Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (2) : 141-153    https://doi.org/10.1007/s11515-015-1357-z
REVIEW
Analytical strategies for studying stem cell metabolism
James M. Arnold1,William T. Choi2,Arun Sreekumar1,Mirjana Maletić-Savatić2,3,*()
1. Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
2. Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
3. Departments of Pediatrics-Neurology and Neuroscience, and Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
 Download: PDF(531 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Owing to their capacity for self-renewal and pluripotency, stem cells possess untold potential for revolutionizing the field of regenerative medicine through the development of novel therapeutic strategies for treating cancer, diabetes, cardiovascular and neurodegenerative diseases. Central to developing these strategies is improving our understanding of biological mechanisms responsible for governing stem cell fate and self-renewal. Increasing attention is being given to the significance of metabolism, through the production of energy and generation of small molecules, as a critical regulator of stem cell functioning. Rapid advances in the field of metabolomics now allow for in-depth profiling of stem cells both in vitro and in vivo, providing a systems perspective on key metabolic and molecular pathways which influence stem cell biology. Understanding the analytical platforms and techniques that are currently used to study stem cell metabolomics, as well as how new insights can be derived from this knowledge, will accelerate new research in the field and improve future efforts to expand our understanding of the interplay between metabolism and stem cell biology.

Keywords stem cell      metabolism      NMR      mass spectrometry      MRS      flux analysis     
Corresponding Author(s): Mirjana Maleti?-Savati?   
Just Accepted Date: 26 March 2015   Issue Date: 06 May 2015
 Cite this article:   
Arun Sreekumar,William T. Choi,Mirjana Maleti?-Savati?, et al. Analytical strategies for studying stem cell metabolism[J]. Front. Biol., 2015, 10(2): 141-153.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1357-z
https://academic.hep.com.cn/fib/EN/Y2015/V10/I2/141
Fig.1  Platforms for studying stem cell metabolism.
Fig.2  Metabolomics can be used to either (A) detect and quantify metabolites directly or (B) follow isotopically labeled carbons to determine metabolic pathway activity.
Fig.3  Metabolomic and flux analysis studies have demonstrated that pluripotent stem cells (PSCs) have increased dependence on glyolytic flux compared differentiated counterparts which exhibit increased mitochondrial oxidation. There are multiple hypotheses for why this occurs, such as PSCs minimize glucose oxidation in order to provide anabolic precursors to fuel self-renewal, or that ROS-induced stress may promote differentiation.
57a Robinette S L, Veselkov K A, Bohus E, Coen M, Keun H C, Ebbels T M, Beckonert O, Holmes E C, Lindon J C, Nicholson J K (2009). Cluster analysis statistical spectroscopy using nuclear magnetic resonance generated metabolic data sets from perturbed biological systems. Anal Chem, 81(16): 6581–6589
https://doi.org/10.1021/ac901240j pmid: 19624161
11a Coen M, Holmes E, Lindon J C, Nicholson J K (2008). NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chem Res Toxicol, 21(1): 9–27
https://doi.org/10.1021/tx700335d pmid: 18171018
1 Allen G I, Maleti?-Savati? M (2011). Sparse non-negative generalized PCA with applications to metabolomics. Bioinformatics, 27(21): 3029–3035
https://doi.org/10.1093/bioinformatics/btr522 pmid: 21930672
2 Allen JE, Saroya BS, Kunkel M, (2014) Apoptotic circulating tumor cells (CTCs) in the peripheral blood of metastatic colorectal cancer patients are associated with liver metastasis but not CTCs. Oncotarget 5: 1753–1760
3 Amantonico A, Oh J Y, Sobek J, Heinemann M, Zenobi R (2008). Mass spectrometric method for analyzing metabolites in yeast with single cell sensitivity. Angew Chem Int Ed Engl, 47(29): 5382–5385
https://doi.org/10.1002/anie.200705923 pmid: 18543269
4 Antoniewicz M R, Kelleher J K, Stephanopoulos G (2007). Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng, 9(1): 68–86
https://doi.org/10.1016/j.ymben.2006.09.001 pmid: 17088092
5 Blaise B J, Navratil V, Domange C, Shintu L, Dumas M E, Elena-Herrmann B, Emsley L, Toulhoat P (2010). Two-dimensional statistical recoupling for the identification of perturbed metabolic networks from NMR spectroscopy. J Proteome Res, 9(9): 4513–4520
https://doi.org/10.1021/pr1002615 pmid: 20590164
6 Blaise B J, Shintu L, Elena B, Emsley L, Dumas M E, Toulhoat P (2009). Statistical recoupling prior to significance testing in nuclear magnetic resonance based metabonomics. Anal Chem, 81(15): 6242–6251
https://doi.org/10.1021/ac9007754 pmid: 19585975
7 Bochner B R, Siri M, Huang R H, Noble S, Lei X H, Clemons P A, Wagner B K (2011). Assay of the multiple energy-producing pathways of mammalian cells. PLoS ONE, 6(3): e18147
https://doi.org/10.1371/journal.pone.0018147 pmid: 21455318
8 Buchsbaum M S, Hazlett E A (1998). Positron emission tomography studies of abnormal glucose metabolism in schizophrenia. Schizophr Bull, 24(3): 343–364
https://doi.org/10.1093/oxfordjournals.schbul.a033331 pmid: 9718628
9 Castaldi P J, Dahabreh I J, Ioannidis J P (2011). An empirical assessment of validation practices for molecular classifiers. Brief Bioinform, 12(3): 189–202
https://doi.org/10.1093/bib/bbq073 pmid: 21300697
10 Castro-Perez J, Roddy T P, Nibbering N M, Shah V, McLaren D G, Previs S, Attygalle A B, Herath K, Chen Z, Wang S P, Mitnaul L, Hubbard B K, Vreeken R J, Johns D G, Hankemeier T (2011). Localization of fatty acyl and double bond positions in phosphatidylcholines using a dual stage CID fragmentation coupled with ion mobility mass spectrometry. J Am Soc Mass Spectrom, 22(9): 1552–1567
https://doi.org/10.1007/s13361-011-0172-2 pmid: 21953258
11 Craig A, Cloarec O, Holmes E, Nicholson J K, Lindon J C (2006). Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal Chem, 78(7): 2262–2267
https://doi.org/10.1021/tx700335d pmid: 18171018
12 Dass C (2007) Fundamentals of contemporary mass spectrometry, Hoboken, New Jersey: John Wiley. Sons, Inc.
13 de Graaf A A, Maathuis A, de Waard P, Deutz N E, Dijkema C, de Vos W M, Venema K (2010). Profiling human gut bacterial metabolism and its kinetics using [U-13C]glucose and NMR. NMR Biomed, 23(1): 2–12
https://doi.org/10.1002/nbm.1418 pmid: 19593762
14 de Graaf R A (2008). In vivo NMR Spectroscopy: Principles and Techniques. New Jersey: John Wiley. Sons, Inc.
15 DeFeo E M, Cheng L L (2010). Characterizing human cancer metabolomics with ex vivo 1H HRMAS MRS. Technol Cancer Res Treat, 9(4): 381–391
https://doi.org/10.1177/153303461000900407 pmid: 20626203
16 Duarte I F, Lamego I, Rocha C, Gil A M (2009). NMR metabonomics for mammalian cell metabolism studies. Bioanalysis, 1(9): 1597–1614
https://doi.org/10.4155/bio.09.151 pmid: 21083106
17 Dunn W B, Bailey N J, Johnson H E (2005). Measuring the metabolome: current analytical technologies. Analyst (Lond), 130(5): 606–625
https://doi.org/10.1039/b418288j pmid: 15852128
18 Dunn W B, Broadhurst D I, Atherton H J, Goodacre R, Griffin J L (2011). Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev, 40(1): 387–426
https://doi.org/10.1039/B906712B pmid: 20717559
19 Fancy S A, Beckonert O, Darbon G, Yabsley W, Walley R, Baker D, Perkins G L, Pullen F S, Rumpel K (2006). Gas chromatography/flame ionisation detection mass spectrometry for the detection of endogenous urine metabolites for metabonomic studies and its use as a complementary tool to nuclear magnetic resonance spectroscopy. Rapid Commun Mass Spectrom, 20(15): 2271–2280
https://doi.org/10.1002/rcm.2583 pmid: 16810707
20 Fiehn O (2002). Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol, 48(1–-2): 155–171
https://doi.org/10.1023/A:1013713905833 pmid: 11860207
21 Folick A, Min W, Wang M C (2011). Label-free imaging of lipid dynamics using Coherent Anti-stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS) microscopy. Curr Opin Genet Dev, 21(5): 585–590
https://doi.org/10.1016/j.gde.2011.09.003 pmid: 21945002
22 Folmes C D, Nelson T J, Martinez-Fernandez A, Arrell D K, Lindor J Z, Dzeja P P, Ikeda Y, Perez-Terzic C, Terzic A (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab, 14(2): 264–271
https://doi.org/10.1016/j.cmet.2011.06.011 pmid: 21803296
23 Gika H G, Theodoridis G A, Plumb R S, Wilson I D (2014). Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J Pharm Biomed Anal, 87: 12–25
https://doi.org/10.1016/j.jpba.2013.06.032 pmid: 23916607
24 Glazko G V, Emmert-Streib F (2009). Unite and conquer: univariate and multivariate approaches for finding differentially expressed gene sets. Bioinformatics, 25(18): 2348–2354
https://doi.org/10.1093/bioinformatics/btp406 pmid: 19574285
25 Goodacre R, Vaidyanathan S, Dunn W B, Harrigan G G, Kell D B (2004). Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol, 22(5): 245–252
https://doi.org/10.1016/j.tibtech.2004.03.007 pmid: 15109811
26 Griffin J L, Bollard M, Nicholson J K, Bhakoo K (2002). Spectral profiles of cultured neuronal and glial cells derived from HRMAS (1)H NMR spectroscopy. NMR Biomed, 15(6): 375–384
https://doi.org/10.1002/nbm.792 pmid: 12357551
27 Guidoni L, Ricci-Vitiani L, Rosi A, Palma A, Grande S, Luciani A M, Pelacchi F, di Martino S, Colosimo C, Biffoni M, De Maria R, Pallini R, Viti V (2014). 1H NMR detects different metabolic profiles in glioblastoma stem-like cells. NMR Biomed, 27(2): 129–145
https://doi.org/10.1002/nbm.3044 pmid: 24142746
28 Heinemann M, Zenobi R (2011). Single cell metabolomics. Curr Opin Biotechnol, 22(1): 26–31
https://doi.org/10.1016/j.copbio.2010.09.008 pmid: 20934866
29 Ioannidis J P, Khoury M J (2011). Improving validation practices in “omics” research. Science, 334(6060): 1230–1232
https://doi.org/10.1126/science.1211811 pmid: 22144616
30 Ito K, Suda T (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol, 15(4): 243–256
https://doi.org/10.1038/nrm3772 pmid: 24651542
31 Kanehisa M, Goto S (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 28(1): 27–30
https://doi.org/10.1093/nar/28.1.27 pmid: 10592173
32 Kind T, Fiehn O (2009). What are the obstacles for an integrated system for comprehensive interpretation of cross-platform metabolic profile data? Bioanalysis, 1(9): 1511–1514
https://doi.org/10.4155/bio.09.141 pmid: 21083097
33 Kind T, Wohlgemuth G, Lee Y, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009). FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem, 81(24): 10038–10048
https://doi.org/10.1021/ac9019522 pmid: 19928838
34 Klerk L A, Dankers P Y, Popa E R, Bosman A W, Sanders M E, Reedquist K A, Heeren R M (2010). TOF-secondary ion mass spectrometry imaging of polymeric scaffolds with surrounding tissue after in vivo implantation. Anal Chem, 82(11): 4337–4343
https://doi.org/10.1021/ac100837n pmid: 20462187
35 Knobloch M, Braun S M, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493(7431): 226–230
https://doi.org/10.1038/nature11689 pmid: 23201681
36 Kulak A, Duarte J M, Do K Q, Gruetter R (2010). Neurochemical profile of the developing mouse cortex determined by in vivo 1H NMR spectroscopy at 14.1 T and the effect of recurrent anaesthesia. J Neurochem, 115(6): 1466–1477
https://doi.org/10.1111/j.1471-4159.2010.07051.x pmid: 20946416
37 Liimatainen T J, Erkkil? A T, Valonen P, Vidgren H, Lakso M, Wong G, Gr?hn O H, Yl?-Herttuala S, Hakum?ki J M (2008). 1H MR spectroscopic imaging of phospholipase-mediated membrane lipid release in apoptotic rat glioma in vivo. Magn Reson Med, 59(6): 1232–1238
https://doi.org/10.1002/mrm.21607 pmid: 18506792
38 Loewenbrück K F, Fuchs B, Hermann A, Brandt M, Werner A, Kirsch M, Schwarz S, Schwarz J, Schiller J, Storch A (2011). Proton MR spectroscopy of neural stem cells: does the proton-NMR peak at 1.28 ppm function as a biomarker for cell type or state? Rejuvenation Res, 14(4): 371–381
https://doi.org/10.1089/rej.2010.1102 pmid: 21548757
39 Luo J, Vijayasankaran N, Autsen J, Santuray R, Hudson T, Amanullah A, Li F (2012). Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Biotechnol Bioeng, 109(1): 146–156
https://doi.org/10.1002/bit.23291 pmid: 21964570
40 Maher A D, Fonville J M, Coen M, Lindon J C, Rae C D, Nicholson J K (2012). Statistical total correlation spectroscopy scaling for enhancement of metabolic information recovery in biological NMR spectra. Anal Chem, 84(2): 1083–1091
https://doi.org/10.1021/ac202720f pmid: 22148245
41 Manganas L N, Zhang X, Li Y, Hazel R D, Smith S D, Wagshul M E, Henn F, Benveniste H, Djuric P M, Enikolopov G, Maletic-Savatic M (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318(5852): 980–985
https://doi.org/10.1126/science.1147851 pmid: 17991865
42 Meissen J K, Yuen B T, Kind T, Riggs J W, Barupal D K, Knoepfler P S, Fiehn O (2012). Induced pluripotent stem cells show metabolomic differences to embryonic stem cells in polyunsaturated phosphatidylcholines and primary metabolism. PLoS ONE, 7(10): e46770
https://doi.org/10.1371/journal.pone.0046770 pmid: 23077522
43 Milacic M, Haw R, Rothfels K, Wu G, Croft D, Hermjakob H, D’Eustachio P, Stein L (2012). Annotating cancer variants and anti-cancer therapeutics in reactome. Cancers (Basel), 4(4): 1180–1211
https://doi.org/10.3390/cancers4041180 pmid: 24213504
44 Mountford C E, Stanwell P, Lin A, Ramadan S, Ross B (2010). Neurospectroscopy: the past, present and future. Chem Rev, 110(5): 3060–3086
https://doi.org/10.1021/cr900250y pmid: 20387805
45 Mushtaq M Y, Choi Y H, Verpoorte R, Wilson E G (2014). Extraction for metabolomics: access to the metabolome. Phytochem Anal, 25(4): 291–306
https://doi.org/10.1002/pca.2505 pmid: 24523261
46 Nevedomskaya E, Ramautar R, Derks R, Westbroek I, Zondag G, van der Pluijm I, Deelder A M, Mayboroda O A (2010). CE-MS for metabolic profiling of volume-limited urine samples: application to accelerated aging TTD mice. J Proteome Res, 9(9): 4869–4874
https://doi.org/10.1021/pr100634d pmid: 20690666
47 Nicholson J K, Holmes E, Kinross J M, Darzi A W, Takats Z, Lindon J C (2012). Metabolic phenotyping in clinical and surgical environments. Nature, 491(7424): 384–392
https://doi.org/10.1038/nature11708 pmid: 23151581
48 Nishida K, Ono K, Kanaya S, Takahashi K (2014). KEGGscape: a Cytoscape app for pathway data integration. F1000Res, 3: 144
pmid: 25177485
49 Nishimura D (2000) Biotech software & Internet report. Larchmont, NY: Mary Ann Liebert, Inc.
50 Panopoulos A D, Yanes O, Ruiz S, Kida Y S, Diep D, Tautenhahn R, Herrerías A, Batchelder E M, Plongthongkum N, Lutz M, Berggren W T, Zhang K, Evans R M, Siuzdak G, Izpisua Belmonte J C (2012). The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res, 22(1): 168–177
https://doi.org/10.1038/cr.2011.177 pmid: 22064701
51 Peterson C, Vannucci M, Karakas C, Choi W, Ma L, Maleti?-Savati? M (2013). Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors. Stat Interface, 6(4): 547–558
https://doi.org/10.4310/SII.2013.v6.n4.a12 pmid: 24533172
52 Putluri N, Shojaie A, Vasu V T, Vareed S K, Nalluri S, Putluri V, Thangjam G S, Panzitt K, Tallman C T, Butler C, Sana T R, Fischer S M, Sica G, Brat D J, Shi H, Palapattu G S, Lotan Y, Weizer A Z, Terris M K, Shariat S F, Michailidis G, Sreekumar A (2011). Metabolomic profiling reveals potential markers and bioprocesses altered in bladder cancer progression. Cancer Res, 71(24): 7376–7386
https://doi.org/10.1158/0008-5472.CAN-11-1154 pmid: 21990318
53 Quinn K P, Sridharan G V, Hayden R S, Kaplan D L, Lee K, Georgakoudi I (2013). Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation. Sci Rep, 3: 3432
54 Ramm P, Bettscheider M, Beier D, Kalbitzer H R, Kremer W, Bogdahn U, Hau P, Aigner L, Beier C P (2011). 1H-nuclear magnetic resonance spectroscopy of glioblastoma cancer stem cells. Stem Cells Dev, 20(12): 2189–2195
https://doi.org/10.1089/scd.2010.0567 pmid: 21265608
55 Ramm Sander P, Hau P, Koch S, Schütze K, Bogdahn U, Kalbitzer H R, Aigner L (2013). Stem cell metabolic and spectroscopic profiling. Trends Biotechnol, 31(3): 204–213
https://doi.org/10.1016/j.tibtech.2013.01.008 pmid: 23384506
56 Rando T A (2006). Stem cells, ageing and the quest for immortality. Nature, 441(7097): 1080–1086
https://doi.org/10.1038/nature04958 pmid: 16810243
57 Sana T R, Waddell K, Fischer S M (2008). A sample extraction and chromatographic strategy for increasing LC/MS detection coverage of the erythrocyte metabolome. J Chromatogr B Analyt Technol Biomed Life Sci, 871(2): 314–321
https://doi.org/10.1021/ac901240j pmid: 19624161
58 Sands C J, Coen M, Ebbels T M, Holmes E, Lindon J C, Nicholson J K (2011). Data-driven approach for metabolite relationship recovery in biological 1H NMR data sets using iterative statistical total correlation spectroscopy. Anal Chem, 83(6): 2075–2082
https://doi.org/10.1021/ac102870u pmid: 21323345
59 Sepúlveda D E, Andrews B A, Papoutsakis E T, Asenjo J A (2010). Metabolic flux analysis of embryonic stem cells using three distinct differentiation protocols and comparison to gene expression patterns. Biotechnol Prog, 26(5): 1222–1229
https://doi.org/10.1002/btpr.448 pmid: 20945480
60 Ser Z, Liu X, Tang N N, Locasale J W (2015). Extraction parameters for metabolomics from cultured cells. Anal Biochem, 475: 22–28
https://doi.org/10.1016/j.ab.2015.01.003 pmid: 25613493
61 Shah S H, Kraus W E, Newgard C B (2012). Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation, 126(9): 1110–1120
https://doi.org/10.1161/CIRCULATIONAHA.111.060368 pmid: 22927473
62 Sierra A, Encinas J M, Deudero J J, Chancey J H, Enikolopov G, Overstreet-Wadiche L S, Tsirka S E, Maletic-Savatic M (2010). Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell, 7(4): 483–495
https://doi.org/10.1016/j.stem.2010.08.014 pmid: 20887954
63 Smith L M, Maher A D, Cloarec O, Rantalainen M, Tang H, Elliott P, Stamler J, Lindon J C, Holmes E, Nicholson J K (2007). Statistical correlation and projection methods for improved information recovery from diffusion-edited NMR spectra of biological samples. Anal Chem, 79(15): 5682–5689
https://doi.org/10.1021/ac0703754 pmid: 17585837
64 Soares D P, Law M (2009). Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol, 64(1): 12–21
https://doi.org/10.1016/j.crad.2008.07.002 pmid: 19070693
65 Sowell R A, Koeniger S L, Valentine S J, Moon M H, Clemmer D E (2004). Nanoflow LC/IMS-MS and LC/IMS-CID/MS of protein mixtures. J Am Soc Mass Spectrom, 15(9): 1341–1353
https://doi.org/10.1016/j.jasms.2004.06.014 pmid: 15337515
66 Sreekumar A, Poisson L M, Rajendiran T M, Khan A P, Cao Q, Yu J, Laxman B, Mehra R, Lonigro R J, Li Y, Nyati M K, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn G S, Ghosh D, Pennathur S, Alexander D C, Berger A, Shuster J R, Wei J T, Varambally S, Beecher C, Chinnaiyan A M (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457(7231): 910–914
https://doi.org/10.1038/nature07762 pmid: 19212411
67 Stringari C, Wang H, Geyfman M, Crosignani V, Kumar V, Takahashi J S, Andersen B, Gratton E (2015). In vivo single-cell detection of metabolic oscillations in stem cells. Cell Rep, 10: 1–7
68 Takeuchi K, Ohishi M, Ota S, Suzumura K, Naraoka H, Ohata T, Seki J, Miyamae Y, Honma M, Soga T (2013). Metabolic profiling to identify potential serum biomarkers for gastric ulceration induced by nonsteroid anti-inflammatory drugs. J Proteome Res, 12(3): 1399–1407
https://doi.org/10.1021/pr3010452 pmid: 23336624
69 Turner W S, Seagle C, Galanko J A, Favorov O, Prestwich G D, Macdonald J M, Reid L M (2008). Nuclear magnetic resonance metabolomic footprinting of human hepatic stem cells and hepatoblasts cultured in hyaluronan-matrix hydrogels. Stem Cells, 26(6): 1547–1555
https://doi.org/10.1634/stemcells.2007-0863 pmid: 18323408
70 Ulrich E L, Akutsu H, Doreleijers J F, Harano Y, Ioannidis Y E, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte C F, Tolmie D E, Kent Wenger R, Yao H, Markley J L (2008). BioMagResBank. Nucleic Acids Res, 36(Database issue): D402–D408
pmid: 17984079
71 Urban M, Enot D P, Dallmann G, K?rner L, Forcher V, Enoh P, Koal T, Keller M, Deigner H P (2010). Complexity and pitfalls of mass spectrometry-based targeted metabolomics in brain research. Anal Biochem, 406(2): 124–131
https://doi.org/10.1016/j.ab.2010.07.002 pmid: 20619249
72 Urenjak J, Williams S R, Gadian D G, Noble M (1993). Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci, 13(3): 981–989
pmid: 8441018
73 Vacanti N M, Metallo C M (2013). Exploring metabolic pathways that contribute to the stem cell phenotype. Biochim Biophys Acta, 1830(2): 2361–2369
https://doi.org/10.1016/j.bbagen.2012.08.007 pmid: 22917650
74 Vandersypen L M, Steffen M, Breyta G, Yannoni C S, Sherwood M H, Chuang I L (2001). Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature, 414(6866): 883–887
https://doi.org/10.1038/414883a pmid: 11780055
75 Vingara L K, Yu H J, Wagshul M E, Serafin D, Christodoulou C, Pelczer I, Krupp L B, Maleti?-Savati? M (2013). Metabolomic approach to human brain spectroscopy identifies associations between clinical features and the frontal lobe metabolome in multiple sclerosis. Neuroimage, 82: 586–594
https://doi.org/10.1016/j.neuroimage.2013.05.125 pmid: 23751863
76 Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight S L (2009). Dependence of mouse embryonic stem cells on threonine catabolism. Science, 325(5939): 435–439
https://doi.org/10.1126/science.1173288 pmid: 19589965
77 Warburg O (1956). On the origin of cancer cells. Science, 123(3191): 309–314
https://doi.org/10.1126/science.123.3191.309 pmid: 13298683
78 Weckwerth W, Morgenthal K (2005). Metabolomics: from pattern recognition to biological interpretation. Drug Discov Today, 10(22): 1551–1558
https://doi.org/10.1016/S1359-6446(05)03609-3 pmid: 16257378
79 Wishart D S, Tzur D, Knox C, Eisner R, Guo A C, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly M A, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau D D, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan G E, Macinnis G D, Weljie A M, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes B D, Vogel H J, Querengesser L (2007). HMDB: the Human Metabolome Database. Nucleic Acids Res, 35(Database issue): D521–D526
https://doi.org/10.1093/nar/gkl923 pmid: 17202168
80 Wu H, Southam A D, Hines A, Viant M R (2008). High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal Biochem, 372(2): 204–212
https://doi.org/10.1016/j.ab.2007.10.002 pmid: 17963684
81 Yanes O, Clark J, Wong D M, Patti G J, Sánchez-Ruiz A, Benton H P, Trauger S A, Desponts C, Ding S, Siuzdak G (2010). Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol, 6(6): 411–417
https://doi.org/10.1038/nchembio.364 pmid: 20436487
82 Yu Y, Ramachandran P V, Wang M C (2014). Shedding new light on lipid functions with CARS and SRS microscopy. Biochim Biophys Acta, 1841(8): 1120–1129
https://doi.org/10.1016/j.bbalip.2014.02.003 pmid: 24576891
83 Zamboni N, Fendt S M, Rühl M, Sauer U (2009). (13)C-based metabolic flux analysis. Nat Protoc, 4(6): 878–892
https://doi.org/10.1038/nprot.2009.58 pmid: 19478804
84 Zenobi R (2013). Single-cell metabolomics: analytical and biological perspectives. Science, 342(6163): 1243259
https://doi.org/10.1126/science.1243259 pmid: 24311695
85 Zhang X, Li M, Agrawal A, San K Y (2011). Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases. Metab Eng, 13(6): 713–722
https://doi.org/10.1016/j.ymben.2011.09.007 pmid: 22001432
86 Zinnel N F, Pai P J and Russell D H. (2012) Ion mobility-mass spectrometry (IM-MS) for top-down proteomics: increased dynamic range affords increased sequence coverage. Anal Chem, 84: 3390–3397
[1] Karimeh Haghani, Pouyan Asadi, Gholamreza Taheripak, Ali Noori-Zadeh, Shahram Darabi, Salar Bakhtiyari. Association of mitochondrial dysfunction and lipid metabolism with type 2 diabetes mellitus: A review of literature[J]. Front. Biol., 2018, 13(6): 406-417.
[2] Dingcheng Gao, Vivek Mittal, Yi Ban, Ana Rita Lourenco, Shira Yomtoubian, Sharrell Lee. Metastatic tumor cells – genotypes and phenotypes[J]. Front. Biol., 2018, 13(4): 277-286.
[3] Tyler Harvey, Chen-Ming Fan. Origin of tendon stem cells in situ[J]. Front. Biol., 2018, 13(4): 263-276.
[4] Thai Q. Dao, Jennifer C. Fletcher. CLE peptide-mediated signaling in shoot and vascular meristem development[J]. Front. Biol., 2017, 12(6): 406-420.
[5] Anup Kainthola, Ajay Bhatt. Intervention points for community- acquired methicillin– resistant Staphylococcus aureus colonization and load in healthy population of lesser Himalayan Belt, South Asia, India[J]. Front. Biol., 2017, 12(3): 226-234.
[6] Andrew Brandmaier, Sheng-Qi Hou, Sandra Demaria, Silvia C. Formenti, Wen H. Shen. PTEN at the interface of immune tolerance and tumor suppression[J]. Front. Biol., 2017, 12(3): 163-174.
[7] Liang Hu,Edward Trope,Qi-Long Ying. Metabolism of pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 355-365.
[8] Kyle R. Denton,Chongchong Xu,Harsh Shah,Xue-Jun Li. Modeling axonal defects in hereditary spastic paraplegia with human pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 339-354.
[9] Gabrielle Rushing,Rebecca A. Ihrie. Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone[J]. Front. Biol., 2016, 11(4): 261-284.
[10] Paul J. Lucassen,Charlotte A. Oomen. Stress, hippocampal neurogenesis and cognition: functional correlations[J]. Front. Biol., 2016, 11(3): 182-192.
[11] Fatih Semerci,Mirjana Maletic-Savatic. Transgenic mouse models for studying adult neurogenesis[J]. Front. Biol., 2016, 11(3): 151-167.
[12] Jin He. Function of Polycomb repressive complexes in stem cells[J]. Front. Biol., 2016, 11(2): 65-74.
[13] Anup Kainthola,Ajay B. Bhatt,Ashish Gupta. Community and hospital acquired methicillin resistant Staphylococcus aureus efficiently retain the Van A determinant[J]. Front. Biol., 2015, 10(6): 520-527.
[14] Desiree F. Leach,Mitzi Nagarkatti,Prakash Nagarkatti,Taixing Cui. Functional states of resident vascular stem cells and vascular remodeling[J]. Front. Biol., 2015, 10(5): 387-397.
[15] Stuart J. Grice,Ji-Long Liu. A SteMNess perspective of survival motor neuron function: splicing factors in stem cell biology and disease[J]. Front. Biol., 2015, 10(4): 297-309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed