Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (4) : 312-327    https://doi.org/10.1007/s11515-011-1080-3
REVIEW
Heat shock proteins: Molecules with assorted functions
Surajit SARKAR1,2(email.png), M. Dhruba SINGH1, Renu YADAV1, K. P. ARUNKUMAR2, Geoffrey W. PITTMAN2
1. 1. Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi-110021, India; 2. 2. Division of Biology, MC156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
 Download: PDF(638 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Heat shock proteins (Hsps) or molecular chaperones, are highly conserved protein families present in all studied organisms. Following cellular stress, the intracellular concentration of Hsps generally increases several folds. Hsps undergo ATP-driven conformational changes to stabilize unfolded proteins or unfold them for translocation across membranes or mark them for degradation. They are broadly classified in several families according to their molecular weights and functional properties. Extensive studies during the past few decades suggest that Hsps play a vital role in both normal cellular homeostasis and stress response. Hsps have been reported to interact with numerous substrates and are involved in many biological functions such as cellular communication, immune response, protein transport, apoptosis, cell cycle regulation, gametogenesis and aging. The present review attempts to provide a brief overview of various Hsps and summarizes their involvement in diverse biological activities.

Keywords heat shock protein      chaperone      chaperonin      Hsp100      Hsp90      Hsp70      Hsp60      sHsps      fertility      apoptosis      cytoskeleton     
Corresponding Author(s): SARKAR Surajit,Email:sarkar@south.du.ac.in, sarkar@caltech.edu   
Issue Date: 01 August 2011
 Cite this article:   
K. P. ARUNKUMAR,Geoffrey W. PITTMAN,Surajit SARKAR, et al. Heat shock proteins: Molecules with assorted functions[J]. Front Biol, 2011, 6(4): 312-327.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1080-3
https://academic.hep.com.cn/fib/EN/Y2011/V6/I4/312
Biological functionsHeat shock proteins
Stress response, thermotolerance, protein folding (stress induced)Hsp100, Hsp90, Hsp70, Hsp60, sHsps
Protein folding (newly synthesized), maintenance of protein homeostasis, microfilament stabilization, maintenance of cytoskeletal components, cellular communication, apoptosis, epithelial remodeling, tumorigenesisHsp90, Hsc70, Hsp60, sHsp
Aging and longevityHsp90, Hsc70, Hsp60, sHsps
Immune response, development of autoimmune disordersHsp90, Hsp60, sHsps
Modifier of PolyQ induced phenotypes/ neurodegenerationHsp70, Hsc70, Hsp60, sHsps
Fertility, gametogenesisHsp90, Hsp60
microRNA processingHsp90, Hsc70
Tab.1  Classification of major heat shock proteins (Hsps) based on their proposed biological functions
Fig.1  Confocal images showing distribution of Hsp60 (green) and F-actin (red) in mid-gut muscle (A) and flight muscle (B). Compare to wild type egg chamber (C), mutant egg chamber (D) exhibits abnormal arrangement of F-actin cytoskeleton. OC: Oocyte, NC: Nurse cell.
1 Adams M D, Celniker S E, Holt R A, Evans C A, Gocayne J D, Amanatides P G, Scherer S E, Li P W, Hoskins R A, Galle R F, George R A, Lewis S E, Richards S, Ashburner M, Henderson S N, Sutton G G, Wortman J R, Yandell M D, Zhang Q, Chen L X, Brandon R C, Rogers Y H, Blazej R G, Champe M, Pfeiffer B D, Wan K H, Doyle C, Baxter E G, Helt G, Nelson C R, Gabor G L, Abril J F, Agbayani A, An H J, Andrews-Pfannkoch C, Baldwin D, Ballew R M, Basu A, Baxendale J, Bayraktaroglu L, Beasley E M, Beeson K Y, Benos P V, Berman B P, Bhandari D, Bolshakov S, Borkova D, Botchan M R, Bouck J, Brokstein P, Brottier P, Burtis K C, Busam D A, Butler H, Cadieu E, Center A, Chandra I, Cherry J M, Cawley S, Dahlke C, Davenport L B, Davies P, de Pablos B, Delcher A, Deng Z, Mays A D, Dew I, Dietz S M, Dodson K, Doup L E, Downes M, Dugan-Rocha S, Dunkov B C, Dunn P, Durbin K J, Evangelista C C, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian A E, Garg N S, Gelbart W M, Glasser K, Glodek A, Gong F, Gorrell J H, Gu Z, Guan P, Harris M, Harris N L, Harvey D, Heiman T J, Hernandez J R, Houck J, Hostin D, Houston K A, Howland T J, Wei M H, Ibegwam C, Jalali M, Kalush F, Karpen G H, Ke Z, Kennison J A, Ketchum K A, Kimmel B E, Kodira C D, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky A A, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh T C, McLeod M P, McPherson D, Merkulov G, Milshina N V, Mobarry C, Morris J, Moshrefi A, Mount S M, Moy M, Murphy B, Murphy L, Muzny D M, Nelson D L, Nelson D R, Nelson K A, Nixon K, Nusskern D R, Pacleb J M, Palazzolo M, Pittman G S, Pan S, Pollard J, Puri V, Reese M G, Reinert K, Remington K, Saunders R D, Scheeler F, Shen H, Shue B C, Sidén-Kiamos I, Simpson M, Skupski M P, Smith T, Spier E, Spradling A C, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang A H, Wang X, Wang Z Y, Wassarman D A, Weinstock G M, Weissenbach J, Williams S M, WoodageT K C, Worley D, Wu S, Yang Q A, Yao J, Ye R F, Yeh J S, Zaveri M, Zhan G, Zhang Q, Zhao L, Zheng X H, Zheng F N, Zhong W, Zhong X, Zhou S, Zhu X, Smith H O, Gibbs R A, Myers E W, Rubin G M, Venter J C, (2000). The genome sequence of Drosophila melanogaster. Science , 287(5461): 2185–2195
doi: 10.1126/science.287.5461.2185 pmid:10731132
2 Ambrosio L, Schedl P (1984). Gene expression during Drosophila melanogaster oogenesis: analysis by in situ hybridization to tissue sections. Dev Biol , 105(1): 80–92
doi: 10.1016/0012-1606(84)90263-X pmid:6432608
3 Arrigo A P, Tanguay R M (1991). Expression of heat shock proteins during development in Drosophila. Results Probl Cell Differ , 17: 106–119
pmid:1803417
4 Arya R, Lakhotia S C (2008). Hsp60D is essential for caspase-mediated induced apoptosis in Drosophila melanogaster. Cell Stress Chaperones , 13(4): 509–526
doi: 10.1007/s12192-008-0051-3 pmid:18506601
5 Arya R, Mallik M, Lakhotia S C (2007). Heat shock genes-integrating cell survival and death. J Biosci , 32(3): 595–610
doi: 10.1007/s12038-007-0059-3 pmid:17536179
6 Asquith K L, Baleato R M, McLaughlin E A, Nixon B, Aitken R J (2004). Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J Cell Sci , 117(Pt 16): 3645–3657
doi: 10.1242/jcs.01214 pmid:15252132
7 Baena-López L A, Alonso J, Rodriguez J, Santarén J F (2008). The expression of heat shock protein HSP60A reveals a dynamic mitochondrial pattern in Drosophila melanogaster embryos. J Proteome Res , 7(7): 2780–2788
doi: 10.1021/pr800006x pmid:18549261
8 Betrán E, Thornton K, Long M (2002). Retroposed new genes out of the X in Drosophila. Genome Res , 12(12): 1854–1859
doi: 10.1101/gr.6049 pmid:12466289
9 Boilard M, Reyes-Moreno C, Lachance C, Massicotte L, Bailey J L, Sirard M A, Leclerc P (2004). Localization of the chaperone proteins GRP78 and HSP60 on the luminal surface of bovine oviduct epithelial cells and their association with spermatozoa. Biol Reprod , 71(6): 1879–1889
doi: 10.1095/biolreprod.103.026849 pmid:15286042
10 Bond U, Schlesinger M J (1985). Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol Cell Biol , 5(5): 949–956
pmid:2987683
11 B?sl B, Grimminger V, Walter S (2005). Substrate binding to the molecular chaperone Hsp104 and its regulation by nucleotides. J Biol Chem , 280(46): 38170–38176
doi: 10.1074/jbc.M506149200 pmid:16135516
12 Bukau B, Horwich A L (1998). The Hsp70 and Hsp60 chaperone machines. Cell , 92(3): 351–366
doi: 10.1016/S0092-8674(00)80928-9 pmid:9476895
13 Burmester T, Mink M, Pál M, Lászlóffy Z, Lepesant J, Maróy P (2000). Genetic and molecular analysis in the 70CD region of the third chromosome of Drosophila melanogaster. Gene , 246(1–2): 157–167
doi: 10.1016/S0378-1119(00)00066-4 pmid:10767537
14 Burns R G, Surridge C D (1994). Functional role of a consensus peptide which is common to alpha-, beta-, and gamma-tubulin, to actin and centractin, to phytochrome A, and to the TCP1 alpha chaperonin protein. FEBS Lett , 347(2–3): 105–111
doi: 10.1016/0014-5793(94)00522-2 pmid:8033985
15 Candido E P (2002). The small heat shock proteins of the nematode Caenorhabditis elegans: structure, regulation and biology. Prog Mol Subcell Biol , 28: 61–78
pmid:11908066
16 Caplan A J (2003). What is a co-chaperone? Cell Stress Chaperones , 8(2): 105–107
doi: 10.1379/1466-1268(2003)008<0105:WIAC>2.0.CO;2 pmid:14627194
17 Carbajal M E, Valet J P, Charest P M, Tanguay R M (1990). Purification of Drosophila hsp 83 and immunoelectron microscopic localization. Eur J Cell Biol , 52(1): 147–156
pmid:2201544
18 Cavanagh A C (1996). Identification of early pregnancy factor as chaperonin 10: implications for understanding its role. Rev Reprod , 1(1): 28–32
doi: 10.1530/ror.0.0010028 pmid:9414435
19 Chan H Y, Warrick J M, Andriola I, Merry D, Bonini N M (2002). Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Hum Mol Genet , 11(23): 2895–2904
doi: 10.1093/hmg/11.23.2895 pmid:12393801
20 Chandrasekhar G N, Tilly K, Woolford C, Hendrix R, Georgopoulos C (1986). Purification and properties of the groES morphogenetic protein of Escherichia coli. J Biol Chem , 261(26): 12414–12419
pmid:3017973
21 Chen X, Sullivan D S, Huffaker T C (1994). Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo. Proc Natl Acad Sci USA , 91(19): 9111–9115
doi: 10.1073/pnas.91.19.9111 pmid:7916460
22 Chun J N, Choi B, Lee K W, Lee D J, Kang D H, Lee J Y, Song I S, Kim H I, Lee S H, Kim H S, Lee N K, Lee S Y, Lee K J, Kim J, Kang S W, Linden R (2010). Cytosolic Hsp60 is involved in the NF-kappaB-dependent survival of cancer cells via IKK regulation. PLoS ONE , 5(3): e9422
doi: 10.1371/journal.pone.0009422 pmid:20351780
23 Clarke A K (1996). Variation on a theme: Combined molecular chaperone and proteolysis functions in Clp/Hsp100 proteins. J Biosci , 21(2): 161–177
doi: 10.1007/BF02703106
24 Creutz C E, Liou A, Snyder S L, Brownawell A, Willison K (1994). Identification of the major chromaffin granule-binding protein, chromobindin A, as the cytosolic chaperonin CCT (chaperonin containing TCP-1). J Biol Chem , 269(51): 32035–32038
pmid:7798195
25 Csermely P (1997). Proteins, RNAs and chaperones in enzyme evolution: a folding perspective. Trends Biochem Sci , 22(5): 147–149
doi: 10.1016/S0968-0004(97)01026-8 pmid:9175467
26 Csermely P, Kahn C R (1991). The 90-kDa heat shock protein (hsp-90) possesses an ATP binding site and autophosphorylating activity. J Biol Chem , 266(8): 4943–4950
pmid:2002041
27 Csermely P, Kajtár J, Hollósi M, Oikarinen J, Somogyi J (1994). The 90 kDa heat shock protein (hsp90) induces the condensation of the chromatin structure. Biochem Biophys Res Commun , 202(3): 1657–1663
doi: 10.1006/bbrc.1994.2124 pmid:8060353
28 Csermely P, Schnaider T, Soti C, Prohaszka Z, Nadai G (1998). The 90 kDa molecular chaperone family: Structure, function and clinical applications. A comprehensive review. J Phar Ther , 79(2): 129–168
doi: 10.1016/S0163-7258(98)00013-8
29 Cutforth T, Rubin G M (1994). Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell , 77(7): 1027–1036
doi: 10.1016/0092-8674(94)90442-1 pmid:8020093
30 Czar M J, Owens-Grillo J K, Dittmar K D, Hutchison K A, Zacharek A M, Leach K L, Deibel M R Jr, Pratt W B (1994). Characterization of the protein-protein interactions determining the heat shock protein (hsp90.hsp70.hsp56) heterocomplex. J Biol Chem , 269(15): 11155–11161
pmid:8157642
31 de Graeff-Meeder E R, Voorhorst M, van Eden W, Schuurman H J, Huber J, Barkley D, Maini R N, Kuis W, Rijkers G T, Zegers B J (1990). Antibodies to the mycobacterial 65-kD heat-shock protein are reactive with synovial tissue of adjuvant arthritic rats and patients with rheumatoid arthritis and osteoarthritis. Am J Pathol , 137(5): 1013–1017
pmid:1700613
32 Dix D J (1997). Hsp70 expression and function during gametogenesis. Cell Stress Chaperones , 2(2): 73–77
doi: 10.1379/1466-1268(1997)002<0073:HEAFDG>2.3.CO;2 pmid:9250397
33 Eddy E M (1998). HSP70-2 heat-shock protein of mouse spermatogenic cells. J Exp Zool , 282(1–2): 261–271
doi: 10.1002/(SICI)1097-010X(199809/10)282:1/2<261::AID-JEZ28>3.0.CO;2-V pmid:9723183
34 Ellis J (1987). Proteins as molecular chaperones. Nature , 328(6129): 378–379
doi: 10.1038/328378a0 pmid:3112578
35 Ellis R J (2005). Chaperomics: in vivo GroEL function defined. Curr Biol , 15(17): 661–663
doi: 10.1016/j.cub.2005.08.025 pmid:15823539
36 Eskes R, Desagher S, Antonsson B, Martinou J C (2000). Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol , 20(3): 929–935
doi: 10.1128/MCB.20.3.929-935.2000 pmid:10629050
37 Feder M E, Hofmann G E (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol , 61(1): 243–282
doi: 10.1146/annurev.physiol.61.1.243 pmid:10099689
38 Feldman D E, Frydman J (2000). Protein folding in vivo: the importance of molecular chaperones. Curr Opin Struct Biol , 10(1): 26–33
doi: 10.1016/S0959-440X(99)00044-5 pmid:10679467
39 Feltham J L, Gierasch L M (2000). GroEL-substrate interactions: molding the fold, or folding the mold? Cell , 100(2): 193–196
doi: 10.1016/S0092-8674(00)81557-3 pmid:10660042
40 Frees D, Chastanet A, Qazi S, S?rensen K, Hill P, Msadek T, Ingmer H (2004). Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol , 54(5): 1445–1462
doi: 10.1111/j.1365-2958.2004.04368.x pmid:15554981
41 Galdiero M, de l’Ero G C, Marcatili A (1997). Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infect Immun , 65(2): 699–707
pmid:9009333
42 Gao Y, Thomas J O, Chow R L, Lee G H, Cowan N J (1992). A cytoplasmic chaperonin that catalyzes beta-actin folding. Cell , 69(6): 1043–1050
doi: 10.1016/0092-8674(92)90622-J pmid:1351421
43 Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001). Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun , 286(3): 433–442
doi: 10.1006/bbrc.2001.5427 pmid:11511077
44 Gerthoffer W T, Gunst S J (2001). Invited review: focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J Appl Physiol , 91(2): 963–972
pmid:11457815
45 Gething M J, Sambrook J (1992). Protein folding in the cell. Nature , 355(6355): 33–45
doi: 10.1038/355033a0 pmid:1731198
46 Glass J I, Lefkowitz E J, Glass J S, Heiner C R, Chen E Y, Cassell G H (2000). The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature , 407(6805): 757–762
doi: 10.1038/35037619 pmid:11048724
47 Gong W J, Golic K G (2006). Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics , 172(1): 275–286
doi: 10.1534/genetics.105.048793 pmid:16204210
48 Gozes I, Brenneman D E (1996). Activity-dependent neurotrophic factor (ADNF). An extracellular neuroprotective chaperonin? J Mol Neurosci , 7(4): 235–244
doi: 10.1007/BF02737061 pmid:8968945
49 Grantham J, Ruddock L W, Roobol A, Carden M J (2002). Eukaryotic chaperonin containing T-complex polypeptide 1 interacts with filamentous actin and reduces the initial rate of actin polymerization in vitro. Cell Stress Chaperones , 7(3): 235–242
doi: 10.1379/1466-1268(2002)007<0235:ECCTCP>2.0.CO;2 pmid:12482199
50 Günther E, Walter L (1994). Genetic aspects of the hsp70 multigene family in vertebrates. Experientia , 50(11–12): 987–1001
doi: 10.1007/BF01923453 pmid:7988674
51 Gupta R S (1995). Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol , 15(1): 1–11
doi: 10.1111/j.1365-2958.1995.tb02216.x pmid:7752884
52 Gupta R S, Ramachandra N B, Bowes T, Singh B (2008). Unusual cellular disposition of the mitochondrial molecular chaperones Hsp60, Hsp70 and Hsp10. Novartis Found Symp , 291: 59–68, discussion 69–73, 137–140
doi: 10.1002/9780470754030.ch5 pmid:18575266
53 Gupta S, Knowlton A A (2002). Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation , 106(21): 2727–2733
doi: 10.1161/01.CIR.0000038112.64503.6E pmid:12438300
54 Hackett R W, Lis J T (1983). Localization of the hsp83 transcript within a 3292 nucleotide sequence from the 63B heat shock locus of D. melanogaster. Nucleic Acids Res , 11(20): 7011–7030
doi: 10.1093/nar/11.20.7011 pmid:6314271
55 Hartl F U, Martin J, Neupert W (1992). Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct , 21(1): 293–322
doi: 10.1146/annurev.bb.21.060192.001453 pmid:1525471
56 Heikkila J J (2010). Heat shock protein gene expression and function in amphibian model systems. Comp Biochem Physiol A Mol Integr Physiol , 156(1): 19–33
doi: 10.1016/j.cbpa.2010.01.024 pmid:20138231
57 Hemmingsen S M (1992). What is a chaperonin? Nature , 357(6380): 650–650
doi: 10.1038/357650b0 pmid:1352040
58 Heufelder A E, Wenzel B E, Bahn R S (1992). Cell surface localization of a 72 kilodalton heat shock protein in retroocular fibroblasts from patients with Graves’ ophthalmopathy. J Clin Endocrinol Metab , 74(4): 732–736
doi: 10.1210/jc.74.4.732 pmid:1548335
59 Hightower L E, Seth S E (1994). Interactions of vertebrate Hsc70 and HSP70 with unfolded proteins and peptides. In “The Biology of Heat Shock Proteins and Molecular Chaperones”, Morimoto RI (ed), Cold Spring Harbour Lab Press, NY , 179–207
60 Hill J E, Penny S L, Crowell K G, Goh S H, Hemmingsen S M (2004). cpnDB: a chaperonin sequence database. Genome Res , 14(8): 1669–1675
doi: 10.1101/gr.2649204 pmid:15289485
61 Hixon W G, Searcy D G (1993). Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts. Biosystems , 29(2–3): 151–160
doi: 10.1016/0303-2647(93)90091-P pmid:8374067
62 Hochstrasser M (1992). Ubiquitin and intracellular protein degradation. Curr Opin Cell Biol , 4(6): 1024–1031
doi: 10.1016/0955-0674(92)90135-Y pmid:1336669
63 Houlihan J L, Metzler J J, Blum J S (2009). HSP90alpha and HSP90beta isoforms selectively modulate MHC class II antigen presentation in B cells. J Immunol , 182(12): 7451–7458
doi: 10.4049/jimmunol.0804296 pmid:19494268
64 Houry W A, Frishman D, Eckerskorn C, Lottspeich F, Hartl F U (1999). Identification of in vivo substrates of the chaperonin GroEL. Nature , 402(6758): 147–154
doi: 10.1038/45977 pmid:10647006
65 Hwang M, Moretti L, Lu B (2009). HSP90 inhibitors: multi-targeted antitumor effects and novel combinatorial therapeutic approaches in cancer therapy. Curr Med Chem , 16(24): 3081–3092
doi: 10.2174/092986709788802999 pmid:19689285
66 Inano K, Curtis S W, Korach K S, Omata S, Horigome T (1994). Heat shock protein 90 strongly stimulates the binding of purified estrogen receptor to its responsive element. J Biochem , 116(4): 759–766
pmid:7883750
67 Ireland R C, Berger E M (1982). Synthesis of low molecular weight heat shock peptides stimulated by ecdysterone in a cultured Drosophila cell line. Proc Natl Acad Sci USA , 79(3): 855–859
doi: 10.1073/pnas.79.3.855 pmid:6801663
68 Ito H, Kamei K, Iwamoto I, Inaguma Y, Tsuzuki M, Kishikawa M, Shimada A, Hosokawa M, Kato K (2003). Hsp27 suppresses the formation of inclusion bodies induced by expression of R120G alpha B-crystallin, a cause of desmin-related myopathy. Cell Mol Life Sci , 60(6): 1217–1223
pmid:12861387
69 Iwasaki S, Kobayashi M, Yoda M, Sakaguchi Y, Katsuma S, Suzuki T, Tomari Y (2010). Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell , 39(2): 292–299
doi: 10.1016/j.molcel.2010.05.015 pmid:20605501
70 Jakus S, Neuer A, Dieterle S, Bongiovanni A M, Witkin S S (2008). Antibody to the Chlamydia trachomatis 60 kDa heat shock protein in follicular fluid and in vitro fertilization outcome. Am J Reprod Immunol , 59(2): 85–89
doi: 10.1111/j.1600-0897.2007.00539.x pmid:18076634
71 Jinn T L, Chen Y M, Lin C Y (1995). Characterization and physiological function of Class I low-molecular-mass, heat-shock protein complex in soybean. Plant Physiol , 108(2): 693–701
pmid:12228501
72 Johnston M, Geoffroy M C, Sobala A, Hay R, Hutvagner G (2010). HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell , 21(9): 1462–1469
doi: 10.1091/mbc.E09-10-0885 pmid:20237157
73 Jost M, Kari C, Rodeck U (2000). The EGF receptor- an essential regulator of multiple epidermal functions. Eur J Dermatol , 10(7): 505–510
pmid:11056418
74 Kagawa H K, Osipiuk J, Maltsev N, Overbeek R, Quaite-Randall E, Joachimiak A, Trent J D (1995). The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae. J Mol Biol , 253(5): 712–725
doi: 10.1006/jmbi.1995.0585 pmid:7473746
75 Kampinga H H, Craig E A (2010). The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol , 11(8): 579–592
doi: 10.1038/nrm2941 pmid:20651708
76 Kappé G, Franck E, Verschuure P, Boelens W C, Leunissen J A, de Jong W W (2003). The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones , 8(1): 53–61
doi: 10.1379/1466-1268(2003)8<53:THGECS>2.0.CO;2 pmid:12820654
77 Katinka M D, Duprat S, Cornillot E, Méténier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivarès C P (2001). Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature , 414(6862): 450–453
doi: 10.1038/35106579 pmid:11719806
78 Kellermayer M S, Csermely P (1995). ATP induces dissociation of the 90 kDa heat shock protein (hsp90) from F-actin: interference with the binding of heavy meromyosin. Biochem Biophys Res Commun , 211(1): 166–174
doi: 10.1006/bbrc.1995.1792 pmid:7779083
79 Kikis E A, Gidalevitz T, Morimoto R I (2010). Protein homeostasis in models of aging and age-related conformational disease. Adv Exp Med Biol , 694: 138–159
pmid:20886762
80 Kitagawa M, Wada C, Yoshioka S, Yura T (1991). Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock sigma factor (sigma 32). J Bacteriol , 173(14): 4247–4253
pmid:1906060
81 Kol A, Lichtman A H, Finberg R W, Libby P, Kurt-Jones E A (2000). Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol , 164(1): 13–17
pmid:10604986
82 Kozlova T, Perezgasga L, Reynaud E, Zurita M (1997). The Drosophila melanogaster homologue of the hsp60 gene is encoded by the essential locus l(1)10AC and is differentially expressed during fly development. Dev Genes Evol , 207(4): 253–263
doi: 10.1007/s004270050113
83 Kurtz S, Rossi J, Petko L, Lindquist S (1986). An ancient developmental induction: heat-shock proteins induced in sporulation and oogensis. Science , 231(4742): 1154–1157
doi: 10.1146/annurev.physiol.67.040403.103635 pmid:15709958
84 Lakhotia S C (2001). Heat Shock Response- Regulation and Functions of Coding and non-coding genes in Drosophila. Proc Ind Natl Acad Sci, B 5:247–264 .
85 Lakhotia S C, Singh A K (1989). A novel heat shock polypeptide in Malpighian tubule of Drosophila melanogaster. J Genet , 68(3): 129–268
doi: 10.1007/BF02927855
86 Laplante A F, Moulin V, Auger F A, Landry J, Li H, Morrow G, Tanguay R M, Germain L (1998). Expression of heat shock proteins in mouse skin during wound healing. J Histochem Cytochem , 46(11): 1291–1301
pmid:9774628
87 Larsen J K, Yamboliev I A, Weber L A, Gerthoffer W T (1997). Phosphorylation of the 27-kDa heat shock protein via p38 MAP kinase and MAPKAP kinase in smooth muscle. Am J Physiol , 273(5 Pt 1): L930–L940
pmid:9374719
88 Leicht B G, Biessmann H, Palter K B, Bonner J J (1986). Small heat shock proteins of Drosophila associate with the cytoskeleton. Proc Natl Acad Sci USA , 83(1): 90–94
doi: 10.1073/pnas.83.1.90 pmid:3079906
89 Leonhardt S A, Fearson K, Danese P N, Mason T L (1993). HSP78 encodes a yeast mitochondrial heat shock protein in the Clp family of ATP-dependent proteases. Mol Cell Biol , 13(10): 6304–6313
pmid:8413229
90 Leroux M R, Candido E P M (1997). Subunit characterization of the Caenorhabditis elegans chaperonin containing TCP-1 and expression pattern of the gene encoding CCT-1. Biochem Biophys Res Commun , 241(3): 687–692
doi: 10.1006/bbrc.1997.7889 pmid:9434769
91 Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, Liu Z G (2000). Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem , 275(14): 10519–10526
doi: 10.1074/jbc.275.14.10519 pmid:10744744
92 Lilie H, Lang K, Rudolph R, Buchner J (1993). Prolyl isomerases catalyze antibody folding in vitro. Protein Sci , 2(9): 1490–1496
doi: 10.1002/pro.5560020913 pmid:8104614
93 Lindquist S (1980). Varying patterns of protein synthesis in Drosophila during heat shock: implications for regulation. Dev Biol , 77(2): 463–479
doi: 10.1016/0012-1606(80)90488-1 pmid:7399133
94 Lindquist S (1986). The heat-shock response. Annu Rev Biochem , 55(1): 1151–1191
doi: 10.1146/annurev.bi.55.070186.005443 pmid:2427013
95 Lopatin D E, Combs A, Sweier D G, Fenno J C, Dhamija S (2000). Characterization of heat-inducible expression and cloning of HtpG (Hsp90 homologue) of Porphyromonas gingivalis. Infect Immun , 68(4): 1980–1987
doi: 10.1128/IAI.68.4.1980-1987.2000 pmid:10722592
96 Matzinger P (2002). The danger model: a renewed sense of self. Science , 296(5566): 301–305
doi: 10.1126/science.1071059 pmid:11951032
97 Mayer M P (2010). Gymnastics of molecular chaperones. Mol Cell , 39(3): 321–331
doi: 10.1016/j.molcel.2010.07.012 pmid:20705236
98 McDonough H, Patterson C (2003). CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones , 8(4): 303–308
doi: 10.1379/1466-1268(2003)008<0303:CALBTC>2.0.CO;2 pmid:15115282
99 McKay D B (1991). Structure of the 70-kilodalton heat-shock-related proteins. Springer Semin Immunopathol , 13(1): 1–9
doi: 10.1007/BF01225274 pmid:1776119
100 Meinhardt A, Parvinen M, Bacher M, Aumüller G, Hakovirta H, Yagi A, Seitz J (1995). Expression of mitochondrial heat shock protein 60 in distinct cell types and defined stages of rat seminiferous epithelium. Biol Reprod , 52(4): 798–807
doi: 10.1095/biolreprod52.4.798 pmid:7780001
101 Melki R, Cowan N J (1994). Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates. Mol Cell Biol , 14(5): 2895–2904
pmid:7909354
102 Michaud S, Morrow G, Marchand J, Tanguay R M (2002). Drosophila small heat shock proteins: cell and organelle-specific chaperones? Prog Mol Subcell Biol , 28: 79–101
pmid:11908067
103 Mikhaylova L M, Nguyen K, Nurminsky D I (2008). Analysis of the Drosophila melanogaster testes transcriptome reveals coordinate regulation of paralogous genes. Genetics , 179(1): 305–315
doi: 10.1534/genetics.107.080267 pmid:18493055
104 Miklos D, Caplan S, Mertens D, Hynes G, Pitluk Z, Kashi Y, Harrison-Lavoie K, Stevenson S, Brown C, Barrell B, (1994). Primary structure and function of a second essential member of the heterooligomeric TCP1 chaperonin complex of yeast, TCP1 beta. Proc Natl Acad Sci USA , 91(7): 2743–2747
doi: 10.1073/pnas.91.7.2743 pmid:7908441
105 Miller S G, Leclerc R F, Erdos G W (1990). Identification and characterization of a testis-specific isoform of a chaperonin in a moth, Heliothis virescens. J Mol Biol , 214(2): 407–422
doi: 10.1016/0022-2836(90)90190-W pmid:1974308
106 Morange M (2006). HSFs in development. Handb Exp Pharmacol , 172(172): 153–169
doi: 10.1007/3-540-29717-0_7 pmid:16610359
107 Morcillo G, Diez J L, Carbajal M E, Tanguay R M (1993). HSP90 associates with specific heat shock puffs (hsr omega) in polytene chromosomes of Drosophila and Chironomus. Chromosoma , 102(9): 648–659
doi: 10.1007/BF00352313 pmid:8306827
108 Morrow G, Heikkila J J, Tanguay R M (2006). Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperones , 11(1): 51–60
doi: 10.1379/CSC-166.1 pmid:16572729
109 Morrow G, Tanguay R M (2003). Heat shock proteins and aging in Drosophila melanogaster. Semin Cell Dev Biol , 14(5): 291–299
doi: 10.1016/j.semcdb.2003.09.023 pmid:14986859
110 Murata S, Minami Y, Minami M, Chiba T, Tanaka K (2001). CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep , 2(12): 1133–1138
doi: 10.1093/embo-reports/kve246 pmid:11743028
111 Naaby-Hansen S, Herr J C (2010). Heat shock proteins on the human sperm surface. J Reprod Immunol , 84(1): 32–40
doi: 10.1016/j.jri.2009.09.006 pmid:19962198
112 Nakahara K, Kim K, Sciulli C, Dowd S R, Minden J S, Carthew R W (2005). Targets of microRNA regulation in the Drosophila oocyte proteome. Proc Natl Acad Sci USA , 102(34): 12023–12028
doi: 10.1073/pnas.0500053102 pmid:16099838
113 Neuer A, Lam K N, Tiller F W, Kiesel L, Witkin S S (1997). Humoral immune response to membrane components of Chlamydia trachomatis and expression of human 60 kDa heat shock protein in follicular fluid of in-vitro fertilization patients. Hum Reprod , 12(5): 925–929
doi: 10.1093/humrep/12.5.925 pmid:9194641
114 Neuer A, Spandorfer S D, Giraldo P, Dieterle S, Rosenwaks Z, Witkin S (2000). The role of heat shock protein in reproduction. Hum Repro Updt , 6(2): 149–159
doi: 10.1093/humupd/6.2.149
115 Nollen E A, Morimoto R I (2002). Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J Cell Sci , 115(Pt 14): 2809–2816
pmid:12082142
116 Nover L, ed. (1984). Heat Shock Response in eukaryotic cells. Springer-Verlag, Berlin , pp-1–78 .
117 Novoselova T V, Margulis B A, Novoselov S S, Sapozhnikov A M, van der Spuy J, Cheetham M E, Guzhova I V (2005). Treatment with extracellular HSP70/HSC70 protein can reduce polyglutamine toxicity and aggregation. J Neurochem , 94(3): 597–606
doi: 10.1111/j.1471-4159.2005.03119.x pmid:15992387
118 Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula S M, Kumar V, Weichselbaum R, Nalin C, Alnemri E S, Kufe D, Kharbanda S (2000). Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J , 19(16): 4310–4322
doi: 10.1093/emboj/19.16.4310 pmid:10944114
119 Paranko J, Seitz J, Meinhardt A (1996). Developmental expression of heat shock protein 60 (HSP60) in the rat testis and ovary. Differentiation , 60(3): 159–167
doi: 10.1046/j.1432-0436.1996.6030159.x pmid:8766595
120 Parsell D A, Lindquist S (1994). Heat shock proteins and stress tolerance. In “The Biology of Heat Shock proteins and Molecular Chaperones”, Morimoto RI. (ed), Cold Spring Harbor Lab Press, NY , 457–493
121 Parsell D A, Sanchez Y, Stitzel J D, Lindquist S (1991). Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature , 353(6341): 270–273
doi: 10.1038/353270a0 pmid:1896074
122 Pauli D, Arrigo A P, Tissières A (1992). Heat shock response in Drosophila. Experientia , 48(7): 623–629
doi: 10.1007/BF02118306 pmid:1639169
123 Pelham H R (1986). Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell , 46(7): 959–961
doi: 10.1016/0092-8674(86)90693-8 pmid:2944601
124 Pfister G, Stroh C M, Perschinka H, Kind M, Knoflach M, Hinterdorfer P, Wick G (2005). Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci , 118(Pt 8): 1587–1594
doi: 10.1242/jcs.02292 pmid:15784682
125 Pockley A G (2002). Heat shock proteins, inflammation, and cardiovascular disease. Circulation , 105(8): 1012–1017
doi: 10.1161/hc0802.103729 pmid:11864934
126 Pratt W B, Czar M J, Stancato L F, Owens J K (1993). The hsp56 immunophilin component of steroid receptor heterocomplexes: could this be the elusive nuclear localization signal-binding protein? J Steroid Biochem Mol Biol , 46(3): 269–279
doi: 10.1016/0960-0760(93)90216-J pmid:9831475
127 Pratt W B, Toft D O (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) , 228(2): 111–133
pmid:12563018
128 Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan R C, Melton D A (2002). “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science , 298(5593): 597–600
doi: 10.1126/science.1072530 pmid:12228720
129 Ranford J C, Coates A R, Henderson B (2000). Chaperonins are cell-signalling proteins: the unfolding biology of molecular chaperones. Expert Rev Mol Med , 2(8): 1–17
doi: 10.1017/S1462399400002015 pmid:14585136
130 Ranson N A, White H E, Saibil H R (1998). Chaperonins. Biochem J , 333(Pt 2): 233–242
pmid:9657960
131 Rassow J, Ahsen O V, Bomer U, Pfanner N (1997). Molecular chaperones: Towards a characterization of the heat-shock protein 70 family. Trends Genet , 7: 129–133
132 Retzlaff C, Yamamoto Y, Hoffman P S, Friedman H, Klein T W (1994). Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infect Immun , 62(12): 5689–5693
pmid:7960155
133 Richter K, Haslbeck M, Buchner J (2010). The heat shock response: life on the verge of death. Mol Cell , 40(2): 253–266
doi: 10.1016/j.molcel.2010.10.006 pmid:20965420
134 Ritossa F A (1962). A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experientia , 18(12): 571–573
doi: 10.1007/BF02172188
135 Roobol A, Carden M J (1999). Subunits of the eukaryotic cytosolic chaperonin CCT do not always behave as components of a uniform hetero-oligomeric particle. Eur J Cell Biol , 78(1): 21–32
pmid:10082421
136 Roobol A, Holmes F E, Hayes N V L, Baines A J, Carden M J (1995). Cytoplasmic chaperonin complexes enter neurites developing in vitro and differ in subunit composition within single cells. J Cell Sci , 108(Pt 4): 1477–1488
pmid:7615668
137 Rubin G M, Yandell M D, Wortman J R, Gabor Miklos G L, Nelson C R, Hariharan I K, Fortini M E, Li P W, Apweiler R, Fleischmann W, Cherry J M, Henikoff S, Skupski M P, Misra S, Ashburner M, Birney E, Boguski M S, Brody T, Brokstein P, Celniker S E, Chervitz S A, Coates D, Cravchik A, Gabrielian A, Galle R F, Gelbart W M, George R A, Goldstein L S, Gong F, Guan P, Harris N L, Hay B A, Hoskins R A, Li J, Li Z, Hynes R O, Jones S J, Kuehl P M, Lemaitre B, Littleton J T, Morrison D K, Mungall C, O’Farrell P H, Pickeral O K, Shue C, Vosshall L B, Zhang J, Zhao Q, Zheng X H, Lewis S (2000). Comparative genomics of the eukaryotes. Science , 287(5461): 2204–2215
doi: 10.1126/science.287.5461.2204 pmid:10731134
138 Rutherford S, Knapp J R, Csermely P (2007). Hsp90 and developmental networks. Adv Exp Med Biol , 594: 190–197
doi: 10.1007/978-0-387-39975-1_16 pmid:17205685
139 Rutherford S L (2003). Between genotype and phenotype: protein chaperones and evolvability. Nat Rev Genet , 4(4): 263–274
doi: 10.1038/nrg1041 pmid:12671657
140 Rutherford S L, Lindquist S (1998). Hsp90 as a capacitor for morphological evolution. Nature , 396(6709): 336–342
doi: 10.1038/24550 pmid:9845070
141 Saibil H (1996). The lid that shapes the pot: structure and function of the chaperonin GroES. Structure , 4(1): 1–4
doi: 10.1016/S0969-2126(96)00002-0 pmid:8805512
142 Samali A, Cai J, Zhivotovsky B, Jones D P, Orrenius S (1999). Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J , 18(8): 2040–2048
doi: 10.1093/emboj/18.8.2040 pmid:10205158
143 Sanchez Y, Lindquist S L (1990). HSP104 required for induced thermotolerance. Science , 248(4959): 1112–1115
doi: 2188365" target="_blank">10.1126/science. pmid:2188365 pmid:2188365
144 Sarge K D, Cullen K E (1997). Regulation of hsp expression during rodent spermatogenesis. Cell Mol Life Sci , 53(2): 191–197
doi: 10.1007/PL00000591 pmid:9118007
145 Sarkar S, Arya S, Lakhotia S C (2006) Chaperonins in life and death. In: Stress response: a molecular biology approach (A.S. Sreedhar ed): Signpost Publication: Trivandrum, India (p 43–60 ).
146 Sarkar S, Lakhotia S C (2005). The Hsp60C gene in the 25F cytogenetic region in Drosophila melanogaster is essential for tracheal development and fertility. J Genet , 84(3): 265–281
doi: 10.1007/BF02715797 pmid:16385159
147 Sarkar S, Lakhotia S C (2008). Hsp60C is required in follicle as well as germline cells during oogenesis in Drosophila melanogaster. Dev Dyn , 237(5): 1334–1347
doi: 10.1002/dvdy.21524 pmid:18386820
148 Schirmer E C, Glover J R, Singer M A, Lindquist S (1996). HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci , 21(8): 289–296
pmid:8772382
149 Shinoda H, Huang C C (1996). Heat shock proteins in middle ear cholesteatoma. Otolaryngol Head Neck Surg , 114(1): 77–83
doi: 10.1016/S0194-5998(96)70287-5 pmid:8570255
150 Singh B N, Lakhotia S C (1995). The non-induction of heat shocked Malpighian tubules of Drosophila larvae is not due to constitutive presence of hsp70 or hsc70. Curr Sci , 69: 178–182
151 Sj?gren L L, MacDonald T M, Sutinen S, Clarke A K (2004). Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol , 136(4): 4114–4126
doi: 10.1104/pp.104.053835 pmid:15563614
152 Slavotinek A M, Biesecker L G (2001). Unfolding the role of chaperones and chaperonins in human disease. Trends Genet , 17(9): 528–535
doi: 10.1016/S0168-9525(01)02413-1 pmid:11525836
153 Soares H, Penque D, Mouta C, Rodrigues-Pousada C (1994). A Tetrahymena orthologue of the mouse chaperonin subunit CCT gamma and its coexpression with tubulin during cilia recovery. J Biol Chem , 269(46): 29299–29307
pmid:7961900
154 Sollars V, Lu X, Xiao L, Wang X, Garfinkel M D, Ruden D M (2003). Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet , 33(1): 70–74
doi: 10.1038/ng1067 pmid:12483213
155 Soltys B J, Gupta R S (1996). Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp Cell Res , 222(1): 16–27
doi: 10.1006/excr.1996.0003 pmid:8549659
156 Soltys B J, Gupta R S (1999). Mitochondrial-matrix proteins at unexpected locations: are they exported? Trends Biochem Sci , 24(5): 174–177
doi: 10.1016/S0968-0004(99)01390-0 pmid:10322429
157 Song H Y, Dunbar J D, Zhang Y X, Guo D, Donner D B (1995). Identification of a protein with homology to hsp90 that binds the type 1 tumor necrosis factor receptor. J Biol Chem , 270(8): 3574–3581
doi: 10.1074/jbc.270.8.3574 pmid:7876093
158 Soti C, Csermely P (2002). Chaperones come of age. Cell Stress Chaperones , 7(2): 186–190
doi: 10.1379/1466-1268(2002)007<0186:CCOA>2.0.CO;2 pmid:12380686
159 S?ti C, Nagy E, Giricz Z, Vígh L, Csermely P, Ferdinandy P (2005). Heat shock proteins as emerging therapeutic targets. Br J Pharmacol , 146(6): 769–780
doi: 10.1038/sj.bjp.0706396 pmid:16170327
160 Southgate R, Ayme A, Voellmy R (1983). Nucleotide sequence analysis of the Drosophila small heat shock gene cluster at locus 67B. J Mol Biol , 165(1): 35–57
doi: 10.1016/S0022-2836(83)80241-1 pmid:6302284
161 Spiess C, Meyer A S, Reissmann S, Frydman J (2004). Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. Trends Cell Biol , 14(11): 598–604
doi: 10.1016/j.tcb.2004.09.015 pmid:15519848
162 Squires C L, Pedersen S, Ross B M, Squires C (1991). ClpB is the Escherichia coli heat shock protein F84.1. J Bacteriol , 173(14): 4254–4262
pmid:2066329
163 Srinivas U K, Revathi C J, Das M R (1987). Heat-induced expression of albumin during early stages of rat embryo development. Mol Cell Biol , 7(12): 4599–4602
pmid:3325829
164 Sternlicht H, Farr G W, Sternlicht M L, Driscoll J K, Willison K, Yaffe M B (1993). The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc Natl Acad Sci USA , 90(20): 9422–9426
doi: 10.1073/pnas.90.20.9422 pmid:8105476
165 Sun Y, MacRae T H (2005). Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci , 62(21): 2460–2476
doi: 10.1007/s00018-005-5190-4 pmid:16143830
166 Tabibzadeh S, Kong Q F, Satyaswaroop P G, Babaknia A (1996). Heat shock proteins in human endometrium throughout the menstrual cycle. Hum Reprod , 11(3): 633–640
pmid:8671282
167 Tai P K, Albers M W, Chang H, Faber L E, Schreiber S L (1992). Association of a 59-kilodalton immunophilin with the glucocorticoid receptor complex. Science , 256(5061): 1315–1318
doi: 1376003" target="_blank">10.1126/science. pmid:1376003 pmid:1376003
168 Tai P K, Faber L E (1985). Isolation of dissimilar components of the 8.5S nonactivated uterine progestin receptor. Can J Biochem Cell Biol , 63(1): 41–49
doi: 10.1139/o85-006 pmid:3886102
169 Taipale M, Jarosz D F, Lindquist S (2010). HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol , 11(7): 515–528
doi: 10.1038/nrm2918 pmid:20531426
170 Thirumalai D, Lorimer G H (2001). Chaperonin-mediated protein folding. Annu Rev Biophys Biomol Struct , 30(1): 245–269
doi: 10.1146/annurev.biophys.30.1.245 pmid:11340060
171 Thornberry N A, Lazebnik Y (1998). Caspases: enemies within. Science , 281(5381): 1312–1316
doi: 10.1126/science.281.5381.1312 pmid:9721091
172 Timakov B, Zhang P (2001). The hsp60B gene of Drosophila melanogaster is essential for the spermatid individualization process. Cell Stress Chaperones , 6(1): 71–77
doi: 10.1379/1466-1268(2001)006<0071:THGODM>2.0.CO;2 pmid:11525246
173 Tissières A, Mitchell H K, Tracy U M (1974). Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol , 84(3): 389–398
doi: 10.1016/0022-2836(74)90447-1 pmid:4219221
174 Togo T, Dickson D W (2002). Ballooned neurons in progressive supranuclear palsy are usually due to concurrent argyrophilic grain disease. Acta Neuropathol , 104(1): 53–56
doi: 10.1007/s00401-002-0520-1 pmid:12070664
175 T?r?k Z, Horváth I, Goloubinoff P, Kovács E, Glatz A, Balogh G, Vígh L (1997). Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc Natl Acad Sci USA , 94(6): 2192–2197
doi: 10.1073/pnas.94.6.2192 pmid:9122170
176 Trent J D, Kagawa H K, Yaoi T, Olle E, Zaluzec N J (1997). Chaperonin filaments: the archaeal cytoskeleton? Proc Natl Acad Sci USA , 94(10): 5383–5388
doi: 10.1073/pnas.94.10.5383 pmid:9144246
177 Trent J D, Nimmesgern E, Wall J S, Hartl F U, Horwich A L (1991). A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature , 354(6353): 490–493
doi: 10.1038/354490a0 pmid:1836250
178 Trepel J, Mollapour M, Giaccone G, Neckers L (2010). Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer , 10(8): 537–549
doi: 10.1038/nrc2887 pmid:20651736
179 Ursic D, Culbertson M R (1991). The yeast homolog to mouse Tcp-1 affects microtubule-mediated processes. Mol Cell Biol , 11(5): 2629–2640
pmid:1901944
180 Ursic D, Sedbrook J C, Himmel K L, Culbertson M R (1994). The essential yeast Tcp1 protein affects actin and microtubules. Mol Biol Cell , 5(10): 1065–1080
pmid:7865875
181 van der Straten A, Rommel C, Dickson B, Hafen E (1997). The heat shock protein 83 (Hsp83) is required for Raf-mediated signalling in Drosophila. EMBO J , 16(8): 1961–1969
doi: 10.1093/emboj/16.8.1961 pmid:9155022
182 van Eden W (2006). Immunoregulation of autoimmune diseases. Hum Immunol , 67(6): 446–453
doi: 10.1016/j.humimm.2006.03.010 pmid:16728268
183 Verdegaal M E, Zegveld S T, van Furth R (1996). Heat shock protein 65 induces CD62e, CD106, and CD54 on cultured human endothelial cells and increases their adhesiveness for monocytes and granulocytes. J Immunol , 157(1): 369–376
pmid:8683139
184 Vinh D B, Drubin D G (1994). A yeast TCP-1-like protein is required for actin function in vivo. Proc Natl Acad Sci USA , 91(19): 9116–9120
doi: 10.1073/pnas.91.19.9116 pmid:7916461
185 Voellmy R, Bromley P, Kocher H P (1983). Structural similarities between corresponding heat-shock proteins from different eucaryotic cells. J Biol Chem , 258(6): 3516–3522
pmid:6403517
186 Vos M J, Zijlstra M P, Kanon B, van Waarde-Verhagen M A, Brunt E R, Oosterveld-Hut H M, Carra S, Sibon O C, Kampinga H H (2010). HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet , 19(23): 4677–4693
doi: 10.1093/hmg/ddq398 pmid:20843828
187 Werner A, Meinhardt A, Seitz J, Bergmann M (1997). Distribution of heat-shock protein 60 immunoreactivity in testes of infertile men. Cell Tissue Res , 288(3): 539–544
doi: 10.1007/s004410050839 pmid:9134866
188 Werner A, Seitz J, Meinhardt A, Bergmann M (1996). Distribution pattern of HSP60 immunoreactivity in the testicular tissue of infertile men. Ann Anat , 178(1): 81–82
pmid:8717331
189 Whitley D, Goldberg S P, Jordan W D (1999). Heat shock proteins: a review of the molecular chaperones. J Vasc Surg , 29(4): 748–751
doi: 10.1074/jbc.274.29.20049 pmid:10400609
190 Wolf B B, Green D R (1999). Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem , 274(29): 20049–20052
doi: 10.1074/jbc.274.29.20049 pmid:10400609
191 Xanthoudakis S, Roy S, Rasper D, Hennessey T, Aubin Y, Cassady R, Tawa P, Ruel R, Rosen A, Nicholson D W (1999). Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J , 18(8): 2049–2056
doi: 10.1093/emboj/18.8.2049 pmid:10205159
192 Xu Q, Wick G (1996). The role of heat shock proteins in protection and pathophysiology of the arterial wall. Mol Med Today , 2(9): 372–379
doi: 10.1016/S1357-4310(96)10034-4 pmid:8885256
193 Yaffe M B, Farr G W, Miklos D, Horwich A L, Sternlicht M L, Sternlicht H (1992). TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature , 358(6383): 245–248
doi: 10.1038/358245a0 pmid:1630491
194 Yahara I (1999). The role of HSP90 in evolution. Genes Cells , 4(7): 375–379
doi: 10.1046/j.1365-2443.1999.00271.x pmid:10469170
195 Yamamoto M, Takahashi Y, Inano K, Horigome T, Sugano H (1991). Characterization of the hydrophobic region of heat shock protein 90. J Biochem , 110(1): 141–145
pmid:1939021
196 Zhang L, Koivisto L, Heino J, Uitto V J (2004). Bacterial heat shock protein 60 may increase epithelial cell migration through activation of MAP kinases and inhibition of α6β4 integrin expression. Biochem Biophys Res Commun , 319(4): 1088–1095
doi: 10.1016/j.bbrc.2004.04.202 pmid:15194479
197 Zhang L, Pelech S L, Mayrand D, Grenier D, Heino J, Uitto V J (2001). Bacterial heat shock protein-60 increases epithelial cell proliferation through the ERK1/2 MAP kinases. Exp Cell Res , 266(1): 11–20
doi: 10.1006/excr.2001.5199 pmid:11339820
198 Zhao R, Davey M, Hsu Y C, Kaplanek P, Tong A, Parsons A B, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry W A (2005). Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell , 120(5): 715–727
doi: 10.1016/j.cell.2004.12.024 pmid:15766533
199 Zimmerman J L, Petri W, Meselson M (1983). Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock. Cell , 32(4): 1161–1170
doi: 10.1016/0092-8674(83)90299-4 pmid:6404558
200 Zügel U, Kaufmann S H (1999). Immune response against heat shock proteins in infectious diseases. Immunobiology , 201(1): 22–35
pmid:10532278
[1] Mallahalli S. Manu, Kuruvanthe S. Rachana, Gopal M. Advirao. Insulin inhibits the JNK mediated cell death via upregulation of AKT expression in Schwann cells grown in hyperglycemia[J]. Front. Biol., 2018, 13(2): 137-144.
[2] Lauren A. Howell,Robert J. Tomko Jr.,Andrew R. Kusmierczyk. Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis[J]. Front. Biol., 2017, 12(1): 19-48.
[3] Noor GAMMOH,Simon WILKINSON. Autophagy in cancer biology and therapy[J]. Front. Biol., 2014, 9(1): 35-50.
[4] Alexandra K. SUCHOWERSKA,Thomas FATH. Cytoskeletal changes in diseases of the nervous system[J]. Front. Biol., 2014, 9(1): 5-17.
[5] Chaohong LIU, Margaret K. FALLEN, Heather MILLER, Arpita UPADHYAYA, Wenxia SONG. The actin cytoskeleton coordinates the signal transduction and antigen processing functions of the B cell antigen receptor[J]. Front Biol, 2013, 8(5): 475-485.
[6] Shiu-Cheung LUNG, Makoto YANAGISAWA, Simon D. X. CHUONG. Recent progress in the single-cell C4 photosynthesis in terrestrial plants[J]. Front Biol, 2012, 7(6): 539-547.
[7] Jiaqing WANG, Lin HOU, Zhenfeng HE, Daizong Li, Lijuan JIANG. Bioinformatic analysis of embryo development related small heat shock protein Hsp26 in Artemia species[J]. Front Biol, 2012, 7(4): 350-358.
[8] Haisheng CHEN, Yongfeng YANG, Guoshun LIU, Zhengxian TONG, . Evaluation of tobacco soil fertility suitability of the Sanmenxia area, China, based on geographic information systems[J]. Front. Biol., 2009, 4(4): 453-459.
[9] Dejing SHANG, Qiao CUI, Yang LI, Zhi YU, Lei WEN, Yuan ZHAO, Jianing ZHANG. Antitumor mechanism of Se-containing polysaccharide, a novel organic selenium compound[J]. Front Biol Chin, 2009, 4(3): 248-253.
[10] Haisheng CHEN, Zili SHEN, Guoshun LIU, Zhengxian TONG. Spatial variability of soil fertility factors in the Xiangcheng tobacco planting region, China[J]. Front Biol Chin, 2009, 4(3): 350-357.
[11] MIAO Ruidong, XIA Xiaohui, LÜ Minghua, WANG Qin, YANG Dongling. Apoptosis induced by 3,7-dinitrodibenzobromonium salts in K cells[J]. Front. Biol., 2008, 3(3): 275-278.
[12] ZHOU Yueqin, LI Xuquan, FENG Huiqin, MI Ke, YANG Qingyao, YANG Xiaotong. A comparison of in vitro anticancerous activity and mechanism of ethanolic extracts from different Ganoderma genus[J]. Front. Biol., 2006, 1(3): 275-279.
[13] Long Quan, Xing Wanli. Detection of the apoptosis of Jurkat cell using an electrorotation chip[J]. Front. Biol., 2006, 1(2): 208-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed