|
|
Metabolic regulation of adult stem cell-derived neurons |
Ruth Beckervordersandforth,Benjamin M. Häberle,D. Chichung Lie( ) |
Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universit?t Erlangen-Nürnberg, Germany |
|
|
Abstract The discovery of continuous generation of functional neurons throughout life has emerged as a major contributor to plasticity in defined regions of the adult mammalian brain. Work over the past decades identified cellular constituents of the distinct adult neurogenic niches as well as numerous signaling pathways, transcriptional and epigenetic regulators that exert tight control over the production of new neurons from resident stem cells. Recent studies uncovered developmental stage-specific adaptations of metabolic circuits and have provided evidence for their central regulatory function in the adult neurogenic lineage. Moreover, there is increasing evidence for a regulatory impact of a wide range of systemic metabolic factors including exercise induced metabolic changes and diet on the development of adult-born neurons. Here, we will summarize current knowledge and emerging principles underlying the metabolic control of neuronal maturation in adult neurogenesis.
|
Keywords
metabolism
adult neurogenesis
mitochondria
diet
|
Corresponding Author(s):
D. Chichung Lie
|
Online First Date: 30 March 2015
Issue Date: 06 May 2015
|
|
1 |
Aimone J B, Deng W, Gage F H (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron, 70(4): 589–596
https://doi.org/10.1016/j.neuron.2011.05.010
pmid: 21609818
|
2 |
Alle H, Roth A, Geiger J R (2009). Energy-efficient action potentials in hippocampal mossy fibers. Science, 325(5946): 1405–1408
https://doi.org/10.1126/science.1174331
pmid: 19745156
|
3 |
Altarejos J Y, Montminy M (2011). CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol, 12(3): 141–151
https://doi.org/10.1038/nrm3072
pmid: 21346730
|
4 |
Alvarez J I, Katayama T, Prat A (2013). Glial influence on the blood brain barrier. Glia, 61(12): 1939–1958
https://doi.org/10.1002/glia.22575
pmid: 24123158
|
5 |
Amiri A, Cho W, Zhou J, Birnbaum S G, Sinton C M, McKay R M, Parada L F (2012). Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci, 32(17): 5880–5890
https://doi.org/10.1523/JNEUROSCI.5462-11.2012
pmid: 22539849
|
6 |
Arai Y, Kojima T, Takayama M, Hirose N (2009). The metabolic syndrome, IGF-1, and insulin action. Mol Cell Endocrinol, 299(1): 124–128
https://doi.org/10.1016/j.mce.2008.07.002
pmid: 18672019
|
7 |
Attardi G, Schatz G (1988). Biogenesis of mitochondria. Annu Rev Cell Biol, 4(1): 289–333
https://doi.org/10.1146/annurev.cb.04.110188.001445
pmid: 2461720
|
8 |
Attwell D, Laughlin S B (2001). An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab, 21(10): 1133–1145
https://doi.org/10.1097/00004647-200110000-00001
pmid: 11598490
|
9 |
Bélanger M, Allaman I, Magistretti P J (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab, 14(6): 724–738
https://doi.org/10.1016/j.cmet.2011.08.016
pmid: 22152301
|
10 |
Bertholet A M, Millet A M, Guillermin O, Daloyau M, Davezac N, Miquel M C, Belenguer P (2013). OPA1 loss of function affects in vitro neuronal maturation. Brain, 136(Pt 5): 1518–1533
https://doi.org/10.1093/brain/awt060
pmid: 23543485
|
11 |
Broughton S, Partridge L (2009). Insulin/IGF-like signalling, the central nervous system and aging. Biochem J, 418(1): 1–12
https://doi.org/10.1042/BJ20082102
pmid: 19159343
|
12 |
Cheng A, Hou Y, Mattson M P (2010). Mitochondria and neuroplasticity. ASN Neuro, 2(5): e00045
https://doi.org/10.1042/AN20100019
pmid: 20957078
|
13 |
Cheng A, Wan R, Yang J L, Kamimura N, Son T G, Ouyang X, Luo Y, Okun E, Mattson M P (2012). Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat Commun, 3: 1250
https://doi.org/10.1038/ncomms2238
pmid: 23212379
|
14 |
Courchet J, Lewis T L Jr, Lee S, Courchet V, Liou D Y, Aizawa S, Polleux F (2013). Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell, 153(7): 1510–1525
https://doi.org/10.1016/j.cell.2013.05.021
pmid: 23791179
|
15 |
Dickey A S, Strack S (2011). PKA/AKAP1 and PP2A/Bβ2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci, 31(44): 15716–15726
https://doi.org/10.1523/JNEUROSCI.3159-11.2011
pmid: 22049414
|
16 |
Dietrich M O, Andrews Z B, Horvath T L (2008). Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J Neurosci, 28(42): 10766–10771
https://doi.org/10.1523/JNEUROSCI.2744-08.2008
pmid: 18923051
|
17 |
Eriksson P S, Perfilieva E, Bj?rk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
https://doi.org/10.1038/3305
pmid: 9809557
|
18 |
Espósito M S, Piatti V C, Laplagne D A, Morgenstern N A, Ferrari C C, Pitossi F J, Schinder A F (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci, 25(44): 10074–10086
https://doi.org/10.1523/JNEUROSCI.3114-05.2005
pmid: 16267214
|
19 |
Fabel K, Fabel K, Tam B, Kaufer D, Baiker A, Simmons N, Kuo C J, Palmer T D (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci, 18(10): 2803–2812
https://doi.org/10.1111/j.1460-9568.2003.03041.x
pmid: 14656329
|
20 |
Fabel K, Kempermann G (2008). Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromolecular Med, 10(2): 59–66
https://doi.org/10.1007/s12017-008-8031-4
pmid: 18286387
|
21 |
Fabel K, Wolf S A, Ehninger D, Babu H, Leal-Galicia P, Kempermann G (2009). Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci, 3: 50
pmid: 20582277
|
22 |
Frayling C, Britton R, Dale N (2011). ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol, 589(Pt 9): 2275–2286
https://doi.org/10.1113/jphysiol.2010.202051
pmid: 21486800
|
23 |
Fujioka T, Fujioka A, Duman R S (2004). Activation of cAMP signaling facilitates the morphological maturation of newborn neurons in adult hippocampus. J Neurosci, 24(2): 319–328
https://doi.org/10.1523/JNEUROSCI.1065.03.2004
pmid: 14724230
|
24 |
Ge S, Goh E L, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589–593
https://doi.org/10.1038/nature04404
pmid: 16341203
|
25 |
Ge S, Pradhan D A, Ming G L, Song H (2007). GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci, 30(1): 1–8
https://doi.org/10.1016/j.tins.2006.11.001
pmid: 17116335
|
26 |
Giachino C, De Marchis S, Giampietro C, Parlato R, Perroteau I, Schütz G, Fasolo A, Peretto P (2005). cAMP response element-binding protein regulates differentiation and survival of newborn neurons in the olfactory bulb. J Neurosci, 25(44): 10105–10118
https://doi.org/10.1523/JNEUROSCI.3512-05.2005
pmid: 16267218
|
27 |
Gouazé A, Brenachot X, Rigault C, Krezymon A, Rauch C, Nédélec E, Lemoine A, Gascuel J, Bauer S, Pénicaud L, Benani A (2013). Cerebral cell renewal in adult mice controls the onset of obesity. PLoS ONE, 8(8): e72029
https://doi.org/10.1371/journal.pone.0072029
pmid: 23967273
|
28 |
Hawley J A, Hargreaves M, Joyner M J, Zierath J R (2014). Integrative biology of exercise. Cell, 159(4): 738–749
https://doi.org/10.1016/j.cell.2014.10.029
pmid: 25417152
|
29 |
Herold S, Jagasia R, Merz K, Wassmer K, Lie D C (2011). CREB signalling regulates early survival, neuronal gene expression and morphological development in adult subventricular zone neurogenesis. Mol Cell Neurosci, 46(1): 79–88
https://doi.org/10.1016/j.mcn.2010.08.008
pmid: 20801218
|
30 |
Herrero-Mendez A, Almeida A, Fernández E, Maestre C, Moncada S, Bola?os J P (2009). The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol, 11(6): 747–752
https://doi.org/10.1038/ncb1881
pmid: 19448625
|
31 |
Itoh Y, Esaki T, Shimoji K, Cook M, Law M J, Kaufman E, Sokoloff L (2003). Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA, 100(8): 4879–4884
https://doi.org/10.1073/pnas.0831078100
pmid: 12668764
|
32 |
Jagasia R, Steib K, Englberger E, Herold S, Faus-Kessler T, Saxe M, Gage F H, Song H, Lie D C (2009). GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci, 29(25): 7966–7977
https://doi.org/10.1523/JNEUROSCI.1054-09.2009
pmid: 19553437
|
33 |
Kheirbek M A, Klemenhagen K C, Sahay A, Hen R (2012). Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci, 15(12): 1613–1620
https://doi.org/10.1038/nn.3262
pmid: 23187693
|
34 |
Kim D Y, Rhee I, Paik J (2014). Metabolic circuits in neural stem cells. Cell Mol Life Sci, 71(21): 4221–4241
https://doi.org/10.1007/s00018-014-1686-0
pmid: 25037158
|
35 |
Kim J Y, Duan X, Liu C Y, Jang M H, Guo J U, Pow-anpongkul N, Kang E, Song H, Ming G L (2009). DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron, 63(6): 761–773
https://doi.org/10.1016/j.neuron.2009.08.008
pmid: 19778506
|
36 |
Kim J Y, Liu C Y, Zhang F, Duan X, Wen Z, Song J, Feighery E, Lu B, Rujescu D, St Clair D, Christian K, Callicott J H, Weinberger D R, Song H, Ming G L (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell, 148(5): 1051–1064
https://doi.org/10.1016/j.cell.2011.12.037
pmid: 22385968
|
37 |
Kivel? R, Bry M, Robciuc M R, R?s?nen M, Taavitsainen M, Silvola J M, Saraste A, Hulmi J J, Anisimov A, M?yr?np?? M I, Lindeman J H, Eklund L, Hellberg S, Hlushchuk R, Zhuang Z W, Simons M, Djonov V, Knuuti J, Mervaala E, Alitalo K (2014). VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol Med, 6(3): 307–321
pmid: 24448490
|
38 |
Klempin F, Beis D, Mosienko V, Kempermann G, Bader M, Alenina N (2013). Serotonin is required for exercise-induced adult hippocampal neurogenesis. J Neurosci, 33(19): 8270–8275
https://doi.org/10.1523/JNEUROSCI.5855-12.2013
pmid: 23658167
|
39 |
Knobloch M, Braun S M, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493(7431): 226–230
https://doi.org/10.1038/nature11689
pmid: 23201681
|
40 |
Kokoeva M V, Yin H, Flier J S (2005). Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science, 310(5748): 679–683
https://doi.org/10.1126/science.1115360
pmid: 16254185
|
41 |
Kokoeva M V, Yin H, Flier J S (2007). Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol, 505(2): 209–220
https://doi.org/10.1002/cne.21492
pmid: 17853440
|
42 |
Kumar V B, Binu S, Soumya S J, K H, Sudhakaran P R (2014). Regulation of vascular endothelial growth factor by metabolic context of the cell. Glycoconj J, 31(6-7): 427–434
https://doi.org/10.1007/s10719-014-9547-5
pmid: 25214198
|
43 |
Lee D A, Bedont J L, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012). Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci, 15(5): 700–702
https://doi.org/10.1038/nn.3079
pmid: 22446882
|
44 |
Lee D A, Blackshaw S (2012). Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int J Dev Neurosci, 30(8): 615–621
https://doi.org/10.1016/j.ijdevneu.2012.07.003
pmid: 22867732
|
45 |
Lee D A, Yoo S, Pak T, Salvatierra J, Velarde E, Aja S, Blackshaw S (2014). Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice. Front Neurosci, 8: 157
https://doi.org/10.3389/fnins.2014.00157
pmid: 24982613
|
46 |
Li Z, Jo J, Jia J M, Lo S C, Whitcomb D J, Jiao S, Cho K, Sheng M (2010). Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell, 141(5): 859–871
https://doi.org/10.1016/j.cell.2010.03.053
pmid: 20510932
|
47 |
Li Z, Okamoto K, Hayashi Y, Sheng M (2004). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell, 119(6): 873–887
https://doi.org/10.1016/j.cell.2004.11.003
pmid: 15607982
|
48 |
Lipton J O, Sahin M (2014). The neurology of mTOR. Neuron, 84(2): 275–291
https://doi.org/10.1016/j.neuron.2014.09.034
pmid: 25374355
|
49 |
MacAskill A F, Atkin T A, Kittler J T (2010). Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur J Neurosci, 32(2): 231–240
https://doi.org/10.1111/j.1460-9568.2010.07345.x
pmid: 20946113
|
50 |
Macaskill A F, Rinholm J E, Twelvetrees A E, Arancibia-Carcamo I L, Muir J, Fransson A, Aspenstrom P, Attwell D, Kittler J T (2009). Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron, 61(4): 541–555
https://doi.org/10.1016/j.neuron.2009.01.030
pmid: 19249275
|
51 |
Marín-Burgin A, Mongiat L A, Pardi M B, Schinder A F (2012). Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science, 335(6073): 1238–1242
https://doi.org/10.1126/science.1214956
pmid: 22282476
|
52 |
Mattson M P (2012). Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab, 16(6): 706–722
https://doi.org/10.1016/j.cmet.2012.08.012
pmid: 23168220
|
53 |
Merz K, Herold S, Lie D C (2011). CREB in adult neurogenesis—master and partner in the development of adult-born neurons? Eur J Neurosci, 33(6): 1078–1086
https://doi.org/10.1111/j.1460-9568.2011.07606.x
pmid: 21395851
|
54 |
Mihaylova M M, Sabatini D M, Yilmaz O H (2014). Dietary and metabolic control of stem cell function in physiology and cancer. Cell Stem Cell, 14(3): 292–305
https://doi.org/10.1016/j.stem.2014.02.008
pmid: 24607404
|
55 |
Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4): 687–702
https://doi.org/10.1016/j.neuron.2011.05.001
pmid: 21609825
|
56 |
Mishra P, Chan D C (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol, 15(10): 634–646
https://doi.org/10.1038/nrm3877
pmid: 25237825
|
57 |
Nakagawa S, Kim J E, Lee R, Chen J, Fujioka T, Malberg J, Tsuji S, Duman R S (2002). Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. J Neurosci, 22(22): 9868–9876
pmid: 12427843
|
58 |
Orellana J A, Sáez P J, Cortés-Campos C, Elizondo R J, Shoji K F, Contreras-Duarte S, Figueroa V, Velarde V, Jiang J X, Nualart F, Sáez J C, García M A (2012). Glucose increases intracellular free Ca2+ in tanycytes via ATP released through connexin 43 hemichannels. Glia, 60(1): 53–68
https://doi.org/10.1002/glia.21246
pmid: 21987367
|
59 |
Oruganty-Das A, Ng T, Udagawa T, Goh E L, Richter J D (2012). Translational control of mitochondrial energy production mediates neuron morphogenesis. Cell Metab, 16(6): 789–800
https://doi.org/10.1016/j.cmet.2012.11.002
pmid: 23217258
|
60 |
Osman C, Voelker D R, Langer T (2011). Making heads or tails of phospholipids in mitochondria. J Cell Biol, 192(1): 7–16
https://doi.org/10.1083/jcb.201006159
pmid: 21220505
|
61 |
Pellerin L, Magistretti P J (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA, 91(22): 10625–10629
https://doi.org/10.1073/pnas.91.22.10625
pmid: 7938003
|
62 |
Pereira A C, Huddleston D E, Brickman A M, Sosunov A A, Hen R, McKhann G M, Sloan R, Gage F H, Brown T R, Small S A (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA, 104(13): 5638–5643
https://doi.org/10.1073/pnas.0611721104
pmid: 17374720
|
63 |
Piatti V C, Davies-Sala M G, Espósito M S, Mongiat L A, Trinchero M F, Schinder A F (2011). The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J Neurosci, 31(21): 7715–7728
https://doi.org/10.1523/JNEUROSCI.1380-11.2011
pmid: 21613484
|
64 |
Pieper A A, Xie S, Capota E, Estill S J, Zhong J, Long J M, Becker G L, Huntington P, Goldman S E, Shen C H, Capota M, Britt J K, Kotti T, Ure K, Brat D J, Williams N S, MacMillan K S, Naidoo J, Melito L, Hsieh J, De Brabander J, Ready J M, McKnight S L (2010). Discovery of a proneurogenic, neuroprotective chemical. Cell, 142(1): 39–51
https://doi.org/10.1016/j.cell.2010.06.018
pmid: 20603013
|
65 |
Pierce A A, Xu A W (2010). De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci, 30(2): 723–730
https://doi.org/10.1523/JNEUROSCI.2479-09.2010
pmid: 20071537
|
66 |
Rodriguez-Rodriguez P, Fernandez E, Almeida A, Bola?os J P (2012). Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ, 19(10): 1582–1589
https://doi.org/10.1038/cdd.2012.33
pmid: 22421967
|
67 |
Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008). Astroglial metabolic networks sustain hippocampal synaptic transmission. Science, 322(5907): 1551–1555
https://doi.org/10.1126/science.1164022
pmid: 19056987
|
68 |
Sahay A, Wilson D A, Hen R (2011). Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron, 70(4): 582–588
https://doi.org/10.1016/j.neuron.2011.05.012
pmid: 21609817
|
69 |
Schmidt-Hieber C, Jonas P, Bischofberger J (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429(6988): 184–187
https://doi.org/10.1038/nature02553
pmid: 15107864
|
70 |
Schousboe A, Scafidi S, Bak L K, Waagepetersen H S, McKenna M C (2014). Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol, 11: 13–30
https://doi.org/10.1007/978-3-319-08894-5_2
pmid: 25236722
|
71 |
Sousa-Ferreira L, de Almeida L P, Cavadas C (2014). Role of hypothalamic neurogenesis in feeding regulation. Trends Endocrinol Metab, 25(2): 80–88
https://doi.org/10.1016/j.tem.2013.10.005
pmid: 24231724
|
72 |
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Bostr?m E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
https://doi.org/10.1016/j.cell.2013.05.002
pmid: 23746839
|
73 |
Spiegelman B M (2007). Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found Symp, 287: 60–63, discussion 63–69
https://doi.org/10.1002/9780470725207.ch5
pmid: 18074631
|
74 |
Steib K, Sch?ffner I, Jagasia R, Ebert B, Lie D C (2014). Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J Neurosci, 34(19): 6624–6633
https://doi.org/10.1523/JNEUROSCI.4972-13.2014
pmid: 24806687
|
75 |
Steketee M B, Moysidis S N, Weinstein J E, Kreymerman A, Silva J P, Iqbal S, Goldberg J L (2012). Mitochondrial dynamics regulate growth cone motility, guidance, and neurite growth rate in perinatal retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci, 53(11): 7402–7411
https://doi.org/10.1167/iovs.12-10298
pmid: 23049086
|
76 |
Stocca G, Schmidt-Hieber C, Bischofberger J (2008). Differential dendritic Ca2+ signalling in young and mature hippocampal granule cells. J Physiol, 586(16): 3795–3811
https://doi.org/10.1113/jphysiol.2008.155739
pmid: 18591186
|
77 |
Stoll E A, Cheung W, Mikheev A M, Sweet I R, Bielas J H, Zhang J, Rostomily R C, Horner P J (2011). Aging neural progenitor cells have decreased mitochondrial content and lower oxidative metabolism. J Biol Chem, 286(44): 38592–38601
https://doi.org/10.1074/jbc.M111.252171
pmid: 21900249
|
78 |
Stranahan A M, Arumugam T V, Cutler R G, Lee K, Egan J M, Mattson M P (2008). Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci, 11(3): 309–317
https://doi.org/10.1038/nn2055
pmid: 18278039
|
79 |
Sun G J, Sailor K A, Mahmood Q A, Chavali N, Christian K M, Song H, Ming G L (2013). Seamless reconstruction of intact adult-born neurons by serial end-block imaging reveals complex axonal guidance and development in the adult hippocampus. J Neurosci, 33(28): 11400–11411
https://doi.org/10.1523/JNEUROSCI.1374-13.2013
pmid: 23843512
|
80 |
Tatsuta T, Langer T (2008). Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J, 27(2): 306–314
https://doi.org/10.1038/sj.emboj.7601972
pmid: 18216873
|
81 |
Toni N, Laplagne D A, Zhao C, Lombardi G, Ribak C E, Gage F H, Schinder A F (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11(8): 901–907
https://doi.org/10.1038/nn.2156
pmid: 18622400
|
82 |
Trejo J L, Carro E, Torres-Aleman I (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci, 21(5): 1628–1634
pmid: 11222653
|
83 |
van Praag H (2009). Exercise and the brain: something to chew on. Trends Neurosci, 32(5): 283–290
https://doi.org/10.1016/j.tins.2008.12.007
pmid: 19349082
|
84 |
van Praag H, Kempermann G, Gage F H (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci, 2(3): 266–270
https://doi.org/10.1038/6368
pmid: 10195220
|
85 |
van Praag H, Schinder A F, Christie B R, Toni N, Palmer T D, Gage F H (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(6875): 1030–1034
https://doi.org/10.1038/4151030a
pmid: 11875571
|
86 |
Wang X, Schwarz T L (2009). The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell, 136(1): 163–174
https://doi.org/10.1016/j.cell.2008.11.046
pmid: 19135897
|
87 |
Ward P S, Thompson C B (2012). Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell, 21(3): 297–308
https://doi.org/10.1016/j.ccr.2012.02.014
pmid: 22439925
|
88 |
Winner B, Kohl Z, Gage F H (2011). Neurodegenerative disease and adult neurogenesis. Eur J Neurosci, 33(6): 1139–1151
https://doi.org/10.1111/j.1460-9568.2011.07613.x
pmid: 21395858
|
89 |
Wu L E, Meoli C C, Mangiafico S P, Fazakerley D J, Cogger V C, Mohamad M, Pant H, Kang M J, Powter E, Burchfield J G, Xirouchaki C E, Mikolaizak A S, St?ckli J, Kolumam G, van Bruggen N, Gamble J R, Le Couteur D G, Cooney G J, Andrikopoulos S, James D E (2014). Systemic VEGF-A neutralization ameliorates diet-induced metabolic dysfunction. Diabetes, 63(8): 2656–2667
https://doi.org/10.2337/db13-1665
pmid: 24696450
|
90 |
Yeo H, Lyssiotis C A, Zhang Y, Ying H, Asara J M, Cantley L C, Paik J H (2013). FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells. EMBO J, 32(19): 2589–2602
https://doi.org/10.1038/emboj.2013.186
pmid: 24013118
|
91 |
Zainuddin M S, Thuret S (2012). Nutrition, adult hippocampal neurogenesis and mental health. Br Med Bull, 103(1): 89–114
https://doi.org/10.1093/bmb/lds021
pmid: 22833570
|
92 |
Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660
https://doi.org/10.1016/j.cell.2008.01.033
pmid: 18295581
|
93 |
Zhao C, Teng E M, Summers R G Jr, Ming G L, Gage F H (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci, 26(1): 3–11
https://doi.org/10.1523/JNEUROSCI.3648-05.2006
pmid: 16399667
|
94 |
Zhou M, Li W, Huang S, Song J, Kim J Y, Tian X, Kang E, Sano Y, Liu C, Balaji J, Wu S, Zhou Y, Zhou Y, Parivash S N, Ehninger D, He L, Song H, Ming G L, Silva A J (2013). mTOR Inhibition ameliorates cognitive and affective deficits caused by Disc1 knockdown in adult-born dentate granule neurons. Neuron, 77(4): 647–654
https://doi.org/10.1016/j.neuron.2012.12.033
pmid: 23439118
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|