|
|
Modeling axonal defects in hereditary spastic paraplegia with human pluripotent stem cells |
Kyle R. Denton1,Chongchong Xu2,4,Harsh Shah3,Xue-Jun Li2,4( ) |
1. Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA 2. Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL 61107, USA 3. MD program, College of Medicine at Rockford, IL 61107, USA 4. Department of Bioengineering, University of Illinois at Chicago, IL 60607, USA |
|
|
Abstract BACKGROUND: Cortical motor neurons, also known as upper motor neurons, are large projection neurons whose axons convey signals to lower motor neurons to control the muscle movements. Degeneration of cortical motor neuron axons is implicated in several debilitating disorders including hereditary spastic paraplegia (HSP). Since the discovery of the first HSP gene, SPAST that encodes spastin, over 70 distinct genetic loci associated with HSP have been identified. How the mutations of these functionally diverse genes result in axonal degeneration and why certain axons are affected in HSP remain largely unknown. The development of induced pluripotent stem cell (iPSC) technology has provided researchers an excellent resource to generate patient-specific human neurons to model human neuropathological processes including axonal defects. METHODS: In this article, we will first review the pathology and pathways affected in the common forms of HSP subtypes by searching the PubMed database. We will then summarize the findings and insights gained from studies using iPSC-based models, and discuss challenges and future directions. RESULTS: HSPs, a heterogeneous group of genetic neurodegenerative disorders, exhibit similar pathological changes that result from retrograde axonal degeneration of cortical motor neurons. Recently, iPSCs have been generated from several common forms of HSP including SPG4, SPG3A, and SPG11 patients. Neurons derived from HSP iPSCs exhibit impaired neurite outgrowth, increased axonal swellings, and reduced axonal transport, recapitulating disease-specific axonal defects. CONCLUSIONS: These patient-derived neurons offer a unique tool to study the pathogenic mechanisms and explore the treatments for rescuing axonal defects in HSP, as well as other diseases involving axonopathy.
|
Keywords
HSP
axonal degeneration
pluripotent stem cells
spastin
atlastin-1
|
Corresponding Author(s):
Xue-Jun Li
|
Online First Date: 28 September 2016
Issue Date: 04 November 2016
|
|
1 |
Ben-David U, Kopper O, Benvenisty N (2012). Expanding the boundaries of embryonic stem cells. Cell Stem Cell, 10(6): 666–677
https://doi.org/10.1016/j.stem.2012.05.003
pmid: 22704506
|
2 |
Bilican B, Serio A, Barmada S J, Nishimura A L, Sullivan G J, Carrasco M, Phatnani H P, Puddifoot C A, Story D, Fletcher J, Park I H, Friedman B A, Daley G Q, Wyllie D J, Hardingham G E, Wilmut I, Finkbeiner S, Maniatis T, Shaw C E, Chandran S (2012). Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc Natl Acad Sci USA, 109(15): 5803–5808
https://doi.org/10.1073/pnas.1202922109
pmid: 22451909
|
3 |
Blackstone C (2012). Cellular pathways of hereditary spastic paraplegia. Annu Rev Neurosci, 35(1): 25–47
https://doi.org/10.1146/annurev-neuro-062111-150400
pmid: 22540978
|
4 |
Blackstone C, O’Kane C J, Reid E (2011). Hereditary spastic paraplegias: membrane traffic and the motor pathway. Nat Rev Neurosci, 12(1): 31–42
pmid: 21139634
|
5 |
Boulting G L, Kiskinis E, Croft G F, Amoroso M W, Oakley D H, Wainger B J, Williams D J, Kahler D J, Yamaki M, Davidow L, Rodolfa C T, Dimos J T, Mikkilineni S, MacDermott A B, Woolf C J, Henderson C E, Wichterle H, Eggan K (2011). A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol, 29(3): 279–286
https://doi.org/10.1038/nbt.1783
pmid: 21293464
|
6 |
Chen H, Chan D C (2009). Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet, 18(R2): R169–R176
https://doi.org/10.1093/hmg/ddp326
pmid: 19808793
|
7 |
Claudiani P, Riano E, Errico A, Andolfi G, Rugarli E I (2005). Spastin subcellular localization is regulated through usage of different translation start sites and active export from the nucleus. Exp Cell Res, 309(2): 358–369
https://doi.org/10.1016/j.yexcr.2005.06.009
pmid: 16026783
|
8 |
Crosby A H, Proukakis C (2002). Is the transportation highway the right road for hereditary spastic paraplegia? Am J Hum Genet, 71(5): 1009–1016
https://doi.org/10.1086/344206
pmid: 12355399
|
9 |
De Vos K J, Grierson A J, Ackerley S, Miller C C (2008). Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci, 31(1): 151–173
https://doi.org/10.1146/annurev.neuro.31.061307.090711
pmid: 18558852
|
10 |
Deluca G C, Ebers G C, Esiri M M (2004). The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol, 30(6): 576–584
https://doi.org/10.1111/j.1365-2990.2004.00587.x
pmid: 15540998
|
11 |
Denton K R, Lei L, Grenier J, Rodionov V, Blackstone C, Li X J (2014). Loss of spastin function results in disease-specific axonal defects in human pluripotent stem cell-based models of hereditary spastic paraplegia. Stem Cells, 32(2): 414–423
https://doi.org/10.1002/stem.1569
pmid: 24123785
|
12 |
Dimos J T, Rodolfa K T, Niakan K K, Weisenthal L M, Mitsumoto H, Chung W, Croft G F, Saphier G, Leibel R, Goland R, Wichterle H, Henderson C E, Eggan K (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893): 1218–1221
https://doi.org/10.1126/science.1158799
pmid: 18669821
|
13 |
Ebert A D, Yu J, Rose F F Jr, Mattis V B, Lorson C L, Thomson J A, Svendsen C N (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457(7227): 277–280
https://doi.org/10.1038/nature07677
pmid: 19098894
|
14 |
Errico A, Ballabio A, Rugarli E I (2002). Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum Mol Genet, 11(2): 153–163
https://doi.org/10.1093/hmg/11.2.153
pmid: 11809724
|
15 |
Evans M J, Kaufman M H (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819): 154–156
https://doi.org/10.1038/292154a0
pmid: 7242681
|
16 |
Falk J, Rohde M, Bekhite M M, Neugebauer S, Hemmerich P, Kiehntopf M, Deufel T, Hübner C A, Beetz C (2014). Functional mutation analysis provides evidence for a role of REEP1 in lipid droplet biology. Hum Mutat, 35(4): 497–504
https://doi.org/10.1002/humu.22521
pmid: 24478229
|
17 |
Fan Y, Wali G, Sutharsan R, Bellette B, Crane D I, Sue C M, Mackay-Sim A (2014). Low dose tubulin-binding drugs rescue peroxisome trafficking deficit in patient-derived stem cells in Hereditary Spastic Paraplegia. Biol Open, 3(6): 494–502
https://doi.org/10.1242/bio.20147641
pmid: 24857849
|
18 |
Fassier C, Hutt J A, Scholpp S, Lumsden A, Giros B, Nothias F, Schneider-Maunoury S, Houart C, Hazan J (2010). Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway. Nat Neurosci, 13(11): 1380–1387
https://doi.org/10.1038/nn.2662
pmid: 20935645
|
19 |
Fink J K (1993). Hereditary Spastic Paraplegia Overview. In: Pagon R A, Adam M P, Ardinger H H, Wallacc S E, Amemiya A, BeauL J H, Bird T D, Fong C T, Mefford H C, Smith R J H, Stephens K, Eds. Gene Reviews [Internet]. Seatlle (WA): University of Washington, Seattle 1993–2016
|
20 |
Fink J K (2003). Advances in the hereditary spastic paraplegias. Exp Neurol, 184(Suppl 1): S106–S110
https://doi.org/10.1016/j.expneurol.2003.08.005
pmid: 14597333
|
21 |
Fink J K (2006). Hereditary spastic paraplegia. Curr Neurol Neurosci Rep, 6(1): 65–76
https://doi.org/10.1007/s11910-996-0011-1
pmid: 16469273
|
22 |
Fonknechten N, Mavel D, Byrne P, Davoine C S, Cruaud C, Bönsch D, Samson D, Coutinho P, Hutchinson M, McMonagle P, Burgunder J M, Tartaglione A, Heinzlef O, Feki I, Deufel T, Parfrey N, Brice A, Fontaine B, Prud’homme J F, Weissenbach J, Dürr A, Hazan J (2000). Spectrum of SPG4 mutations in autosomal dominant spastic paraplegia. Hum Mol Genet, 9(4): 637–644
https://doi.org/10.1093/hmg/9.4.637
pmid: 10699187
|
23 |
Grove E A, Fukuchi-Shimogori T (2003). Generating the cerebral cortical area map. Annu Rev Neurosci, 26(1): 355–380
https://doi.org/10.1146/annurev.neuro.26.041002.131137
pmid: 14527269
|
24 |
Guha P, Morgan J W, Mostoslavsky G, Rodrigues N P, Boyd A S (2013). Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell, 12(4): 407–412
https://doi.org/10.1016/j.stem.2013.01.006
pmid: 23352605
|
25 |
Guidubaldi A, Piano C, Santorelli F M, Silvestri G, Petracca M, Tessa A, Bentivoglio A R (2011). Novel mutations in SPG11 cause hereditary spastic paraplegia associated with early-onset levodopa-responsive Parkinsonism. Mov Disord, 26(3): 553–556
https://doi.org/10.1002/mds.23552
pmid: 21381113
|
26 |
Hallett P J, Deleidi M, Astradsson A, Smith G A, Cooper O, Osborn T M, Sundberg M, Moore M A, Perez-Torres E, Brownell A L, Schumacher J M, Spealman R D, Isacson O (2015). Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell, 16(3): 269–274
https://doi.org/10.1016/j.stem.2015.01.018
pmid: 25732245
|
27 |
Halliwell B (2014). Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed J, 37(3): 99–105
pmid: 24923566
|
28 |
Hanein S, Martin E, Boukhris A, Byrne P, Goizet C, Hamri A, Benomar A, Lossos A, Denora P, Fernandez J, Elleuch N, Forlani S, Durr A, Feki I, Hutchinson M, Santorelli F M, Mhiri C, Brice A, Stevanin G (2008). Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. Am J Hum Genet, 82(4): 992–1002
https://doi.org/10.1016/j.ajhg.2008.03.004
pmid: 18394578
|
29 |
Harding A E (1983). Classification of the hereditary ataxias and paraplegias. Lancet, 1(8334): 1151–1155
https://doi.org/10.1016/S0140-6736(83)92879-9
pmid: 6133167
|
30 |
Harding A E (1993). Hereditary spastic paraplegias. Semin Neurol, 13(4): 333–336
https://doi.org/10.1055/s-2008-1041143
pmid: 8146482
|
31 |
Havlicek S, Kohl Z, Mishra H K, Prots I, Eberhardt E, Denguir N, Wend H, Plötz S, Boyer L, Marchetto M C, Aigner S, Sticht H, Groemer T W, Hehr U, Lampert A, Schlötzer-Schrehardt U, Winkler J, Gage F H, Winner B (2014). Gene dosage-dependent rescue of HSP neurite defects in SPG4 patients’ neurons. Hum Mol Genet, 23(10): 2527–2541
https://doi.org/10.1093/hmg/ddt644
pmid: 24381312
|
32 |
Hazan J, Fonknechten N, Mavel D, Paternotte C, Samson D, Artiguenave F, Davoine C S, Cruaud C, Dürr A, Wincker P, Brottier P, Cattolico L, Barbe V, Burgunder J M, Prud’homme J F, Brice A, Fontaine B, Heilig B, Weissenbach J (1999). Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat Genet, 23(3): 296–303
https://doi.org/10.1038/15472
pmid: 10610178
|
33 |
Hedera P, Eldevik O P, Maly P, Rainier S, Fink J K (2005). Spinal cord magnetic resonance imaging in autosomal dominant hereditary spastic paraplegia. Neuroradiology, 47(10): 730–734
https://doi.org/10.1007/s00234-005-1415-3
pmid: 16143870
|
34 |
Hirst J, Borner G H, Edgar J, Hein M Y, Mann M, Buchholz F, Antrobus R, Robinson M S (2013). Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15. Mol Biol Cell, 24(16): 2558–2569
https://doi.org/10.1091/mbc.E13-03-0170
pmid: 23825025
|
35 |
Hockemeyer D, Wang H, Kiani S, Lai C S, Gao Q, Cassady J P, Cost G J, Zhang L, Santiago Y, Miller J C, Zeitler B, Cherone J M, Meng X, Hinkley S J, Rebar E J, Gregory P D, Urnov F D, Jaenisch R (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol, 29(8): 731–734
https://doi.org/10.1038/nbt.1927
pmid: 21738127
|
36 |
Hollenbeck P J (2005). Mitochondria and neurotransmission: evacuating the synapse. Neuron, 47(3): 331–333
https://doi.org/10.1016/j.neuron.2005.07.017
pmid: 16055057
|
37 |
Hu J, Shibata Y, Zhu P P, Voss C, Rismanchi N, Prinz W A, Rapoport T A, Blackstone C (2009). A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell, 138(3): 549–561
https://doi.org/10.1016/j.cell.2009.05.025
pmid: 19665976
|
38 |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821
https://doi.org/10.1126/science.1225829
pmid: 22745249
|
39 |
Kanekura K, Suzuki H, Aiso S, Matsuoka M (2009). ER stress and unfolded protein response in amyotrophic lateral sclerosis. Mol Neurobiol, 39(2): 81–89
https://doi.org/10.1007/s12035-009-8054-3
pmid: 19184563
|
40 |
Kasher P R, De Vos K J, Wharton S B, Manser C, Bennett E J, Bingley M, Wood J D, Milner R, McDermott C J, Miller C C, Shaw P J, Grierson A J (2009). Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients. J Neurochem, 110(1): 34–44
https://doi.org/10.1111/j.1471-4159.2009.06104.x
pmid: 19453301
|
41 |
Kiskinis E, Eggan K (2010). Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest, 120(1): 51–59
https://doi.org/10.1172/JCI40553
pmid: 20051636
|
42 |
Kiskinis E, Sandoe J, Williams L A, Boulting G L, Moccia R, Wainger B J, Han S, Peng T, Thams S, Mikkilineni S, Mellin C, Merkle F T, Davis-Dusenbery B N, Ziller M, Oakley D, Ichida J, Di Costanzo S, Atwater N, Maeder M L, Goodwin M J, Nemesh J, Handsaker R E, Paull D, Noggle S, McCarroll S A, Joung J K, Woolf C J, Brown R H, Eggan K (2014). Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. Cell Stem Cell, 14(6): 781–795
https://doi.org/10.1016/j.stem.2014.03.004
pmid: 24704492
|
43 |
Klemm R W, Norton J P, Cole R A, Li C S, Park S H, Crane M M, Li L, Jin D, Boye-Doe A, Liu T Y, Shibata Y, Lu H, Rapoport T A, Farese R V Jr, Blackstone C, Guo Y, Mak H Y (2013). A conserved role for atlastin GTPases in regulating lipid droplet size. Cell Reports, 3(5): 1465–1475
https://doi.org/10.1016/j.celrep.2013.04.015
pmid: 23684613
|
44 |
Knott A B, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008). Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci, 9(7): 505–518
https://doi.org/10.1038/nrn2417
pmid: 18568013
|
45 |
Kola I, Landis J (2004). Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov, 3(8): 711–715
https://doi.org/10.1038/nrd1470
pmid: 15286737
|
46 |
Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K, Takahashi K, Asaka I, Aoi T, Watanabe A, Watanabe K, Kadoya C, Nakano R, Watanabe D, Maruyama K, Hori O, Hibino S, Choshi T, Nakahata T, Hioki H, Kaneko T, Naitoh M, Yoshikawa K, Yamawaki S, Suzuki S, Hata R, Ueno S, Seki T, Kobayashi K, Toda T, Murakami K, Irie K, Klein W L, Mori H, Asada T, Takahashi R, Iwata N, Yamanaka S, Inoue H (2013). Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness. Cell Stem Cell, 12(4): 487–496
https://doi.org/10.1016/j.stem.2013.01.009
pmid: 23434393
|
47 |
Lee H, Shamy G A, Elkabetz Y, Schofield C M, Harrsion N L, Panagiotakos G, Socci N D, Tabar V, Studer L (2007). Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells, 25(8): 1931–1939
https://doi.org/10.1634/stemcells.2007-0097
pmid: 17478583
|
48 |
Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J (1995). Identification and characterization of a spinal muscular atrophy-determining gene. Cell, 80(1): 155–165
https://doi.org/10.1016/0092-8674(95)90460-3
pmid: 7813012
|
49 |
Li X J, Du Z W, Zarnowska E D, Pankratz M, Hansen L O, Pearce R A, Zhang S C (2005). Specification of motoneurons from human embryonic stem cells. Nat Biotechnol, 23(2): 215–221
https://doi.org/10.1038/nbt1063
pmid: 15685164
|
50 |
Lindsey J C, Lusher M E, McDermott C J, White K D, Reid E, Rubinsztein D C, Bashir R, Hazan J, Shaw P J, Bushby K M (2000). Mutation analysis of the spastin gene (SPG4) in patients with hereditary spastic paraparesis. J Med Genet, 37(10): 759–765
https://doi.org/10.1136/jmg.37.10.759
pmid: 11015453
|
51 |
Ling S C, Polymenidou M, Cleveland D W (2013). Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron, 79(3): 416–438
https://doi.org/10.1016/j.neuron.2013.07.033
pmid: 23931993
|
52 |
Liu G H, Qu J, Suzuki K, Nivet E, Li M, Montserrat N, Yi F, Xu X, Ruiz S, Zhang W, Wagner U, Kim A, Ren B, Li Y, Goebl A, Kim J, Soligalla R D, Dubova I, Thompson J, Yates J 3rd, Esteban C R, Sancho-Martinez I, Izpisua Belmonte J C (2012). Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature, 491(7425): 603–607
https://doi.org/10.1038/nature11557
pmid: 23075850
|
53 |
Lumb J H, Connell J W, Allison R, Reid E (2012). The AAA ATPase spastin links microtubule severing to membrane modelling. Biochim Biophys Acta, 1823(1): 192–197
https://doi.org/10.1016/j.bbamcr.2011.08.010
pmid: 21888932
|
54 |
Lunn M R, Wang C H (2008). Spinal muscular atrophy. Lancet, 371(9630): 2120–2133
https://doi.org/10.1016/S0140-6736(08)60921-6
pmid: 18572081
|
55 |
Ly CV, Verstreken P (2006) Mitochondria at the synapse. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry 12:291–299.
|
56 |
Ma L, Hu B, Liu Y, Vermilyea S C, Liu H, Gao L, Sun Y, Zhang X, Zhang S C (2012). Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell, 10(4): 455–464
https://doi.org/10.1016/j.stem.2012.01.021
pmid: 22424902
|
57 |
Magrané J, Cortez C, Gan W B, Manfredi G (2014). Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet, 23(6): 1413–1424
https://doi.org/10.1093/hmg/ddt528
pmid: 24154542
|
58 |
Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121): 823–826
https://doi.org/10.1126/science.1232033
pmid: 23287722
|
59 |
Mancuso G, Rugarli E I (2008). A cryptic promoter in the first exon of the SPG4 gene directs the synthesis of the 60-kDa spastin isoform. BMC Biol, 6(1): 31
https://doi.org/10.1186/1741-7007-6-31
pmid: 18613979
|
60 |
Manfredi G, Xu Z (2005). Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion, 5(2): 77–87
https://doi.org/10.1016/j.mito.2005.01.002
pmid: 16050975
|
61 |
Martin G R (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 78(12): 7634–7638
https://doi.org/10.1073/pnas.78.12.7634
pmid: 6950406
|
62 |
Miller J C, Tan S, Qiao G, Barlow K A, Wang J, Xia D F, Meng X, Paschon D E, Leung E, Hinkley S J, Dulay G P, Hua K L, Ankoudinova I, Cost G J, Urnov F D, Zhang H S, Holmes M C, Zhang L, Gregory P D, Rebar E J (2011). A TALE nuclease architecture for efficient genome editing. Nat Biotechnol, 29(2): 143–148
https://doi.org/10.1038/nbt.1755
pmid: 21179091
|
63 |
Miller J D, Ganat Y M, Kishinevsky S, Bowman R L, Liu B, Tu E Y, Mandal P K, Vera E, Shim J W, Kriks S, Taldone T, Fusaki N, Tomishima M J, Krainc D, Milner T A, Rossi D J, Studer L (2013). Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell, 13(6): 691–705
https://doi.org/10.1016/j.stem.2013.11.006
pmid: 24315443
|
64 |
Mishra HK, Prots I, Havlicek S, Kohl Z, Perez-Branguli F, Boerstler T, Anneser L, Minakaki G, Wend H, Hampl M, Leone M, Bruckner M, Klucken J, Reis A, Boyer L, Schuierer G, Behrens J, Lampert A, Engel FB, Gage FH, Winkler J, Winner B (2016) GSK3ss-dependent dysregulation of neurodevelopment in SPG11-patient iPSC model. Ann Neurol.
|
65 |
Montague K, Malik B, Gray A L, La Spada A R, Hanna M G, Szabadkai G, Greensmith L (2014). Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy. Brain, 137(Pt 7): 1894–1906
https://doi.org/10.1093/brain/awu114
pmid: 24898351
|
66 |
Montenegro G, Rebelo A P, Connell J, Allison R, Babalini C, D’Aloia M, Montieri P, Schüle R, Ishiura H, Price J, Strickland A, Gonzalez M A, Baumbach-Reardon L, Deconinck T, Huang J, Bernardi G, Vance J M, Rogers M T, Tsuji S, De Jonghe P, Pericak-Vance M A, Schöls L, Orlacchio A, Reid E, Züchner S (2012). Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. J Clin Invest, 122(2): 538–544
https://doi.org/10.1172/JCI60560
pmid: 22232211
|
67 |
Moss T J, Daga A, McNew J A (2011). Fusing a lasting relationship between ER tubules. Trends Cell Biol, 21(7): 416–423
https://doi.org/10.1016/j.tcb.2011.03.009
pmid: 21550242
|
68 |
Murmu R P, Martin E, Rastetter A, Esteves T, Muriel M P, El Hachimi K H, Denora P S, Dauphin A, Fernandez J C, Duyckaerts C, Brice A, Darios F, Stevanin G (2011). Cellular distribution and subcellular localization of spatacsin and spastizin, two proteins involved in hereditary spastic paraplegia. Mol Cell Neurosci, 47(3): 191–202
https://doi.org/10.1016/j.mcn.2011.04.004
pmid: 21545838
|
69 |
Murry C E, Keller G (2008). Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell, 132(4): 661–680
https://doi.org/10.1016/j.cell.2008.02.008
pmid: 18295582
|
70 |
Nadar V C, Ketschek A, Myers K A, Gallo G, Baas P W (2008). Kinesin-5 is essential for growth-cone turning. Curr Biol, 18(24): 1972–1977
https://doi.org/10.1016/j.cub.2008.11.021
pmid: 19084405
|
71 |
Namekawa M, Ribai P, Nelson I, Forlani S, Fellmann F, Goizet C, Depienne C, Stevanin G, Ruberg M, Dürr A, Brice A (2006). SPG3A is the most frequent cause of hereditary spastic paraplegia with onset before age 10 years. Neurology, 66(1): 112–114
https://doi.org/10.1212/01.wnl.0000191390.20564.8e
pmid: 16401858
|
72 |
Nguyen H N, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schüle B, Dolmetsch R E, Langston W, Palmer T D, Pera R R (2011). LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell, 8(3): 267–280
https://doi.org/10.1016/j.stem.2011.01.013
pmid: 21362567
|
73 |
Niu J, Zhang B, Chen H (2014). Applications of TALENs and CRISPR/Cas9 in human cells and their potentials for gene therapy. Mol Biotechnol, 56(8): 681–688
https://doi.org/10.1007/s12033-014-9771-z
pmid: 24870618
|
74 |
Novarino G, Fenstermaker A G, Zaki M S, Hofree M, Silhavy J L, Heiberg A D, Abdellateef M, Rosti B, Scott E, Mansour L, Masri A, Kayserili H, Al-Aama J Y, Abdel-Salam G M, Karminejad A, Kara M, Kara B, Bozorgmehri B, Ben-Omran T, Mojahedi F, Mahmoud I G, Bouslam N, Bouhouche A, Benomar A, Hanein S, Raymond L, Forlani S, Mascaro M, Selim L, Shehata N, Al-Allawi N, Bindu P S, Azam M, Gunel M, Caglayan A, Bilguvar K, Tolun A, Issa M Y, Schroth J, Spencer E G, Rosti R O, Akizu N, Vaux K K, Johansen A, Koh A A, Megahed H, Durr A, Brice A, Stevanin G, Gabriel S B, Ideker T, Gleeson J G (2014). Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science, 343(6170): 506–511
https://doi.org/10.1126/science.1247363
pmid: 24482476
|
75 |
O’Leary D D, Nakagawa Y (2002). Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr Opin Neurobiol, 12(1): 14–25
https://doi.org/10.1016/S0959-4388(02)00285-4
pmid: 11861160
|
76 |
Okita K, Ichisaka T, Yamanaka S (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151): 313–317
https://doi.org/10.1038/nature05934
pmid: 17554338
|
77 |
Pantakani D V, Swapna L S, Srinivasan N, Mannan A U (2008). Spastin oligomerizes into a hexamer and the mutant spastin (E442Q) redistribute the wild-type spastin into filamentous microtubule. J Neurochem, 106(2): 613–624
https://doi.org/10.1111/j.1471-4159.2008.05414.x
pmid: 18410514
|
78 |
Park I H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch M W, Cowan C, Hochedlinger K, Daley G Q (2008). Disease-specific induced pluripotent stem cells. Cell, 134(5): 877–886
https://doi.org/10.1016/j.cell.2008.07.041
pmid: 18691744
|
79 |
Park S, Lee K S, Lee Y J, Shin H A, Cho H Y, Wang K C, Kim Y S, Lee H T, Chung K S, Kim E Y, Lim J (2004). Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci Lett, 359(1-2): 99–103
https://doi.org/10.1016/j.neulet.2004.01.073
pmid: 15050721
|
80 |
Park S H, Zhu P P, Parker R L, Blackstone C (2010). Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest, 120(4): 1097–1110
https://doi.org/10.1172/JCI40979
pmid: 20200447
|
81 |
Pérez-Brangulí F, Mishra H K, Prots I, Havlicek S, Kohl Z, Saul D, Rummel C, Dorca-Arevalo J, Regensburger M, Graef D, Sock E, Blasi J, Groemer T W, Schlötzer-Schrehardt U, Winkler J, Winner B (2014). Dysfunction of spatacsin leads to axonal pathology in SPG11-linked hereditary spastic paraplegia. Hum Mol Genet, 23(18): 4859–4874
https://doi.org/10.1093/hmg/ddu200
pmid: 24794856
|
82 |
Perrier A L, Tabar V, Barberi T, Rubio M E, Bruses J, Topf N, Harrison N L, Studer L (2004). Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA, 101(34): 12543–12548
https://doi.org/10.1073/pnas.0404700101
pmid: 15310843
|
83 |
Piaceri I, Rinnoci V, Bagnoli S, Failli Y, Sorbi S (2012). Mitochondria and Alzheimer’s disease. J Neurol Sci, 322(1-2): 31–34
https://doi.org/10.1016/j.jns.2012.05.033
pmid: 22694975
|
84 |
Polleux F, Dehay C, Goffinet A, Kennedy H (2001). Pre- and post-mitotic events contribute to the progressive acquisition of area-specific connectional fate in the neocortex. Cereb Cortex, 11(11): 1027–1039
https://doi.org/10.1093/cercor/11.11.1027
pmid: 11590112
|
85 |
Reid E (2003). Science in motion: common molecular pathological themes emerge in the hereditary spastic paraplegias. J Med Genet, 40(2): 81–86
https://doi.org/10.1136/jmg.40.2.81
pmid: 12566514
|
86 |
Renvoisé B, Blackstone C (2010). Emerging themes of ER organization in the development and maintenance of axons. Curr Opin Neurobiol, 20(5): 531–537
https://doi.org/10.1016/j.conb.2010.07.001
pmid: 20678923
|
87 |
Reubinoff B E, Itsykson P, Turetsky T, Pera M F, Reinhartz E, Itzik A, Ben-Hur T (2001). Neural progenitors from human embryonic stem cells. Nat Biotechnol, 19(12): 1134–1140
https://doi.org/10.1038/nbt1201-1134
pmid: 11731782
|
88 |
Roy N S, Cleren C, Singh S K, Yang L, Beal M F, Goldman S A (2006). Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med, 12(11): 1259–1268
https://doi.org/10.1038/nm1495
pmid: 17057709
|
89 |
Salinas S, Proukakis C, Crosby A, Warner T T (2008). Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol, 7(12): 1127–1138
https://doi.org/10.1016/S1474-4422(08)70258-8
pmid: 19007737
|
90 |
Schicks J, Synofzik M, Pétursson H, Huttenlocher J, Reimold M, Schöls L, Bauer P (2011). Atypical juvenile parkinsonism in a consanguineous SPG15 family. Mov Disord, 26(3): 564–566
https://doi.org/10.1002/mds.23472
pmid: 21462267
|
91 |
Singh Roy N, Nakano T, Xuing L, Kang J, Nedergaard M, Goldman S A (2005). Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Exp Neurol, 196(2): 224–234
https://doi.org/10.1016/j.expneurol.2005.06.021
pmid: 16198339
|
92 |
Soderblom C, Blackstone C (2006). Traffic accidents: molecular genetic insights into the pathogenesis of the hereditary spastic paraplegias. Pharmacol Ther, 109(1-2): 42–56
https://doi.org/10.1016/j.pharmthera.2005.06.001
pmid: 16005518
|
93 |
Solowska J M, Morfini G, Falnikar A, Himes B T, Brady S T, Huang D, Baas P W (2008). Quantitative and functional analyses of spastin in the nervous system: implications for hereditary spastic paraplegia. J Neurosci, 28(9): 2147–2157
https://doi.org/10.1523/JNEUROSCI.3159-07.2008
pmid: 18305248
|
94 |
Stevanin G, Santorelli F M, Azzedine H, Coutinho P, Chomilier J, Denora P S, Martin E, Ouvrard-Hernandez A M, Tessa A, Bouslam N, Lossos A, Charles P, Loureiro J L, Elleuch N, Confavreux C, Cruz V T, Ruberg M, Leguern E, Grid D, Tazir M, Fontaine B, Filla A, Bertini E, Durr A, Brice A (2007). Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet, 39(3): 366–372
https://doi.org/10.1038/ng1980
pmid: 17322883
|
95 |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5): 861–872
https://doi.org/10.1016/j.cell.2007.11.019
pmid: 18035408
|
96 |
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663–676
https://doi.org/10.1016/j.cell.2006.07.024
pmid: 16904174
|
97 |
Tarrade A, Fassier C, Courageot S, Charvin D, Vitte J, Peris L, Thorel A, Mouisel E, Fonknechten N, Roblot N, Seilhean D, Diérich A, Hauw J J, Melki J (2006). A mutation of spastin is responsible for swellings and impairment of transport in a region of axon characterized by changes in microtubule composition. Hum Mol Genet, 15(24): 3544–3558
https://doi.org/10.1093/hmg/ddl431
pmid: 17101632
|
98 |
Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones J M (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391): 1145–1147
https://doi.org/10.1126/science.282.5391.1145
pmid: 9804556
|
99 |
Valente E M, Abou-Sleiman P M, Caputo V, Muqit M M, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio A R, Healy D G, Albanese A, Nussbaum R, Gonz�lez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks W P, Latchman D S, Harvey R J, Dallapiccola B, Auburger G, Wood N W (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304(5674): 1158–1160
https://doi.org/10.1126/science.1096284
pmid: 15087508
|
100 |
Vidal R, Caballero B, Couve A, Hetz C (2011). Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in Huntington’s disease. Curr Mol Med, 11(1): 1–12
https://doi.org/10.2174/156652411794474419
pmid: 21189122
|
101 |
Walther T C, Farese R V Jr (2012). Lipid droplets and cellular lipid metabolism. Annu Rev Biochem, 81(1): 687–714
https://doi.org/10.1146/annurev-biochem-061009-102430
pmid: 22524315
|
102 |
Wang D, Lagerstrom R, Sun C, Bishof L, Valotton P, Götte M (2010). HCA-vision: Automated neurite outgrowth analysis. J Biomol Screen, 15(9): 1165–1170
https://doi.org/10.1177/1087057110382894
pmid: 20855562
|
103 |
Wang H, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R (2013a). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4): 910–918
https://doi.org/10.1016/j.cell.2013.04.025
pmid: 23643243
|
104 |
Wang Z B, Zhang X, Li X J (2013b). Recapitulation of spinal motor neuron-specific disease phenotypes in a human cell model of spinal muscular atrophy. Cell Res, 23(3): 378–393
https://doi.org/10.1038/cr.2012.166
pmid: 23208423
|
105 |
Wilfling F, Wang H, Haas J T, Krahmer N, Gould T J, Uchida A, Cheng J X, Graham M, Christiano R, Fröhlich F, Liu X, Buhman K K, Coleman R A, Bewersdorf J, Farese R V Jr, Walther T C (2013). Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell, 24(4): 384–399
https://doi.org/10.1016/j.devcel.2013.01.013
pmid: 23415954
|
106 |
Xu C C, Denton K R, Wang Z B, Zhang X, Li X J (2016). Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy. Dis Model Mech, 9(1): 39–49
pmid: 26586529
|
107 |
Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N (2011). Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet, 20(23): 4530–4539
https://doi.org/10.1093/hmg/ddr394
pmid: 21900357
|
108 |
Yan Y, Yang D, Zarnowska E D, Du Z, Werbel B, Valliere C, Pearce R A, Thomson J A, Zhang S C (2005). Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells, 23(6): 781–790
https://doi.org/10.1634/stemcells.2004-0365
pmid: 15917474
|
109 |
Yang Y M, Gupta S K, Kim K J, Powers B E, Cerqueira A, Wainger B J, Ngo H D, Rosowski K A, Schein P A, Ackeifi C A, Arvanites A C, Davidow L S, Woolf C J, Rubin L L (2013). A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell, 12(6): 713–726
https://doi.org/10.1016/j.stem.2013.04.003
pmid: 23602540
|
110 |
Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858): 1917–1920
https://doi.org/10.1126/science.1151526
pmid: 18029452
|
111 |
Zeng H, Guo M, Martins-Taylor K, Wang X, Zhang Z, Park J W, Zhan S, Kronenberg M S, Lichtler A, Liu H X, Chen F P, Yue L, Li X J, Xu R H (2010). Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS ONE, 5(7): e11853
https://doi.org/10.1371/journal.pone.0011853
pmid: 20686615
|
112 |
Zhang N, An M C, Montoro D, Ellerby L M (2010). Characterization of Human Huntington’s Disease Cell Model from Induced Pluripotent Stem Cells. PLoS Curr, 2: RRN1193
https://doi.org/10.1371/currents.RRN1193
pmid: 21037797
|
113 |
Zhang S C (2006). Neural subtype specification from embryonic stem cells. Brain Pathol, 16(2): 132–142
https://doi.org/10.1111/j.1750-3639.2006.00008.x
pmid: 16768754
|
114 |
Zhang S C, Wernig M, Duncan I D, Brüstle O, Thomson J A (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol, 19(12): 1129–1133
https://doi.org/10.1038/nbt1201-1129
pmid: 11731781
|
115 |
Zhao X, Alvarado D, Rainier S, Lemons R, Hedera P, Weber C H, Tukel T, Apak M, Heiman-Patterson T, Ming L, Bui M, Fink J K (2001). Mutations in a newly identified GTPase gene cause autosomal dominant hereditary spastic paraplegia. Nat Genet, 29(3): 326–331
https://doi.org/10.1038/ng758
pmid: 11685207
|
116 |
Zhu P P, Denton K R, Pierson T M, Li X J, Blackstone C (2014). Pharmacologic rescue of axon growth defects in a human iPSC model of hereditary spastic paraplegia SPG3A. Hum Mol Genet, 23(21): 5638–5648
https://doi.org/10.1093/hmg/ddu280
pmid: 24908668
|
117 |
Zhu P P, Patterson A, Lavoie B, Stadler J, Shoeb M, Patel R, Blackstone C (2003). Cellular localization, oligomerization, and membrane association of the hereditary spastic paraplegia 3A (SPG3A) protein atlastin. J Biol Chem, 278(49): 49063–49071
https://doi.org/10.1074/jbc.M306702200
pmid: 14506257
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|