 Luzzati F, Nato G, Oboti L, Vigna E, Rolando C, Armentano M, Bonfanti L, Fasolo A, Peretto P (2014). Quiescent neuronal progenitors are activated in the juvenile guinea pig lateral striatum and give rise to transient neurons. Development, 141(21): 4065–4075
https://doi.org/10.1242/dev.107987 pmid: 25336736
85 Luzzati F, Peretto P, Aimar P, Ponti G, Fasolo A, Bonfanti L (2003). Glia-independent chains of neuroblasts through the subcortical parenchyma of the adult rabbit brain. Proc Natl Acad Sci USA, 100(22): 13036–13041
https://doi.org/10.1073/pnas.1735482100 pmid: 14559968
86 Manganas L N, Zhang X, Li Y, Hazel R D, Smith S D, Wagshul M E, Henn F, Benveniste H, Djuric P M, Enikolopov G, Maletic-Savatic M (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318(5852): 980–985
https://doi.org/10.1126/science.1147851 pmid: 17991865
87 Markakis E A, Gage F H (1999). Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol, 406(4): 449–460
https://doi.org/10.1002/(SICI)1096-9861(19990419)406:4<449::AID-CNE3>3.0.CO;2-I pmid: 10205022
88 Martí-Mengual U, Varea E, Crespo C, Blasco-Ibáñez J M, Nacher J (2013). Cells expressing markers of immature neurons in the amygdala of adult humans. Eur J Neurosci, 37(1): 10–22
https://doi.org/10.1111/ejn.12016 pmid: 23066968
89 Mikkonen M, Soininen H, Kälviänen R, Tapiola T, Ylinen A, Vapalahti M, Paljärvi L, Pitkänen A (1998). Remodeling of neuronal circuitries in human temporal lobe epilepsy: increased expression of highly polysialylated neural cell adhesion molecule in the hippocampus and the entorhinal cortex. Ann Neurol, 44(6): 923–934
https://doi.org/10.1002/ana.410440611 pmid: 9851437
90 Murphy K J, Fox G B, Foley A G, Gallagher H C, O’Connell A, Griffin A M, Nau H, Regan C M (2001). Pentyl-4-yn-valproic acid enhances both spatial and avoidance learning, and attenuates age-related NCAM-mediated neuroplastic decline within the rat medial temporal lobe. J Neurochem, 78(4): 704–714
https://doi.org/10.1046/j.1471-4159.2001.00411.x pmid: 11520891
91 Nacher J, Bonfanti L (2015). New neurons from old beliefs in the adult piriform cortex? A Commentary on: “Occurrence of new neurons in the piriform cortex”. Front Neuroanat, 9: 62
https://doi.org/10.3389/fnana.2015.00062 pmid: 26052272
92 Nacher J, Crespo C, McEwen B S (2001). Doublecortin expression in the adult rat telencephalon. Eur J Neurosci, 14(4): 629–644
https://doi.org/10.1046/j.0953-816x.2001.01683.x pmid: 11556888
93 Nacher J, Lanuza E, McEwen B S (2002). Distribution of PSA-NCAM expression in the amygdala of the adult rat. Neuroscience, 113(3): 479–484
https://doi.org/10.1016/S0306-4522(02)00219-1 pmid: 12150768
94 Neville K R, Haberly L B (2003). Beta and gamma oscillations in the olfactory system of the urethane-anesthetized rat. J Neurophysiol, 90(6): 3921–3930
https://doi.org/10.1152/jn.00475.2003 pmid: 12917385
95 Ní Dhúill C M, Fox G B, Pittock S J, O’Connell A W, Murphy K J, Regan C M (1999). Polysialylated neural cell adhesion molecule expression in the dentate gyrus of the human hippocampal formation from infancy to old age. J Neurosci Res, 55(1): 99–106
https://doi.org/10.1002/(SICI)1097-4547(19990101)55:1<99::AID-JNR11>3.0.CO;2-S pmid: 9890438
96 Nishiyama A, Komitova M, Suzuki R, Zhu X (2009). Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci, 10(1): 9–22
https://doi.org/10.1038/nrn2495 pmid: 19096367
97 Nishiyama A, Suzuki R, Zhu X (2014). NG2 cells (polydendrocytes) in brain physiology and repair. Front Neurosci, 8: 133
https://doi.org/10.3389/fnins.2014.00133 pmid: 25018689
98 Nowakowski R S, Hayes N L (2000). New neurons: extraordinary evidence or extraordinary conclusion? Science, 288(5467): 771
https://doi.org/10.1126/science.288.5467.771a pmid: 10809639
99 Nowakowski R S, Lewin S B, Miller M W (1989). Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol, 18(3): 311–318
https://doi.org/10.1007/BF01190834 pmid: 2746304
100 Okuda H, Tatsumi K, Makinodan M, Yamauchi T, Kishimoto T, Wanaka A (2009). Environmental enrichment stimulates progenitor cell proliferation in the amygdala. J Neurosci Res, 87(16): 3546–3553
https://doi.org/10.1002/jnr.22160 pmid: 19565652
101 Patzke N, LeRoy A, Ngubane N W, Bennett N C, Medger K, Gravett N, Kaswera-Kyamakya C, Gilissen E, Chawana R, Manger P R (2014). The distribution of doublecortin-immunopositive cells in the brains of four afrotherian mammals: the Hottentot golden mole (Amblysomus hottentotus), the rock hyrax (Procavia capensis), the eastern rock sengi (Elephantulus myurus) and the four-toed sengi (Petrodromus tetradactylus). Brain Behav Evol, 84(3): 227–241
https://doi.org/10.1159/000367934 pmid: 25377859
102 Peretto P, Bonfanti L (2014). Major unsolved points in adult neurogenesis: doors open on a translational future? Front Neurosci, 8: 154
https://doi.org/10.3389/fnins.2014.00154 pmid: 24966812
103 Petreanu L, Alvarez-Buylla A (2002). Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci, 22(14): 6106–6113
pmid: 12122071
104 Pierce A A, Xu A W (2010). De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci, 30(2): 723–730
https://doi.org/10.1523/JNEUROSCI.2479-09.2010 pmid: 20071537
105 Psachoulia K, Jamen F, Young K M, Richardson W D (2009). Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol, 5(3-4): 57–67
https://doi.org/10.1017/S1740925X09990354 pmid: 20346197
106 Purves D, Augustine G J, Flitzpatrick D, Katz L C, LaMantia A S, McNamara J O, Williams S M (2001). Neuroscience, 2nd edition. Sunderland (MA): Sinauer Associates
107 Richardson W D, Young K M, Tripathi R B, McKenzie I (2011). NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron, 70(4): 661–673
https://doi.org/10.1016/j.neuron.2011.05.013 pmid: 21609823
108 Rivers L E, Young K M, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson W D (2008). PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci, 11(12): 1392–1401
https://doi.org/10.1038/nn.2220 pmid: 18849983
109 Robins S C, Trudel E, Rotondi O, Liu X, Djogo T, Kryzskaya D, Bourque C W, Kokoeva M V (2013). Evidence for NG2-glia derived, adult-born functional neurons in the hypothalamus. PLoS ONE, 8(10): e78236
https://doi.org/10.1371/journal.pone.0078236 pmid: 24205170
110 Rosselli-Austin L, Altman J (1979). The postnatal development of the main olfactory bulb of the rat. J Dev Physiol, 1(4): 295–313
pmid: 551115
111 Rossi S L, Mahairaki V, Zhou L, Song Y, Koliatsos V E (2014). Remodeling of the piriform cortex after lesion in adult rodents. Neuroreport, 25(13): 1006–1012
https://doi.org/10.1097/WNR.0000000000000203 pmid: 25026533
112 Rubio A, Belles M, Belenguer G, Vidueira S, Fariñas I, Nacher J (2015). Characterization and isolation of immature neurons of the adult mouse piriform cortex. Dev Neurobiol, doi: 10.1002/dneu.22357
pmid: 26487449
113 Rutishauser U (2008). Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci, 9(1): 26–35
https://doi.org/10.1038/nrn2285 pmid: 18059411
114 Saegusa T, Mine S, Iwasa H, Murai H, Seki T, Yamaura A, Yuasa S (2004). Involvement of highly polysialylated neural cell adhesion molecule (PSA-NCAM)-positive granule cells in the amygdaloid-kindling-induced sprouting of a hippocampal mossy fiber trajectory. Neurosci Res, 48(2): 185–194
https://doi.org/10.1016/j.neures.2003.10.010 pmid: 14741393
115 Sairanen M, O’Leary O F, Knuuttila J E, Castrén E (2007). Chronic antidepressant treatment selectively increases expression of plasticity-related proteins in the hippocampus and medial prefrontal cortex of the rat. Neuroscience, 144(1): 368–374
https://doi.org/10.1016/j.neuroscience.2006.08.069 pmid: 17049169
116 Sanai N, Nguyen T, Ihrie R A, Mirzadeh Z, Tsai H H, Wong M, Gupta N, Berger M S, Huang E, Garcia-Verdugo J M, Rowitch D H, Alvarez-Buylla A (2011). Corridors of migrating neurons in the human brain and their decline during infancy. Nature, 478(7369): 382–386
https://doi.org/10.1038/nature10487 pmid: 21964341
117 Seki T, Arai Y (1999). Temporal and spacial relationships between PSA-NCAM-expressing, newly generated granule cells, and radial glia-like cells in the adult dentate gyrus. J Comp Neurol, 410(3): 503–513
https://doi.org/10.1002/(SICI)1096-9861(19990802)410:3<503::AID-CNE11>3.0.CO;2-H pmid: 10404415
118 Shapiro L A, Ng K, Zhou Q Y, Ribak C E (2009). Subventricular zone-derived, newly generated neurons populate several olfactory and limbic forebrain regions. Epilepsy Behav, 14(Suppl 1): 74–80
https://doi.org/10.1016/j.yebeh.2008.09.011 pmid: 18849007
119 Shapiro L A, Ng K L, Kinyamu R, Whitaker-Azmitia P, Geisert E E, Blurton-Jones M, Zhou Q Y, Ribak C E (2007a). Origin, migration and fate of newly generated neurons in the adult rodent piriform cortex. Brain Struct Funct, 212(2): 133–148
https://doi.org/10.1007/s00429-007-0151-3 pmid: 17764016
120 Shapiro L A, Ng K L, Zhou Q Y, Ribak C E (2007b). Olfactory enrichment enhances the survival of newly born cortical neurons in adult mice. Neuroreport, 18(10): 981–985
https://doi.org/10.1097/WNR.0b013e3281532bc1 pmid: 17558281
121 Shechter R, Ziv Y, Schwartz M (2007). New GABAergic interneurons supported by myelin-specific T cells are formed in intact adult spinal cord. Stem Cells, 25(9): 2277–2282
https://doi.org/10.1634/stemcells.2006-0705 pmid: 17540856
122 Shors T J, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001). Neurogenesis in the adult is involved in the formation of trace memories. Nature, 410(6826): 372–376
https://doi.org/10.1038/35066584 pmid: 11268214
123 Shors T J, Townsend D A, Zhao M, Kozorovitskiy Y, Gould E (2002). Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 12(5): 578–584
https://doi.org/10.1002/hipo.10103 pmid: 12440573
124 Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
https://doi.org/10.1016/j.cell.2013.05.002 pmid: 23746839
125 Suzuki N, Bekkers J M (2007). Inhibitory interneurons in the piriform cortex. Clin Exp Pharmacol Physiol, 34(10): 1064–1069
https://doi.org/10.1111/j.1440-1681.2007.04723.x pmid: 17714095
126 Suzuki N, Bekkers J M (2010a). Distinctive classes of GABAergic interneurons provide layer-specific phasic inhibition in the anterior piriform cortex. Cereb Cortex, 20(12): 2971–2984
https://doi.org/10.1093/cercor/bhq046 pmid: 20457693
127 Suzuki N, Bekkers J M (2010b). Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J Comp Neurol, 518(10): 1670–1687
https://doi.org/10.1002/cne.22295 pmid: 20235162
128 Takemura N U (2005). Evidence for neurogenesis within the white matter beneath the temporal neocortex of the adult rat brain. Neuroscience, 134(1): 121–132
https://doi.org/10.1016/j.neuroscience.2005.04.033 pmid: 15964698
129 Toni N, Laplagne D A, Zhao C, Lombardi G, Ribak C E, Gage F H, Schinder A F (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11(8): 901–907
https://doi.org/10.1038/nn.2156 pmid: 18622400
130 Toni N, Teng E M, Bushong E A, Aimone J B, Zhao C, Consiglio A, van Praag H, Martone M E, Ellisman M H, Gage F H (2007). Synapse formation on neurons born in the adult hippocampus. Nat Neurosci, 10(6): 727–734
https://doi.org/10.1038/nn1908 pmid: 17486101
131 van Praag H, Schinder A F, Christie B R, Toni N, Palmer T D, Gage F H (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(6875): 1030–1034
https://doi.org/10.1038/4151030a pmid: 11875571
132 Varea E, Belles M, Vidueira S, Blasco-Ibáñez J M, Crespo C, Pastor A M, Nacher J (2011). PSA-NCAM is Expressed in Immature, but not Recently Generated, Neurons in the Adult Cat Cerebral Cortex Layer II. Front Neurosci, 5: 17
https://doi.org/10.3389/fnins.2011.00017 pmid: 21415912
133 Varea E, Castillo-Gómez E, Gómez-Climent M A, Blasco-Ibáñez J M, Crespo C, Martínez-Guijarro F J, Nàcher J (2007).PSA-NCAM expression in the human prefrontal cortex. J Chem Neuroanat, 33(4): 202–209
https://doi.org/10.1016/j.jchemneu.2007.03.006 pmid: 17467233
134 Varea E, Castillo-Gómez E, Gómez-Climent M A, Guirado R, Blasco-Ibáñez J M, Crespo C, Martínez-Guijarro F J, Nácher J (2009). Differential evolution of PSA-NCAM expression during aging of the rat telencephalon. Neurobiol Aging, 30(5): 808–818
https://doi.org/10.1016/j.neurobiolaging.2007.08.016 pmid: 17904697
135 Vessal M, Aycock A, Garton M T, Ciferri M, Darian-Smith C (2007). Adult neurogenesis in primate and rodent spinal cord: comparing a cervical dorsal rhizotomy with a dorsal column transection. Eur J Neurosci, 26(10): 2777–2794
https://doi.org/10.1111/j.1460-9568.2007.05871.x pmid: 18001275
136 Vivar C, van Praag H (2013). Functional circuits of new neurons in the dentate gyrus. Front Neural Circuits, 7: 15
https://doi.org/10.3389/fncir.2013.00015 pmid: 23443839
137 Winner B, Cooper-Kuhn C M, Aigner R, Winkler J, Kuhn H G (2002). Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci, 16(9): 1681–1689
https://doi.org/10.1046/j.1460-9568.2002.02238.x pmid: 12431220
138 Xiong K, Cai Y, Zhang X M, Huang J F, Liu Z Y, Fu G M, Feng J C, Clough R W, Patrylo P R, Luo X G, Hu C H, Yan X X (2010). Layer I as a putative neurogenic niche in young adult guinea pig cerebrum. Mol Cell Neurosci, 45(2): 180–191
https://doi.org/10.1016/j.mcn.2010.06.009 pmid: 20599617
139 Xiong K, Luo D W, Patrylo P R, Luo X G, Struble R G, Clough R W, Yan X X (2008). Doublecortin-expressing cells are present in layer II across the adult guinea pig cerebral cortex: partial colocalization with mature interneuron markers. Exp Neurol, 211(1): 271–282
https://doi.org/10.1016/j.expneurol.2008.02.003 pmid: 18378231
140 Yang Y, Geldmacher D S, Herrup K (2001). DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci, 21(8): 2661–2668
pmid: 11306619
141 Yang Y, Xie M X, Li J M, Hu X, Patrylo P R, Luo X G, Cai Y, Li Z, Yan X X (2015). Prenatal genesis of layer II doublecortin expressing neurons in neonatal and young adult guinea pig cerebral cortex. Front Neuroanat, 9: 109
https://doi.org/10.3389/fnana.2015.00109 pmid: 26321922
142 Yuan T F, Liang Y X, So K F (2014). Occurrence of new neurons in the piriform cortex. Front Neuroanat, 8: 167
pmid: 25653597
143 Yuan T F, Liang Y X, So K F (2015). Response: New neurons from old beliefs in the adult piriform cortex? A Commentary on: “Occurrence of new neurons in the piriform cortex”. Front Neuroanat, 9: 79
https://doi.org/10.3389/fnana.2015.00079 pmid: 26106305
144 Zhang J, Giesert F, Kloos K, Vogt Weisenhorn D M, Aigner L, Wurst W, Couillard-Despres S (2010). A powerful transgenic tool for fate mapping and functional analysis of newly generated neurons. BMC Neurosci, 11(1): 158
https://doi.org/10.1186/1471-2202-11-158 pmid: 21194452
145 Zhang X M, Cai Y, Chu Y, Chen E Y, Feng J C, Luo X G, Xiong K, Struble R G, Clough R W, Patrylo P R, Kordower J H, Yan X X (2009). Doublecortin-expressing cells persist in the associative cerebral cortex and amygdala in aged nonhuman primates. Front Neuroanat, 3: 17
https://doi.org/10.3389/neuro.05.017.2009 pmid: 19862344
146 Zhu X, Bergles D E, Nishiyama A (2008). NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development, 135(1): 145–157
https://doi.org/10.1242/dev.004895 pmid: 18045844
147 Zhu X, Hill R A, Dietrich D, Komitova M, Suzuki R, Nishiyama A (2011). Age-dependent fate and lineage restriction of single NG2 cells. Development, 138(4): 745–753
https://doi.org/10.1242/dev.047951 pmid: 21266410
148 Zigova T, Betarbet R, Soteres B J, Brock S, Bakay R A, Luskin M B (1996). A comparison of the patterns of migration and the destinations of homotopically transplanted neonatal subventricular zone cells and heterotopically transplanted telencephalic ventricular zone cells. Dev Biol, 173(2): 459–474
https://doi.org/10.1006/dbio.1996.0040 pmid: 8606005
[1] Dingcheng Gao, Vivek Mittal, Yi Ban, Ana Rita Lourenco, Shira Yomtoubian, Sharrell Lee. Metastatic tumor cells – genotypes and phenotypes[J]. Front. Biol., 2018, 13(4): 277-286.
[2] Shipeng Shao, Lei Chang, Yingping Hou, Yujie Sun. Illuminating the structure and dynamics of chromatin by fluorescence labeling[J]. Front. Biol., 2017, 12(4): 241-257.
[3] Rachel Babij,Natalia De Marco Garcia. Neuronal activity controls the development of interneurons in the somatosensory cortex[J]. Front. Biol., 2016, 11(6): 459-470.
[4] Charlotte M. Ermine,Jordan L. Wright,Clare L. Parish,Davor Stanic,Lachlan H. Thompson. Combined immunohistochemical and retrograde tracing reveals little evidence of innervation of the rat dentate gyrus by midbrain dopamine neurons[J]. Front. Biol., 2016, 11(3): 246-255.
[5] Karen Arnaud,Ariel A. Di Nardo. Choroid plexus trophic factors in the developing and adult brain[J]. Front. Biol., 2016, 11(3): 214-221.
[6] Paul J. Lucassen,Charlotte A. Oomen. Stress, hippocampal neurogenesis and cognition: functional correlations[J]. Front. Biol., 2016, 11(3): 182-192.
[7] Fatih Semerci,Mirjana Maletic-Savatic. Transgenic mouse models for studying adult neurogenesis[J]. Front. Biol., 2016, 11(3): 151-167.
[8] Martha Hvoslef-Eide,Charlotte A. Oomen. Adult neurogenesis and pattern separation in rodents: A critical evaluation of data, tasks and interpretation[J]. Front. Biol., 2016, 11(3): 168-181.
[9] Chenglong Yu,Min Zhang,Xianan Qin,Xiaofeng Yang,Hyokeun Park. Real-time imaging of single synaptic vesicles in live neurons[J]. Front. Biol., 2016, 11(2): 109-118.
[10] Vadim V. Davydov,Evgenya R. Grabovetskaya,Amjad Hamdallah. Age-dependent peculiarities modulation of activity of aldehyde scavenger enzymes in mitochondria of rat thigh muscle during stress[J]. Front. Biol., 2016, 11(1): 28-31.
[11] B. Preethi,V. Shanthi,K. Ramanathan. Reckoning the SIX1 mutation’s effects in branchio-oto-renal syndrome — A bioinformatics approach[J]. Front. Biol., 2015, 10(5): 448-457.
[12] Cristina V. Dieni,Adam J. Wieckert,Linda Overstreet-Wadiche. Development of glutamatergic innervation during maturation of adult-born neurons[J]. Front. Biol., 2015, 10(4): 310-320.
[13] Daniel A. Berg,Ki-Jun Yoon,Brett Will,Alex Y. Xiao,Nam-Shik Kim,Kimberly M. Christian,Hongjun Song,Guo-li Ming. Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis[J]. Front. Biol., 2015, 10(3): 262-271.
[14] Young-Cho Kim,Stephanie L. Alberico,Eric Emmons,Nandakumar S. Narayanan. New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease[J]. Front. Biol., 2015, 10(3): 230-238.
[15] Ruth Beckervordersandforth,Benjamin M. Häberle,D. Chichung Lie. Metabolic regulation of adult stem cell-derived neurons[J]. Front. Biol., 2015, 10(2): 107-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed