Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (2) : 107-116    https://doi.org/10.1007/s11515-015-1351-5
MINI-REVIEW
Metabolic regulation of adult stem cell-derived neurons
Ruth Beckervordersandforth,Benjamin M. Häberle,D. Chichung Lie()
Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-Universit?t Erlangen-Nürnberg, Germany
 Download: PDF(1537 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The discovery of continuous generation of functional neurons throughout life has emerged as a major contributor to plasticity in defined regions of the adult mammalian brain. Work over the past decades identified cellular constituents of the distinct adult neurogenic niches as well as numerous signaling pathways, transcriptional and epigenetic regulators that exert tight control over the production of new neurons from resident stem cells. Recent studies uncovered developmental stage-specific adaptations of metabolic circuits and have provided evidence for their central regulatory function in the adult neurogenic lineage. Moreover, there is increasing evidence for a regulatory impact of a wide range of systemic metabolic factors including exercise induced metabolic changes and diet on the development of adult-born neurons. Here, we will summarize current knowledge and emerging principles underlying the metabolic control of neuronal maturation in adult neurogenesis.

Keywords metabolism      adult neurogenesis      mitochondria      diet     
Corresponding Author(s): D. Chichung Lie   
Online First Date: 30 March 2015    Issue Date: 06 May 2015
 Cite this article:   
Ruth Beckervordersandforth,Benjamin M. H?berle,D. Chichung Lie. Metabolic regulation of adult stem cell-derived neurons[J]. Front. Biol., 2015, 10(2): 107-116.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1351-5
https://academic.hep.com.cn/fib/EN/Y2015/V10/I2/107
Fig.1  Metabolism and regulation of adult neurogenesis. Systemic metabolism and metabolites may directly impact on the development of adult-born hippocampal neurons. Exercise – a powerful behavioral stimulus of neurogenesis – may modulate adult hippocampal neurogenesis via expression of growth factors, alteration of systemic metabolism and metabolites. The development of stem cells into functional neurons is accompanied by adaptation of cellular metabolism. Adaptations of the functional neuron may include the increasing reliance on mitochondrial function, the Pentose Phosphate Pathway, lactate as a primary energy source, and metabolic coupling to astrocytes.
Fig.2  Extensive remodelling of the mitochondrial compartment accompanies maturation of adult-generated DG neurons. Analysis of adult-born DG neurons at different days after retrovirus mediated birthdating. (A) Development of adult-born neurons (red) is paralleled by increase in mitochondria mass (mitochondria in green). Scale bar 25 μm. (B) Higher magnification reveals distinct morphologies of somatic mitochondria: At early stages mitochondria predominantly formed large tubular structures. Between 16 days post retroviral injection (dpi) and 42 dpi mitochondria were of mixed tubular and globular shape. At 106 dpi, mitochondria in some adult-generated neurons formed an interconnected network. Note the dense packing of the dendritic shaft with mitochondria at all developmental time points. Scale bar 3 μm. (C) Higher magnification of the dendritic mitochondria at 16, 28, and 106 dpi, reveals increasing presence of round mitochondria. Scale bar 8 μm.

Figure and legend reproduced from Steib et al. (2014).

1 Aimone J B, Deng W, Gage F H (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron, 70(4): 589–596
https://doi.org/10.1016/j.neuron.2011.05.010 pmid: 21609818
2 Alle H, Roth A, Geiger J R (2009). Energy-efficient action potentials in hippocampal mossy fibers. Science, 325(5946): 1405–1408
https://doi.org/10.1126/science.1174331 pmid: 19745156
3 Altarejos J Y, Montminy M (2011). CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol, 12(3): 141–151
https://doi.org/10.1038/nrm3072 pmid: 21346730
4 Alvarez J I, Katayama T, Prat A (2013). Glial influence on the blood brain barrier. Glia, 61(12): 1939–1958
https://doi.org/10.1002/glia.22575 pmid: 24123158
5 Amiri A, Cho W, Zhou J, Birnbaum S G, Sinton C M, McKay R M, Parada L F (2012). Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci, 32(17): 5880–5890
https://doi.org/10.1523/JNEUROSCI.5462-11.2012 pmid: 22539849
6 Arai Y, Kojima T, Takayama M, Hirose N (2009). The metabolic syndrome, IGF-1, and insulin action. Mol Cell Endocrinol, 299(1): 124–128
https://doi.org/10.1016/j.mce.2008.07.002 pmid: 18672019
7 Attardi G, Schatz G (1988). Biogenesis of mitochondria. Annu Rev Cell Biol, 4(1): 289–333
https://doi.org/10.1146/annurev.cb.04.110188.001445 pmid: 2461720
8 Attwell D, Laughlin S B (2001). An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab, 21(10): 1133–1145
https://doi.org/10.1097/00004647-200110000-00001 pmid: 11598490
9 Bélanger M, Allaman I, Magistretti P J (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab, 14(6): 724–738
https://doi.org/10.1016/j.cmet.2011.08.016 pmid: 22152301
10 Bertholet A M, Millet A M, Guillermin O, Daloyau M, Davezac N, Miquel M C, Belenguer P (2013). OPA1 loss of function affects in vitro neuronal maturation. Brain, 136(Pt 5): 1518–1533
https://doi.org/10.1093/brain/awt060 pmid: 23543485
11 Broughton S, Partridge L (2009). Insulin/IGF-like signalling, the central nervous system and aging. Biochem J, 418(1): 1–12
https://doi.org/10.1042/BJ20082102 pmid: 19159343
12 Cheng A, Hou Y, Mattson M P (2010). Mitochondria and neuroplasticity. ASN Neuro, 2(5): e00045
https://doi.org/10.1042/AN20100019 pmid: 20957078
13 Cheng A, Wan R, Yang J L, Kamimura N, Son T G, Ouyang X, Luo Y, Okun E, Mattson M P (2012). Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat Commun, 3: 1250
https://doi.org/10.1038/ncomms2238 pmid: 23212379
14 Courchet J, Lewis T L Jr, Lee S, Courchet V, Liou D Y, Aizawa S, Polleux F (2013). Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell, 153(7): 1510–1525
https://doi.org/10.1016/j.cell.2013.05.021 pmid: 23791179
15 Dickey A S, Strack S (2011). PKA/AKAP1 and PP2A/Bβ2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci, 31(44): 15716–15726
https://doi.org/10.1523/JNEUROSCI.3159-11.2011 pmid: 22049414
16 Dietrich M O, Andrews Z B, Horvath T L (2008). Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J Neurosci, 28(42): 10766–10771
https://doi.org/10.1523/JNEUROSCI.2744-08.2008 pmid: 18923051
17 Eriksson P S, Perfilieva E, Bj?rk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
https://doi.org/10.1038/3305 pmid: 9809557
18 Espósito M S, Piatti V C, Laplagne D A, Morgenstern N A, Ferrari C C, Pitossi F J, Schinder A F (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci, 25(44): 10074–10086
https://doi.org/10.1523/JNEUROSCI.3114-05.2005 pmid: 16267214
19 Fabel K, Fabel K, Tam B, Kaufer D, Baiker A, Simmons N, Kuo C J, Palmer T D (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci, 18(10): 2803–2812
https://doi.org/10.1111/j.1460-9568.2003.03041.x pmid: 14656329
20 Fabel K, Kempermann G (2008). Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromolecular Med, 10(2): 59–66
https://doi.org/10.1007/s12017-008-8031-4 pmid: 18286387
21 Fabel K, Wolf S A, Ehninger D, Babu H, Leal-Galicia P, Kempermann G (2009). Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci, 3: 50
pmid: 20582277
22 Frayling C, Britton R, Dale N (2011). ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol, 589(Pt 9): 2275–2286
https://doi.org/10.1113/jphysiol.2010.202051 pmid: 21486800
23 Fujioka T, Fujioka A, Duman R S (2004). Activation of cAMP signaling facilitates the morphological maturation of newborn neurons in adult hippocampus. J Neurosci, 24(2): 319–328
https://doi.org/10.1523/JNEUROSCI.1065.03.2004 pmid: 14724230
24 Ge S, Goh E L, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589–593
https://doi.org/10.1038/nature04404 pmid: 16341203
25 Ge S, Pradhan D A, Ming G L, Song H (2007). GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci, 30(1): 1–8
https://doi.org/10.1016/j.tins.2006.11.001 pmid: 17116335
26 Giachino C, De Marchis S, Giampietro C, Parlato R, Perroteau I, Schütz G, Fasolo A, Peretto P (2005). cAMP response element-binding protein regulates differentiation and survival of newborn neurons in the olfactory bulb. J Neurosci, 25(44): 10105–10118
https://doi.org/10.1523/JNEUROSCI.3512-05.2005 pmid: 16267218
27 Gouazé A, Brenachot X, Rigault C, Krezymon A, Rauch C, Nédélec E, Lemoine A, Gascuel J, Bauer S, Pénicaud L, Benani A (2013). Cerebral cell renewal in adult mice controls the onset of obesity. PLoS ONE, 8(8): e72029
https://doi.org/10.1371/journal.pone.0072029 pmid: 23967273
28 Hawley J A, Hargreaves M, Joyner M J, Zierath J R (2014). Integrative biology of exercise. Cell, 159(4): 738–749
https://doi.org/10.1016/j.cell.2014.10.029 pmid: 25417152
29 Herold S, Jagasia R, Merz K, Wassmer K, Lie D C (2011). CREB signalling regulates early survival, neuronal gene expression and morphological development in adult subventricular zone neurogenesis. Mol Cell Neurosci, 46(1): 79–88
https://doi.org/10.1016/j.mcn.2010.08.008 pmid: 20801218
30 Herrero-Mendez A, Almeida A, Fernández E, Maestre C, Moncada S, Bola?os J P (2009). The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol, 11(6): 747–752
https://doi.org/10.1038/ncb1881 pmid: 19448625
31 Itoh Y, Esaki T, Shimoji K, Cook M, Law M J, Kaufman E, Sokoloff L (2003). Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA, 100(8): 4879–4884
https://doi.org/10.1073/pnas.0831078100 pmid: 12668764
32 Jagasia R, Steib K, Englberger E, Herold S, Faus-Kessler T, Saxe M, Gage F H, Song H, Lie D C (2009). GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci, 29(25): 7966–7977
https://doi.org/10.1523/JNEUROSCI.1054-09.2009 pmid: 19553437
33 Kheirbek M A, Klemenhagen K C, Sahay A, Hen R (2012). Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci, 15(12): 1613–1620
https://doi.org/10.1038/nn.3262 pmid: 23187693
34 Kim D Y, Rhee I, Paik J (2014). Metabolic circuits in neural stem cells. Cell Mol Life Sci, 71(21): 4221–4241
https://doi.org/10.1007/s00018-014-1686-0 pmid: 25037158
35 Kim J Y, Duan X, Liu C Y, Jang M H, Guo J U, Pow-anpongkul N, Kang E, Song H, Ming G L (2009). DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron, 63(6): 761–773
https://doi.org/10.1016/j.neuron.2009.08.008 pmid: 19778506
36 Kim J Y, Liu C Y, Zhang F, Duan X, Wen Z, Song J, Feighery E, Lu B, Rujescu D, St Clair D, Christian K, Callicott J H, Weinberger D R, Song H, Ming G L (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell, 148(5): 1051–1064
https://doi.org/10.1016/j.cell.2011.12.037 pmid: 22385968
37 Kivel? R, Bry M, Robciuc M R, R?s?nen M, Taavitsainen M, Silvola J M, Saraste A, Hulmi J J, Anisimov A, M?yr?np?? M I, Lindeman J H, Eklund L, Hellberg S, Hlushchuk R, Zhuang Z W, Simons M, Djonov V, Knuuti J, Mervaala E, Alitalo K (2014). VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol Med, 6(3): 307–321
pmid: 24448490
38 Klempin F, Beis D, Mosienko V, Kempermann G, Bader M, Alenina N (2013). Serotonin is required for exercise-induced adult hippocampal neurogenesis. J Neurosci, 33(19): 8270–8275
https://doi.org/10.1523/JNEUROSCI.5855-12.2013 pmid: 23658167
39 Knobloch M, Braun S M, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493(7431): 226–230
https://doi.org/10.1038/nature11689 pmid: 23201681
40 Kokoeva M V, Yin H, Flier J S (2005). Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science, 310(5748): 679–683
https://doi.org/10.1126/science.1115360 pmid: 16254185
41 Kokoeva M V, Yin H, Flier J S (2007). Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol, 505(2): 209–220
https://doi.org/10.1002/cne.21492 pmid: 17853440
42 Kumar V B, Binu S, Soumya S J, K H, Sudhakaran P R (2014). Regulation of vascular endothelial growth factor by metabolic context of the cell. Glycoconj J, 31(6-7): 427–434
https://doi.org/10.1007/s10719-014-9547-5 pmid: 25214198
43 Lee D A, Bedont J L, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012). Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci, 15(5): 700–702
https://doi.org/10.1038/nn.3079 pmid: 22446882
44 Lee D A, Blackshaw S (2012). Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int J Dev Neurosci, 30(8): 615–621
https://doi.org/10.1016/j.ijdevneu.2012.07.003 pmid: 22867732
45 Lee D A, Yoo S, Pak T, Salvatierra J, Velarde E, Aja S, Blackshaw S (2014). Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice. Front Neurosci, 8: 157
https://doi.org/10.3389/fnins.2014.00157 pmid: 24982613
46 Li Z, Jo J, Jia J M, Lo S C, Whitcomb D J, Jiao S, Cho K, Sheng M (2010). Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell, 141(5): 859–871
https://doi.org/10.1016/j.cell.2010.03.053 pmid: 20510932
47 Li Z, Okamoto K, Hayashi Y, Sheng M (2004). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell, 119(6): 873–887
https://doi.org/10.1016/j.cell.2004.11.003 pmid: 15607982
48 Lipton J O, Sahin M (2014). The neurology of mTOR. Neuron, 84(2): 275–291
https://doi.org/10.1016/j.neuron.2014.09.034 pmid: 25374355
49 MacAskill A F, Atkin T A, Kittler J T (2010). Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur J Neurosci, 32(2): 231–240
https://doi.org/10.1111/j.1460-9568.2010.07345.x pmid: 20946113
50 Macaskill A F, Rinholm J E, Twelvetrees A E, Arancibia-Carcamo I L, Muir J, Fransson A, Aspenstrom P, Attwell D, Kittler J T (2009). Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron, 61(4): 541–555
https://doi.org/10.1016/j.neuron.2009.01.030 pmid: 19249275
51 Marín-Burgin A, Mongiat L A, Pardi M B, Schinder A F (2012). Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science, 335(6073): 1238–1242
https://doi.org/10.1126/science.1214956 pmid: 22282476
52 Mattson M P (2012). Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab, 16(6): 706–722
https://doi.org/10.1016/j.cmet.2012.08.012 pmid: 23168220
53 Merz K, Herold S, Lie D C (2011). CREB in adult neurogenesis—master and partner in the development of adult-born neurons? Eur J Neurosci, 33(6): 1078–1086
https://doi.org/10.1111/j.1460-9568.2011.07606.x pmid: 21395851
54 Mihaylova M M, Sabatini D M, Yilmaz O H (2014). Dietary and metabolic control of stem cell function in physiology and cancer. Cell Stem Cell, 14(3): 292–305
https://doi.org/10.1016/j.stem.2014.02.008 pmid: 24607404
55 Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4): 687–702
https://doi.org/10.1016/j.neuron.2011.05.001 pmid: 21609825
56 Mishra P, Chan D C (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol, 15(10): 634–646
https://doi.org/10.1038/nrm3877 pmid: 25237825
57 Nakagawa S, Kim J E, Lee R, Chen J, Fujioka T, Malberg J, Tsuji S, Duman R S (2002). Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. J Neurosci, 22(22): 9868–9876
pmid: 12427843
58 Orellana J A, Sáez P J, Cortés-Campos C, Elizondo R J, Shoji K F, Contreras-Duarte S, Figueroa V, Velarde V, Jiang J X, Nualart F, Sáez J C, García M A (2012). Glucose increases intracellular free Ca2+ in tanycytes via ATP released through connexin 43 hemichannels. Glia, 60(1): 53–68
https://doi.org/10.1002/glia.21246 pmid: 21987367
59 Oruganty-Das A, Ng T, Udagawa T, Goh E L, Richter J D (2012). Translational control of mitochondrial energy production mediates neuron morphogenesis. Cell Metab, 16(6): 789–800
https://doi.org/10.1016/j.cmet.2012.11.002 pmid: 23217258
60 Osman C, Voelker D R, Langer T (2011). Making heads or tails of phospholipids in mitochondria. J Cell Biol, 192(1): 7–16
https://doi.org/10.1083/jcb.201006159 pmid: 21220505
61 Pellerin L, Magistretti P J (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA, 91(22): 10625–10629
https://doi.org/10.1073/pnas.91.22.10625 pmid: 7938003
62 Pereira A C, Huddleston D E, Brickman A M, Sosunov A A, Hen R, McKhann G M, Sloan R, Gage F H, Brown T R, Small S A (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA, 104(13): 5638–5643
https://doi.org/10.1073/pnas.0611721104 pmid: 17374720
63 Piatti V C, Davies-Sala M G, Espósito M S, Mongiat L A, Trinchero M F, Schinder A F (2011). The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J Neurosci, 31(21): 7715–7728
https://doi.org/10.1523/JNEUROSCI.1380-11.2011 pmid: 21613484
64 Pieper A A, Xie S, Capota E, Estill S J, Zhong J, Long J M, Becker G L, Huntington P, Goldman S E, Shen C H, Capota M, Britt J K, Kotti T, Ure K, Brat D J, Williams N S, MacMillan K S, Naidoo J, Melito L, Hsieh J, De Brabander J, Ready J M, McKnight S L (2010). Discovery of a proneurogenic, neuroprotective chemical. Cell, 142(1): 39–51
https://doi.org/10.1016/j.cell.2010.06.018 pmid: 20603013
65 Pierce A A, Xu A W (2010). De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci, 30(2): 723–730
https://doi.org/10.1523/JNEUROSCI.2479-09.2010 pmid: 20071537
66 Rodriguez-Rodriguez P, Fernandez E, Almeida A, Bola?os J P (2012). Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ, 19(10): 1582–1589
https://doi.org/10.1038/cdd.2012.33 pmid: 22421967
67 Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008). Astroglial metabolic networks sustain hippocampal synaptic transmission. Science, 322(5907): 1551–1555
https://doi.org/10.1126/science.1164022 pmid: 19056987
68 Sahay A, Wilson D A, Hen R (2011). Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron, 70(4): 582–588
https://doi.org/10.1016/j.neuron.2011.05.012 pmid: 21609817
69 Schmidt-Hieber C, Jonas P, Bischofberger J (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429(6988): 184–187
https://doi.org/10.1038/nature02553 pmid: 15107864
70 Schousboe A, Scafidi S, Bak L K, Waagepetersen H S, McKenna M C (2014). Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol, 11: 13–30
https://doi.org/10.1007/978-3-319-08894-5_2 pmid: 25236722
71 Sousa-Ferreira L, de Almeida L P, Cavadas C (2014). Role of hypothalamic neurogenesis in feeding regulation. Trends Endocrinol Metab, 25(2): 80–88
https://doi.org/10.1016/j.tem.2013.10.005 pmid: 24231724
72 Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Bostr?m E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
https://doi.org/10.1016/j.cell.2013.05.002 pmid: 23746839
73 Spiegelman B M (2007). Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found Symp, 287: 60–63, discussion 63–69
https://doi.org/10.1002/9780470725207.ch5 pmid: 18074631
74 Steib K, Sch?ffner I, Jagasia R, Ebert B, Lie D C (2014). Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J Neurosci, 34(19): 6624–6633
https://doi.org/10.1523/JNEUROSCI.4972-13.2014 pmid: 24806687
75 Steketee M B, Moysidis S N, Weinstein J E, Kreymerman A, Silva J P, Iqbal S, Goldberg J L (2012). Mitochondrial dynamics regulate growth cone motility, guidance, and neurite growth rate in perinatal retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci, 53(11): 7402–7411
https://doi.org/10.1167/iovs.12-10298 pmid: 23049086
76 Stocca G, Schmidt-Hieber C, Bischofberger J (2008). Differential dendritic Ca2+ signalling in young and mature hippocampal granule cells. J Physiol, 586(16): 3795–3811
https://doi.org/10.1113/jphysiol.2008.155739 pmid: 18591186
77 Stoll E A, Cheung W, Mikheev A M, Sweet I R, Bielas J H, Zhang J, Rostomily R C, Horner P J (2011). Aging neural progenitor cells have decreased mitochondrial content and lower oxidative metabolism. J Biol Chem, 286(44): 38592–38601
https://doi.org/10.1074/jbc.M111.252171 pmid: 21900249
78 Stranahan A M, Arumugam T V, Cutler R G, Lee K, Egan J M, Mattson M P (2008). Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nat Neurosci, 11(3): 309–317
https://doi.org/10.1038/nn2055 pmid: 18278039
79 Sun G J, Sailor K A, Mahmood Q A, Chavali N, Christian K M, Song H, Ming G L (2013). Seamless reconstruction of intact adult-born neurons by serial end-block imaging reveals complex axonal guidance and development in the adult hippocampus. J Neurosci, 33(28): 11400–11411
https://doi.org/10.1523/JNEUROSCI.1374-13.2013 pmid: 23843512
80 Tatsuta T, Langer T (2008). Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J, 27(2): 306–314
https://doi.org/10.1038/sj.emboj.7601972 pmid: 18216873
81 Toni N, Laplagne D A, Zhao C, Lombardi G, Ribak C E, Gage F H, Schinder A F (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11(8): 901–907
https://doi.org/10.1038/nn.2156 pmid: 18622400
82 Trejo J L, Carro E, Torres-Aleman I (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci, 21(5): 1628–1634
pmid: 11222653
83 van Praag H (2009). Exercise and the brain: something to chew on. Trends Neurosci, 32(5): 283–290
https://doi.org/10.1016/j.tins.2008.12.007 pmid: 19349082
84 van Praag H, Kempermann G, Gage F H (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci, 2(3): 266–270
https://doi.org/10.1038/6368 pmid: 10195220
85 van Praag H, Schinder A F, Christie B R, Toni N, Palmer T D, Gage F H (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(6875): 1030–1034
https://doi.org/10.1038/4151030a pmid: 11875571
86 Wang X, Schwarz T L (2009). The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell, 136(1): 163–174
https://doi.org/10.1016/j.cell.2008.11.046 pmid: 19135897
87 Ward P S, Thompson C B (2012). Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell, 21(3): 297–308
https://doi.org/10.1016/j.ccr.2012.02.014 pmid: 22439925
88 Winner B, Kohl Z, Gage F H (2011). Neurodegenerative disease and adult neurogenesis. Eur J Neurosci, 33(6): 1139–1151
https://doi.org/10.1111/j.1460-9568.2011.07613.x pmid: 21395858
89 Wu L E, Meoli C C, Mangiafico S P, Fazakerley D J, Cogger V C, Mohamad M, Pant H, Kang M J, Powter E, Burchfield J G, Xirouchaki C E, Mikolaizak A S, St?ckli J, Kolumam G, van Bruggen N, Gamble J R, Le Couteur D G, Cooney G J, Andrikopoulos S, James D E (2014). Systemic VEGF-A neutralization ameliorates diet-induced metabolic dysfunction. Diabetes, 63(8): 2656–2667
https://doi.org/10.2337/db13-1665 pmid: 24696450
90 Yeo H, Lyssiotis C A, Zhang Y, Ying H, Asara J M, Cantley L C, Paik J H (2013). FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells. EMBO J, 32(19): 2589–2602
https://doi.org/10.1038/emboj.2013.186 pmid: 24013118
91 Zainuddin M S, Thuret S (2012). Nutrition, adult hippocampal neurogenesis and mental health. Br Med Bull, 103(1): 89–114
https://doi.org/10.1093/bmb/lds021 pmid: 22833570
92 Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660
https://doi.org/10.1016/j.cell.2008.01.033 pmid: 18295581
93 Zhao C, Teng E M, Summers R G Jr, Ming G L, Gage F H (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci, 26(1): 3–11
https://doi.org/10.1523/JNEUROSCI.3648-05.2006 pmid: 16399667
94 Zhou M, Li W, Huang S, Song J, Kim J Y, Tian X, Kang E, Sano Y, Liu C, Balaji J, Wu S, Zhou Y, Zhou Y, Parivash S N, Ehninger D, He L, Song H, Ming G L, Silva A J (2013). mTOR Inhibition ameliorates cognitive and affective deficits caused by Disc1 knockdown in adult-born dentate granule neurons. Neuron, 77(4): 647–654
https://doi.org/10.1016/j.neuron.2012.12.033 pmid: 23439118
[1] Jalali, Seyyed Mostafa, Morteza Abdollahi, Atiyeh Hosseini, Dehghani Kari Bozorg, Ajami, Marjan Azadeh, Kimia Moiniafshar. The positive effects of Mediterranean-neutropenic diet on nutritional status of acute myeloid leukemia patients under chemotherapy[J]. Front. Biol., 2018, 13(6): 475-480.
[2] Karimeh Haghani, Pouyan Asadi, Gholamreza Taheripak, Ali Noori-Zadeh, Shahram Darabi, Salar Bakhtiyari. Association of mitochondrial dysfunction and lipid metabolism with type 2 diabetes mellitus: A review of literature[J]. Front. Biol., 2018, 13(6): 406-417.
[3] Hanane Gourine, Hadria Grar, Wafaa Dib, Nabila Mehedi, Ahmed Boualga, Djamel Saidi, Omar Kheroua. Effect of a normal protein diet on oxidative stress and organ damage in malnourished rats[J]. Front. Biol., 2018, 13(5): 366-375.
[4] Mohammad Jodeiri Farshbaf. Succinate dehydrogenase in Parkinson’s disease[J]. Front. Biol., 2017, 12(3): 175-182.
[5] Andrew Brandmaier, Sheng-Qi Hou, Sandra Demaria, Silvia C. Formenti, Wen H. Shen. PTEN at the interface of immune tolerance and tumor suppression[J]. Front. Biol., 2017, 12(3): 163-174.
[6] Xin-Min Qin,Xiao-Wen Yang,Li-Xia Hou,Hui-Min Li. Complete mitochondrial genome of Ampittia dioscorides (Lepidoptera: Hesperiidae) and its phylogenetic analysis[J]. Front. Biol., 2017, 12(1): 71-81.
[7] Liang Hu,Edward Trope,Qi-Long Ying. Metabolism of pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 355-365.
[8] Paul J. Lucassen,Charlotte A. Oomen. Stress, hippocampal neurogenesis and cognition: functional correlations[J]. Front. Biol., 2016, 11(3): 182-192.
[9] Fatih Semerci,Mirjana Maletic-Savatic. Transgenic mouse models for studying adult neurogenesis[J]. Front. Biol., 2016, 11(3): 151-167.
[10] Martha Hvoslef-Eide,Charlotte A. Oomen. Adult neurogenesis and pattern separation in rodents: A critical evaluation of data, tasks and interpretation[J]. Front. Biol., 2016, 11(3): 168-181.
[11] Vadim V. Davydov,Evgenya R. Grabovetskaya,Amjad Hamdallah. Age-dependent peculiarities modulation of activity of aldehyde scavenger enzymes in mitochondria of rat thigh muscle during stress[J]. Front. Biol., 2016, 11(1): 28-31.
[12] Xin-Min Qin,Qing-Xin Guan,Hui-Min Li,Yu Zhang,Yu-Ji Liu,Dan-Ni Guo. The complete mitogenome of Lamproptera curia (Lepidoptera: Papilionidae) and phylogenetic analyses of Lepidoptera[J]. Front. Biol., 2015, 10(5): 458-472.
[13] Cristina V. Dieni,Adam J. Wieckert,Linda Overstreet-Wadiche. Development of glutamatergic innervation during maturation of adult-born neurons[J]. Front. Biol., 2015, 10(4): 310-320.
[14] Daniel A. Berg,Ki-Jun Yoon,Brett Will,Alex Y. Xiao,Nam-Shik Kim,Kimberly M. Christian,Hongjun Song,Guo-li Ming. Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis[J]. Front. Biol., 2015, 10(3): 262-271.
[15] James M. Arnold,William T. Choi,Arun Sreekumar,Mirjana Maletić-Savatić. Analytical strategies for studying stem cell metabolism[J]. Front. Biol., 2015, 10(2): 141-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed