Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2017, Vol. 12 Issue (1) : 19-48    https://doi.org/10.1007/s11515-017-1439-1
REVIEW
Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis
Lauren A. Howell1,Robert J. Tomko Jr.1(),Andrew R. Kusmierczyk2()
1. Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
2. Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
 Download: PDF(5711 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: The 26S proteasome is at the heart of the ubiquitin-proteasome system, which is the key cellular pathway for the regulated degradation of proteins and enforcement of protein quality control. The 26S proteasome is an unusually large and complicated protease comprising a 28-subunit core particle (CP) capped by one or two 19-subunit regulatory particles (RP). Multiple activities within the RP process incoming ubiquitinated substrates for eventual degradation by the barrel-shaped CP. The large size and elaborate architecture of the proteasome have made it an exceptional model for understanding mechanistic themes in macromolecular assembly.

OBJECTIVE: In the present work, we highlight the most recent mechanistic insights into proteasome assembly, with particular emphasis on intrinsic and extrinsic factors regulating proteasome biogenesis. We also describe new and exciting questions arising about how proteasome assembly is regulated and deregulated in normal and diseased cells.

METHODS: A comprehensive literature search using the PubMed search engine was performed, and key findings yielding mechanistic insight into proteasome assembly were included in this review.

RESULTS: Key recent studies have revealed that proteasome biogenesis is dependent upon intrinsic features of the subunits themselves as well as extrinsic factors, many of which function as dedicated chaperones.

CONCLUSION: Cells rely on a diverse set of mechanistic strategies to ensure the rapid, efficient, and faithful assembly of proteasomes from their cognate subunits. Importantly, physiological as well as pathological changes to proteasome assembly are emerging as exciting paradigms to alter protein degradation in vivo.

Keywords proteasome assembly      assembly chaperones      ubiquitin-proteasome system      proteolysis      macromolecular complex     
Corresponding Author(s): Robert J. Tomko Jr.,Andrew R. Kusmierczyk   
Just Accepted Date: 09 January 2017   Online First Date: 16 February 2017    Issue Date: 28 February 2017
 Cite this article:   
Lauren A. Howell,Robert J. Tomko Jr.,Andrew R. Kusmierczyk. Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis[J]. Front. Biol., 2017, 12(1): 19-48.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-017-1439-1
https://academic.hep.com.cn/fib/EN/Y2017/V12/I1/19
Fig.1  Architecture and composition of the proteasome. (A) The 26S proteasome consists of a 20S core particle (CP), shown in gray, capped on one or both ends by the 19S regulatory particle (RP). The RP can be further divided into lid and base subcomplexes, shown in yellow and blue, respectively. (B) Architecture of the CP α ring. (C) Architecture of the β ring. The three β subunits harboring peptidase activity are in red, whereas the noncatalytic β subunits are in light gray. (D) Subunit arrangement and domain architecture of the RP lid. The lid consists of non-ATPase subunits Rpn3, 5-9, 11, 12, and Rpn15/Sem1. Rpn11, shown in red, harbors the lone intrinsic deubiquitinating (DUB) activity within the proteasome. (E) Subunit composition and architecture of the RP base. The six Rpt ATPases are shown in blue, and the four non-ATPase subunits, Rpn1, 2, 10, and 13, are shown in green. Non-ATPase subunits are shown in their relative positions within the RP. Note that Rpn10 does not directly contact Rpt3 and Rpt4, but rather is suspended above them via subunits of the lid.
Fig.2  Framework of CP assembly. For clarity, assembly factors have been omitted and β subunit propeptides (squiggly lines) are shown only on the catalytically active subunits. CP assembly begins when α subunits coalesce into an α-ring. Early β subunits (β2, β3, β4) bind to the α-ring to form the 13S intermediate. Subsequent entry of the late β subunits (β5, β6, β1) results in the formation of the 15S intermediate. Incorporation of β7 is the rate limiting step of CP assembly and gives rise to a complete half-proteasome. Dimerization of two half-proteasomes forms a transient species, the preholoproteasome (PHP), which undergoes processing of the β subunit propeptides to form the mature CP.
Fig.3  The lid and base assembly pathways. (A) Lid assembly pathway in yeast. (B) Overview of base assembly. Assembly chaperones are omitted for clarity and are addressed in Fig. 7.
Fig.4  Pba1-Pba2 and CP assembly. (A) Pba1-Pba2 functions as a safety. Pba1-Pba2 is shown bound to a series of CP assembly intermediates containing a complete α-ring and various β subunits. The intermediates are shown inverted, relative to their orientation in Fig. 2, to better visualize the binding of the assembly factor. The α-ring in the intermediates prior to the preholoproteasome (PHP) stage is distended, which allows Pba1-Pba2 to lie partially embedded in the axial channel formed by the ring. This is the high affinity state of Pba1-Pba2 bound to an α-ring and makes it impossible for RP to occupy the ring. Following dimerization of half-proteasomes, each α-ring undergoes a conformational change which tightens its radius as the α subunits move closer to the central axis. The resulting narrowing of the axial channel evicts Pba1-Pba2 which assumes a more surface-bound location. As the propeptides are processed and a mature CP forms, Pba1-Pba2 binding switches to a low affinity state which allows it to be easily displaced from the now-functional CP by the RP. (B) Additional functions of Pba1-Pba2. The formation of α-rings is promoted, in an unknown fashion, by Pba1-Pba2. At the same time, Pba1-Pba2 binding to α subunits and/or isolated α-rings prevents these entities from misassembly into non-productive species.
Fig.5  HbYX motif docking into the CP α-ring. (A) A view of the Rpt2, Rpt3, and Rpt5 HbYX motifs docked into the intra-subunit pockets on the outside surface of the CP α ring. The HbYX motifs of Rpt2, Rpt3, and Rpt5 are shown as red spheres, and lie at the interfaces between α1-α2, α3-α4, and α5-α6, respectively. (B) A close-up view of the HbYX motif of Rpt5 docked into the α5-α6 pocket. Rpt5 (beige) inserts its three most C-terminal residues, Phe-Tyr-Ala, into the pocket. The C-terminal carboxylate of the alanine residue (red spheres) interacts with the positively charged side chain of the pocket lysine (blue) contributed by α6, whereas the Phe and Tyr residues (green spheres) make hydrophobic contacts with the interior of the pocket.
Fig.6  Pba3-Pba4 and α-ring assembly. The formation of α-rings is shown in the presence, or absence, of Pba3-Pba4. In both cases, the early events of α-ring assembly are similar and may involve the formation of species containing α5, α6, α7 and α1. However, via a poorly understood mechanism, the presence of Pba3-Pba4 influences the entry of the remaining α subunits (α2, α3 and α4) in an order that generates only canonical α-rings and thus only canonical proteasomes. Arrival of early β subunits displaces Pba3-Pba4, forming the 13S intermediate. In the absence of Pba3-Pba4, the remaining α subunits are not restricted in their order of assembly and (at least) three possible α-rings are formed. One of these is the canonical α-ring which is bound by β subunits to produce canonical proteasomes. Another is an α-ring in which α3 is replaced by a second copy of α4; this gives rise to α4-α4 proteasomes. The third ring, which lacks α4 and has two copies of α2, might form a 13S-like species that is not competent for further assembly.
Fig.7  Overview of base assembly and chaperone eviction. Non-ATPase subunits are omitted for clarity. (A) and (B), Two non-exclusive pathways have been proposed for assembly of the RP base. In the first (A), the base forms independently of the CP. In the second (B), The CP acts as a template or scaffold for the incoming chaperone modules, and each chaperone is released as its respective module docks onto the CP. A gray dotted arrow with question mark indicates the as-yet untested possibility of crosstalk between these two proposed pathways. (C) Proposed mechanism of coupling between ATP hydrolysis and chaperone eviction by the base. The base assumes “down” or “out” conformations according to the nature of the nucleotide bound (ADP-bound vs. ATP-bound). In the ADP-bound, “down” state, the AAA+ small domains (shown as small circles) that are bound by the chaperones point downward, generating steric clash (T-bars) between the chaperones and the CP. In the ATP-bound state, the chaperones are positioned outward, relieving steric hindrance and allowing formation of a metastable chaperone-base-CP complex. Subsequent ATP hydrolysis forcefully repositions the small domains to the down position, which shears the chaperones from the small domains (eviction). Although a full base is shown in this model, the same concept could in principle allow for shearing of chaperones from ATPase-active intermediates as they dock on the CP (B).
Fig.8  Intrinsic regulatory features of the lid important for proteasome biogenesis. (A) Sequence alignment of select Sem1/DSS1 homologs. Conserved binding regions Site 1 and Site 2, as well as the poorly conserved linker region and indicated below the alignment. The region that forms a helix in available EM structures of the proteasome is indicated above the alignment. The acidic residues characteristic of Site 1 and Site 2 are highlighted in red, whereas the conserved tryptophan residues present in Site 2 are highlighted in blue. (B) The cryo-EM structure of the isolated lid from yeast (PDB ID 3JCK) is shown, highlighting the positioning of Sem1 between Rpn3 and Rpn7. Lid subunits Rpn5, 6, 8, 9, 11, and 12 are colored gray, whereas Rpn3 and Rpn7 are colored magenta and cyan, respectively. Only portions of Sem1 are clearly resolved in this structure, but they are shown as green and orange. Site 1 is located within the green segment, and Site 2 within the orange. Inset, conserved acidic residues in Site 1 and Site 2 are shown in space-filling mode as spheres to illustrate their roles in docking Sem1 onto Rpn3 and Rpn7. Conserved tryptophan residues are shown in stick mode in blue and indicated with blue arrows. (C) Conformational changes associated with lid assembly and attachment to the base. In a low-resolution EM structure of LP2, the N-termini of Rpn6 (and potentially Rpn5) are closed inward toward the Rpn8-Rpn11 heterodimer. Lid subunit coloring is the same as in Fig. 3A.
1 Agarwal A K, Xing C, DeMartino G N, Mizrachi D, Hernandez M D, Sousa A B, Martínez de Villarreal L, dos Santos H G, Garg A (2010). PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet, 87(6): 866–872
https://doi.org/10.1016/j.ajhg.2010.10.031
2 Akahane T, Sahara K, Yashiroda H, Tanaka K, Murata S (2013). Involvement of Bag6 and the TRC pathway in proteasome assembly. Nat Commun, 4: 2234
https://doi.org/10.1038/ncomms3234
3 Arendt C S, Hochstrasser M (1997). Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc Natl Acad Sci USA, 94(14): 7156–7161
https://doi.org/10.1073/pnas.94.14.7156
4 Arendt C S, Hochstrasser M (1999). Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly. EMBO J, 18(13): 3575–3585
https://doi.org/10.1093/emboj/18.13.3575
5 Arima K, Kinoshita A, Mishima H, Kanazawa N, Kaneko T, Mizushima T, Ichinose K, Nakamura H, Tsujino A, Kawakami A, Matsunaka M, Kasagi S, Kawano S, Kumagai S, Ohmura K, Mimori T, Hirano M, Ueno S, Tanaka K, Tanaka M, Toyoshima I, Sugino H, Yamakawa A, Tanaka K, Niikawa N, Furukawa F, Murata S, Eguchi K, Ida H, Yoshiura K (2011). Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci USA, 108(36): 14914–14919
https://doi.org/10.1073/pnas.1106015108
6 Asano S, Fukuda Y, Beck F, Aufderheide A, Forster F, Danev R, Baumeister W (2015). Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science, 347(6220): 439–442
https://doi.org/10.1126/science.1261197
7 Aufderheide A, Beck F, Stengel F, Hartwig M, Schweitzer A, Pfeifer G, Goldberg A L, Sakata E, Baumeister W, Förster F (2015). Structural characterization of the interaction of Ubp6 with the 26S proteasome. Proc Natl Acad Sci USA, 112(28): 8626–8631
https://doi.org/10.1073/pnas.1510449112
8 Bader M, Benjamin S, Wapinski O L, Smith D M, Goldberg A L, Steller H (2011). A conserved f box regulatory complex controls proteasome activity in Drosophila. Cell, 145(3): 371–382
https://doi.org/10.1016/j.cell.2011.03.021
9 Bai M, Zhao X, Sahara K, Ohte Y, Hirano Y, Kaneko T, Yashiroda H, Murata S (2014). Assembly mechanisms of specialized core particles of the proteasome. Biomolecules, 4(3): 662–677
https://doi.org/10.3390/biom4030662
10 Barrault M B, Richet N, Godard C, Murciano B, Le Tallec B, Rousseau E, Legrand P, Charbonnier J B, Le Du M H, Guerois R, Ochsenbein F, Peyroche A (2012). Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc Natl Acad Sci USA, 109(17): E1001–E1010
https://doi.org/10.1073/pnas.1116538109
11 Barthelme D, Chen J Z, Grabenstatter J, Baker T A, Sauer R T (2014). Architecture and assembly of the archaeal Cdc48•20S proteasome. Proc Natl Acad Sci USA, 111(17): E1687–E1694
https://doi.org/10.1073/pnas.1404823111
12 Barthelme D, Jauregui R, Sauer RT (2015). An ALS disease mutation in Cdc48/p97 impairs 20S proteasome binding and proteolytic communication. Protein Sci, 24:1521–1527
13 Barthelme D, Sauer R T (2012a). Identification of the Cdc48•20S proteasome as an ancient AAA+ proteolytic machine. Science, 337(6096): 843–846
https://doi.org/10.1126/science.1224352
14 Barthelme D, Sauer RT (2012b). Identification of the Cdc48•20S proteasome as an ancient AAA+ proteolytic machine. Science, 337(6096): 843–846
15 Barthelme D, Sauer R T (2013). Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20S peptidase. Proc Natl Acad Sci USA, 110(9): 3327–3332
https://doi.org/10.1073/pnas.1300408110
16 Bashore C, Dambacher C M, Goodall E A, Matyskiela M E, Lander G C, Martin A (2015). Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat Struct Mol Biol, 22(9): 712–719
https://doi.org/10.1038/nsmb.3075
17 Basler M, Kirk C J, Groettrup M (2013). The immunoproteasome in antigen processing and other immunological functions. Curr Opin Immunol, 25(1): 74–80
https://doi.org/10.1016/j.coi.2012.11.004
18 Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, Sakata E, Nickell S, Plitzko J M, Villa E, Baumeister W, Forster F (2012). Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci USA, 109(37): 14870–14875
https://doi.org/10.1073/pnas.1213333109
19 Beckwith R, Estrin E, Worden E J, Martin A (2013). Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat Struct Mol Biol, 20(10): 1164–1172
https://doi.org/10.1038/nsmb.2659
20 Benaroudj N, Goldberg A L (2000). PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat Cell Biol, 2(11): 833–839
https://doi.org/10.1038/35041081
21 Braun B C, Glickman M, Kraft R, Dahlmann B, Kloetzel P M, Finley D, Schmidt M (1999). The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol, 1(4): 221–226
https://doi.org/10.1038/12043
22 Burri L, Hockendorff J, Boehm U, Klamp T, Dohmen R J, Levy F (2000). Identification and characterization of a mammalian protein interacting with 20S proteasome precursors. Proc Natl Acad Sci USA, 97(19): 10348–10353
https://doi.org/10.1073/pnas.190268597
23 Cascio P (2014). PA28alphabeta: the enigmatic magic ring of the proteasome? Biomolecules, 4(2): 566–584
https://doi.org/10.3390/biom4020566
24 Chen P, Hochstrasser M (1996). Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell, 86(6): 961–972
https://doi.org/10.1016/S0092-8674(00)80171-3
25 Chu-Ping M, Slaughter C A, DeMartino G N (1992). Purification and characterization of a protein inhibitor of the 20S proteasome (macropain). Biochim Biophys Acta, 1119(3): 303–311
https://doi.org/10.1016/0167-4838(92)90218-3
26 Cohen-Kaplan V, Livneh I, Avni N, Fabre B, Ziv T, Kwon Y T, Ciechanover A (2016). p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc Natl Acad Sci USA, 113(47): E7490–E7499
https://doi.org/10.1073/pnas.1615455113
27 Colot H V, Park G, Turner G E, Ringelberg C, Crew C M, Litvinkova L, Weiss R L, Borkovich K A, Dunlap J C (2006). A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA, 103(27): 10352–10357
https://doi.org/10.1073/pnas.0601456103
28 da Fonseca P C, He J, Morris E P (2012). Molecular Model of the Human 26S Proteasome. Mol Cell, 46(1): 54–66
https://doi.org/10.1016/j.molcel.2012.03.026
29 Dahlqvist J, Klar J, Tiwari N, Schuster J, Törmä H, Badhai J, Pujol R, van Steensel M A M, Brinkhuizen T, Gijezen L, Chaves A, Tadini G, Vahlquist A, Dahl N (2010). A single-nucleotide deletion in the POMP 5′ UTR causes a transcriptional switch and altered epidermal proteasome distribution in KLICK genodermatosis. Am J Hum Genet, 86(4): 596–603
https://doi.org/10.1016/j.ajhg.2010.02.018
30 Dambacher C M, Worden E J, Herzik M A, Martin A, Lander G C (2016). Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife, 5: e13027
https://doi.org/10.7554/eLife.13027
31 Dange T, Smith D, Noy T, Rommel P C, Jurzitza L, Cordero R J B, Legendre A, Finley D, Goldberg A L, Schmidt M (2011). Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism. J Biol Chem, 286(50): 42830–42839
https://doi.org/10.1074/jbc.M111.300178
32 De M, Jayarapu K, Elenich L, Monaco J J, Colbert R A, Griffin T A (2003). Beta 2 subunit propeptides influence cooperative proteasome assembly. J Biol Chem, 278(8): 6153–6159
https://doi.org/10.1074/jbc.M209292200
33 De La Mota-Peynado A, Lee S Y, Pierce B M, Wani P, Singh C R, Roelofs J (2013). The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome. J Biol Chem, 288(41): 29467–29481
https://doi.org/10.1074/jbc.M113.491662
34 DeMartino G N, Proske R J, Moomaw C R, Strong A A, Song X, Hisamatsu H, Tanaka K, Slaughter C A (1996). Identification, purification, and characterization of a PA700-dependent activator of the proteasome. J Biol Chem, 271(6): 3112–3118
https://doi.org/10.1074/jbc.271.6.3112
35 Ding W X, Ni H M, Gao W, Yoshimori T, Stolz D B, Ron D, Yin X M (2007). Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol, 171(2): 513–524
https://doi.org/10.2353/ajpath.2007.070188
36 Driscoll J, Brown M G, Finley D, Monaco J J (1993). MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature, 365(6443): 262–264
https://doi.org/10.1038/365262a0
37 Enenkel C, Lehmann A, Kloetzel P M (1998). Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO J, 17(21): 6144–6154
https://doi.org/10.1093/emboj/17.21.6144
38 Estrin E, Lopez-Blanco J R, Chacon P, Martin A (2013). Formation of an Intricate Helical Bundle Dictates the Assembly of the 26S Proteasome Lid. Structure, 21(9): 1624–1635
https://doi.org/10.1016/j.str.2013.06.023
39 Fehlker M, Wendler P, Lehmann A, Enenkel C (2003). Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep, 4(10): 959–963
https://doi.org/10.1038/sj.embor.embor938
40 Finley D (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem, 78(1): 477–513
https://doi.org/10.1146/annurev.biochem.78.081507.101607
41 Forouzan D, Ammelburg M, Hobel C F, Stroh L J, Sessler N, Martin J, Lupas A N (2012). The archaeal proteasome is regulated by a network of AAA ATPases. J Biol Chem, 287(46): 39254–39262
https://doi.org/10.1074/jbc.M112.386458
42 Forster A, Masters E I, Whitby F G, Robinson H, Hill C P (2005). The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell, 18(5): 589–599
https://doi.org/10.1016/j.molcel.2005.04.016
43 Fort P, Kajava A V, Delsuc F, Coux O (2015). Evolution of proteasome regulators in eukaryotes. Genome Biol Evol, 7(5): 1363–1379
https://doi.org/10.1093/gbe/evv068
44 Frentzel S, Pesold-Hurt B, Seelig A, Kloetzel P M (1994). 20 S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13–16 S preproteasome complexes. J Mol Biol, 236(4): 975–981
https://doi.org/10.1016/0022-2836(94)90003-5
45 Fricke B, Heink S, Steffen J, Kloetzel P M, Kruger E (2007). The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum. EMBO Rep, 8(12): 1170–1175
https://doi.org/10.1038/sj.embor.7401091
46 Fukunaga K, Kudo T, Toh-e A, Tanaka K, Saeki Y (2010). Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 396(4): 1048–1053
https://doi.org/10.1016/j.bbrc.2010.05.061
47 Funakoshi M, Tomko R J Jr, Kobayashi H, Hochstrasser M (2009). Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell, 137(5): 887–899
https://doi.org/10.1016/j.cell.2009.04.061
48 Gaczynska M, Rock K L, Goldberg A L (1993). Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature, 365(6443): 264–267
https://doi.org/10.1038/365264a0
49 Gerards W L, Enzlin J, Häner M, Hendriks I LA M, Aebi U , Bloemendal H, Boelens W (1997). The human alpha-type proteasomal subunit HsC8 forms a double ringlike structure, but does not assemble into proteasome-like particles with the beta-type subunits HsDelta or HsBPROS26. J Biol Chem, 272(15): 10080–10086
https://doi.org/10.1074/jbc.272.15.10080
50 Gerards W L, de Jong W W, Bloemendal H, Boelens W (1998). The human proteasomal subunit HsC8 induces ring formation of other alpha-type subunits. J Mol Biol, 275(1): 113–121
https://doi.org/10.1006/jmbi.1997.1429
51 Ghaemmaghami S, Huh W K, Bower K, Howson R W, Belle A, Dephoure N, O’Shea E K, Weissman J S (2003). Global analysis of protein expression in yeast. Nature, 425(6959): 737–741
https://doi.org/10.1038/nature02046
52 Gille C, Goede A, Schlöetelburg C, Preißner R, Kloetzel P M, Göbel U B, Frömmel C (2003). A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome. J Mol Biol, 326(5): 1437–1448
https://doi.org/10.1016/S0022-2836(02)01470-5
53 Gillette T G, Kumar B, Thompson D, Slaughter C A, DeMartino G N (2008). Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J Biol Chem, 283(46): 31813–31822
https://doi.org/10.1074/jbc.M805935200
54 Gomes A V (2013). Genetics of proteasome diseases. Scientifica (Cairo), 2013: 637629
https://doi.org/10.1155/2013/637629
55 Gragnoli C, Cronsell J (2007). PSMD9 gene variants within NIDDM2 may rarely contribute to type 2 diabetes. J Cell Physiol, 212(3): 568–571
https://doi.org/10.1002/jcp.21127
56 Griffin T A, Nandi D, Cruz M, Fehling H J, Kaer L V, Monaco J J, Colbert R A (1998). Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-gamma)-inducible subunits. J Exp Med, 187(1): 97–104
https://doi.org/10.1084/jem.187.1.97
57 Griffin T A, Slack J P, McCluskey T S, Monaco J J, Colbert R A (2000). Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly. Mol Cell Biol Res Commun, 3(4): 212–217
https://doi.org/10.1006/mcbr.2000.0213
58 Groettrup M, Standera S, Stohwasser R, Kloetzel P M (1997). The subunits MECL-1 and LMP2 are mutually required for incorporation into the 20S proteasome. Proc Natl Acad Sci USA, 94(17): 8970–8975
https://doi.org/10.1073/pnas.94.17.8970
59 Groll M, Brandstetter H, Bartunik H, Bourenkow G, Huber R (2003). Investigations on the maturation and regulation of archaebacterial proteasomes. J Mol Biol, 327(1): 75–83
https://doi.org/10.1016/S0022-2836(03)00080-9
60 Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik H D, Huber R (1997). Structure of 20S proteasome from yeast at 2.4 A resolution. Nature, 386(6624): 463–471
https://doi.org/10.1038/386463a0
61 Groll M, Glickman M H, Finley D, Bajorek M, Köhler A, Moroder L, Rubin D M, Huber R (2000). A gated channel into the proteasome core particle. Nat Struct Biol, 7(11): 1062–1067
https://doi.org/10.1038/80992
62 Groll M, Heinemeyer W, Jager S, Ullrich T, Bochtler M, Wolf D H, Huber R (1999). The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc Natl Acad Sci USA, 96(20): 10976–10983
https://doi.org/10.1073/pnas.96.20.10976
63 Haarer B, Aggeli D, Viggiano S, Burke D J, Amberg D C (2011). Novel interactions between actin and the proteasome revealed by complex haploinsufficiency. PLoS Genet, 7(9): e1002288
https://doi.org/10.1371/journal.pgen.1002288
64 Hanssum A, Zhong Z, Rousseau A, Krzyzosiak A, Sigurdardottir A, Bertolotti A (2014). An inducible chaperone adapts proteasome assembly to stress. Mol Cell, 55(4): 566–577
https://doi.org/10.1016/j.molcel.2014.06.017
65 Hatanaka A, Chen B, Sun J Q, Mano Y, Funakoshi M, Kobayashi H, Ju Y, Mizutani T, Shinmyozu K, Nakayama J, Miyamoto K, Uchida H, Oki M (2011). Fub1p, a novel protein isolated by boundary screening, binds the proteasome complex. Genes Genet Syst, 86(5): 305–314
https://doi.org/10.1266/ggs.86.305
66 Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf D H (1997). The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem, 272(40): 25200–25209
https://doi.org/10.1074/jbc.272.40.25200
67 Heink S, Ludwig D, Kloetzel P M, Kruger E (2005). IFN-gamma-induced immune adaptation of the proteasome system is an accelerated and transient response. Proc Natl Acad Sci USA, 102(26): 9241–9246
https://doi.org/10.1073/pnas.0501711102
68 Hirano Y, Hayashi H, Iemura S, Hendil K B, Niwa S, Kishimoto T, Kasahara M, Natsume T, Tanaka K, Murata S (2006). Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol Cell, 24(6): 977–984
https://doi.org/10.1016/j.molcel.2006.11.015
69 Hirano Y, Hendil K B, Yashiroda H, Iemura S, Nagane R, Hioki Y, Natsume T, Tanaka K, Murata S (2005). A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature, 437(7063): 1381–1385
https://doi.org/10.1038/nature04106
70 Hirano Y, Kaneko T, Okamoto K, Bai M, Yashiroda H, Furuyama K, Kato K, Tanaka K, Murata S (2008). Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. EMBO J, 27(16): 2204–2213
https://doi.org/10.1038/emboj.2008.148
71 Hoang B, Benavides A, Shi Y, Frost P, Lichtenstein A (2009). Effect of autophagy on multiple myeloma cell viability. Mol Cancer Ther, 8(7): 1974–1984
https://doi.org/10.1158/1535-7163.MCT-08-1177
72 Hoefer M M, Boneberg E M, Grotegut S, Kusch J, Illges H (2006). Possible tetramerisation of the proteasome maturation factor POMP/proteassemblin/hUmp1 and its subcellular localisation. Int J Biol Macromol, 38(3-5): 259–267
https://doi.org/10.1016/j.ijbiomac.2006.03.015
73 Huang X, Luan B, Wu J, Shi Y (2016). An atomic structure of the human 26S proteasome. Nat Struct Mol Biol, 23(9): 778–785
https://doi.org/10.1038/nsmb.3273
74 Huber E M, Heinemeyer W, Li X, Arendt C S, Hochstrasser M, Groll M (2016). A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nat Commun, 7: 10900
https://doi.org/10.1038/ncomms10900
75 Huh W K, Falvo J V, Gerke L C, Carroll A S, Howson R W, Weissman J S, O’Shea E K (2003). Global analysis of protein localization in budding yeast. Nature, 425(6959): 686–691
https://doi.org/10.1038/nature02026
76 Ishii K, Noda M, Yagi H, Thammaporn R, Seetaha S, Satoh T, Kato K, Uchiyama S (2015). Disassembly of the self-assembled, double-ring structure of proteasome alpha7 homo-tetradecamer by alpha6. Sci Rep, 5: 18167
https://doi.org/10.1038/srep18167
77 Isono E, Nishihara K, Saeki Y, Yashiroda H, Kamata N, Ge L, Ueda T, Kikuchi Y, Tanaka K, Nakano A, Toh-e A (2007). The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome. Mol Biol Cell, 18(2): 569–580
https://doi.org/10.1091/mbc.E06-07-0635
78 Iwata A, Riley B E, Johnston J A, Kopito R R (2005). HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem, 280(48): 40282–40292
https://doi.org/10.1074/jbc.M508786200
79 Jager S, Groll M, Huber R, Wolf D H, Heinemeyer W (1999). Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function. J Mol Biol, 291(4): 997–1013
https://doi.org/10.1006/jmbi.1999.2995
80 Ju D, Xie Y (2004). Proteasomal degradation of RPN4 via two distinct mechanisms, ubiquitin-dependent and-independent. J Biol Chem, 279(23): 23851–23854
https://doi.org/10.1074/jbc.C400111200
81 Kaganovich D, Kopito R, Frydman J (2008). Misfolded proteins partition between two distinct quality control compartments. Nature, 454(7208): 1088–1095
https://doi.org/10.1038/nature07195
82 Kaneko T, Hamazaki J, Iemura S, Sasaki K, Furuyama K, Natsume T, Tanaka K, Murata S (2009). Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell, 137(5): 914–925
https://doi.org/10.1016/j.cell.2009.05.008
83 Kim D U, Hayles J, Kim D, Wood V, Park H O, Won M, Yoo H S, Duhig T, Nam M, Palmer G, Han S, Jeffery L, Baek S T, Lee H, Shim Y S, Lee M, Kim L, Heo K S, Noh E J, Lee A R, Jang Y J, Chung K S, Choi S J, Park J Y, Park Y, Kim H M, Park S K, Park H J, Kang E J, Kim H B, Kang H S, Park H M, Kim K, Song K, Song K B, Nurse P, Hoe K L (2010a). Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol, 28(6): 617–623
https://doi.org/10.1038/nbt.1628
84 Kim S, Saeki Y, Fukunaga K, Suzuki A, Takagi K, Yamane T, Tanaka K, Mizushima T, Kato K (2010b). Crystal structure of yeast rpn14, a chaperone of the 19 S regulatory particle of the proteasome. J Biol Chem, 285(20): 15159–15166
https://doi.org/10.1074/jbc.M110.104042
85 Kim Y C, Snoberger A, Schupp J, Smith D M (2015). ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function. Nat Commun, 6(8520):1
86 Kingsbury D J, Griffin T A, Colbert R A (2000). Novel propeptide function in 20 S proteasome assembly influences beta subunit composition. J Biol Chem, 275(31): 24156–24162
https://doi.org/10.1074/jbc.M001742200
87 Kleijnen M F, Roelofs J, Park S, Hathaway N A, Glickman M, King R W, Finley D (2007). Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol, 14(12): 1180–1188
https://doi.org/10.1038/nsmb1335
88 Kloetzel P M (2004). Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat Immunol, 5(7): 661–669
https://doi.org/10.1038/ni1090
89 Kock M, Nunes M M, Hemann M, Kube S, Jürgen Dohmen R, Herzog F, Ramos P C, Wendler P (2015). Proteasome assembly from 15S precursors involves major conformational changes and recycling of the Pba1-Pba2 chaperone. Nat Commun, 6: 6123
https://doi.org/10.1038/ncomms7123
90 Koizumi S, Irie T, Hirayama S, Sakurai Y, Yashiroda H, Naguro I, Ichijo H, Hamazaki J, Murata S (2016). The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. eLife, 5: e18357
91 Kragelund B B, Schenstrom S M, Rebula C A, Panse V G, Hartmann-Petersen R (2016). DSS1/Sem1, a multifunctional and intrinsically disordered protein. Trends Biochem Sci, 41(5): 446–459
https://doi.org/10.1016/j.tibs.2016.02.004
92 Kriegenburg F, Seeger M, Saeki Y, Tanaka K, Lauridsen A M B, Hartmann-Petersen R, Hendil K B (2008). Mammalian 26S proteasomes remain intact during protein degradation. Cell, 135(2): 355–365
https://doi.org/10.1016/j.cell.2008.08.032
93 Kulak N A, Pichler G, Paron I, Nagaraj N, Mann M (2014). Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods, 11(3): 319–324
https://doi.org/10.1038/nmeth.2834
94 Kusmierczyk A R, Hochstrasser M (2008). Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis. Biol Chem, 389(9): 1143–1151
https://doi.org/10.1515/BC.2008.130
95 Kusmierczyk A R, Kunjappu M J, Funakoshi M, Hochstrasser M (2008). A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol, 15(3): 237–244
https://doi.org/10.1038/nsmb.1389
96 Kusmierczyk A R, Kunjappu M J, Kim R Y, Hochstrasser M (2011). A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding. Nat Struct Mol Biol, 18(5): 622–629
https://doi.org/10.1038/nsmb.2027
97 Kwon Y D, Nagy I, Adams P D, Baumeister W, Jap B K (2004a). Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J Mol Biol, 335(1): 233–245
https://doi.org/10.1016/j.jmb.2003.08.029
98 Kwon Y D, Nagy I, Adams P D, Baumeister W, Jap B K (2004b). Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J Mol Biol, 335(1): 233–245
https://doi.org/10.1016/j.jmb.2003.08.029
99 Lander G C, Estrin E, Matyskiela M E, Bashore C, Nogales E, Martin A (2012). Complete subunit architecture of the proteasome regulatory particle. Nature, 482: 186–191
100 Lasker K, Forster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A, Baumeister W (2012). Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA, 109(5): 1380–1387
https://doi.org/10.1073/pnas.1120559109
101 Le Tallec B, Barrault M B, Courbeyrette R, Guerois R, Marsolier-Kergoat M C, Peyroche A (2007). 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell, 27(4): 660–674
https://doi.org/10.1016/j.molcel.2007.06.025
102 Le Tallec B, Barrault M B, Guerois R, Carre T, Peyroche A (2009). Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol Cell, 33(3): 389–399
https://doi.org/10.1016/j.molcel.2009.01.010
103 Lee S C, Shaw B D (2007). A novel interaction between N-myristoylation and the 26S proteasome during cell morphogenesis. Mol Microbiol, 63(4): 1039–1053
https://doi.org/10.1111/j.1365-2958.2006.05575.x
104 Lee S Y, De la Mota-Peynado A, Roelofs J (2011). Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. J Biol Chem, 286(42): 36641–36651
https://doi.org/10.1074/jbc.M111.280875
105 Leggett D S, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker R T, Walz T, Ploegh H, Finley D (2002). Multiple associated proteins regulate proteasome structure and function. Mol Cell, 10(3): 495–507
https://doi.org/10.1016/S1097-2765(02)00638-X
106 Lehmann A, Janek K, Braun B, Kloetzel P M, Enenkel C (2002). 20 S proteasomes are imported as precursor complexes into the nucleus of yeast. J Mol Biol, 317(3): 401–413
https://doi.org/10.1006/jmbi.2002.5443
107 Lehmann A, Niewienda A, Jechow K, Janek K, Enenkel C (2010). Ecm29 fulfils quality control functions in proteasome assembly. Mol Cell, 38(6): 879–888
https://doi.org/10.1016/j.molcel.2010.06.016
108 Lehrbach N J, Ruvkun G (2016). Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1. eLife, 5: e17721
109 Lek M, Karczewski K J, Minikel E V, Samocha K E, Banks E, Fennell T, O’Donnell-Luria A H, Ware J S, Hill A J, Cummings B B, Tukiainen T, Birnbaum D P, Kosmicki J A, Duncan L E, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper D N, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki M I, Moonshine A L, Natarajan P, Orozco L, Peloso G M, Poplin R, Rivas M A, Ruano-Rubio V, Rose S A, Ruderfer D M, Shakir K, Stenson P D, Stevens C, Thomas B P, Tiao G, Tusie-Luna M T, Weisburd B, Won H H, Yu D, Altshuler D M, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez J C, Gabriel S B, Getz G, Glatt S J, Hultman C M, Kathiresan S, Laakso M, McCarroll S, McCarthy M I, McGovern D, McPherson R, Neale B M, Palotie A, Purcell S M, Saleheen D, Scharf J M, Sklar P, Sullivan P F, Tuomilehto J, Tsuang M T, Watkins H C, Wilson J G, Daly M J, MacArthur D G (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536(7616): 285–291
https://doi.org/10.1038/nature19057
110 Li D, Dong Q, Tao Q, Gu J, Cui Y, Jiang X, Yuan J, Li W, Xu R, Jin Y, Li P, Weaver D T, Ma Q, Liu X, Cao C (2015). c-Abl regulates proteasome abundance by controlling the ubiquitin-proteasomal degradation of PSMA7 subunit. Cell Reports, 10(4): 484–496
https://doi.org/10.1016/j.celrep.2014.12.044
111 Li J, Zou C, Bai Y, Wazer D E, Band V, Gao Q (2006). DSS1 is required for the stability of BRCA2. Oncogene, 25(8): 1186–1194
https://doi.org/10.1038/sj.onc.1209153
112 Li X, Kusmierczyk A R, Wong P, Emili A, Hochstrasser M (2007). beta-Subunit appendages promote 20S proteasome assembly by overcoming an Ump1-dependent checkpoint. EMBO J, 26(9): 2339–2349
https://doi.org/10.1038/sj.emboj.7601681
113 Li X, Li Y, Arendt C S, Hochstrasser M (2016). Distinct elements in the proteasomal beta5 subunit propeptide required for autocatalytic processing and proteasome assembly. J Biol Chem, 291(4): 1991–2003
https://doi.org/10.1074/jbc.M115.677047
114 Li X, Thompson D, Kumar B, DeMartino G N (2014). Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function. J Biol Chem, 289(25): 17392–17405
https://doi.org/10.1074/jbc.M114.561183
115 Liu J, Yuan X, Liu J, Tian L, Quan J, Liu J, Chen X, Wang Y, Shi Z, Zhang J (2012). Validation of the association between PSMA6 -8 C/G polymorphism and type 2 diabetes mellitus in Chinese Dongxiang and Han populations. Diabetes Res Clin Pract, 98(2): 295–301
https://doi.org/10.1016/j.diabres.2012.09.021
116 Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995). Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science, 268(5210): 533–539
https://doi.org/10.1126/science.7725097
117 Luan B, Huang X, Wu J, Mei Z, Wang Y, Xue X, Yan C, Wang J, Finley D J, Shi Y, Wang F (2016). Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci USA, 113(10): 2642–2647
https://doi.org/10.1073/pnas.1601561113
118 Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H (1999). Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett, 450(1-2): 27–34
https://doi.org/10.1016/S0014-5793(99)00467-6
119 Mao I, Liu J, Li X, Luo H (2008). REGgamma, a proteasome activator and beyond? Cellular and molecular life sciences. Cell Mol Life Sci, 65: 3971–3980
https://doi.org/10.1007/s00018-008-8291-z
120 Marques A J, Glanemann C, Ramos P C, Dohmen R J (2007). The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation. J Biol Chem, 282(48): 34869–34876
https://doi.org/10.1074/jbc.M705836200
121 Marshall R S, Li F, Gemperline D C, Book A J, Vierstra R D (2015). Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol Cell, 58(6): 1053–1066
https://doi.org/10.1016/j.molcel.2015.04.023
122 Marshall R S, McLoughlin F, Vierstra R D (2016). Autophagic turnover of inactive 26S Proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone. Cell Reports, 16(6): 1717–1732
https://doi.org/10.1016/j.celrep.2016.07.015
123 Matyskiela M E, Lander G C, Martin A (2013). Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol, 20(7): 781–788
https://doi.org/10.1038/nsmb.2616
124 Mayr J, Seemuller E, Muller S A, Engel A, Baumeister W (1998a). Late events in the assembly of 20S proteasomes. J Struct Biol, 124(2-3): 179–188
https://doi.org/10.1006/jsbi.1998.4068
125 Mayr J, Seemuller E, Muller S A, Engel A, Baumeister W (1998b). Late events in the assembly of 20S proteasomes. J Struct Biol, 124(2-3): 179–188
https://doi.org/10.1006/jsbi.1998.4068
126 Mayr J, Wang H R, Nederlof P, Baumeister W (1999). The import pathway of human and Thermoplasma 20S proteasomes into HeLa cell nuclei is different from that of classical NLS-bearing proteins. Biol Chem, 380(10): 1183–1192
https://doi.org/10.1515/BC.1999.150
127 Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel P M, Kruger E (2003). Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. J Biol Chem, 278(24): 21517–21525
https://doi.org/10.1074/jbc.M301032200
128 Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K (2007). Regulation of CD8+ T cell development by thymus-specific proteasomes. Science, 316(5829): 1349–1353
https://doi.org/10.1126/science.1141915
129 Nakamura Y, Umehara T, Tanaka A, Horikoshi M, Padmanabhan B, Yokoyama S (2007). Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome. Biochem Biophys Res Commun, 359(3): 503–509
https://doi.org/10.1016/j.bbrc.2007.05.138
130 Nandi D, Woodward E, Ginsburg D B, Monaco J J (1997). Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits. EMBO J, 16(17): 5363–5375
https://doi.org/10.1093/emboj/16.17.5363
131 Nederlof P M, Wang H R, Baumeister W (1995). Nuclear localization signals of human and Thermoplasma proteasomal alpha subunits are functional in vitro. Proc Natl Acad Sci USA, 92(26): 12060–12064
https://doi.org/10.1073/pnas.92.26.12060
132 Pack C G, Yukii H, Toh-e A, Kudo T, Tsuchiya H, Kaiho A, Sakata E, Murata S, Yokosawa H, Sako Y, Baumeister W, Tanaka K, Saeki Y (2014). Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome. Nat Commun, 5: 3396
https://doi.org/10.1038/ncomms4396
133 Padmanabhan A, Vuong S A, Hochstrasser M (2016). Assembly of an evolutionarily conserved alternative proteasome isoform in human cells. Cell Reports, 14(12): 2962–2974
https://doi.org/10.1016/j.celrep.2016.02.068
134 Pandey U B, Nie Z, Batlevi Y, McCray B A, Ritson G P, Nedelsky N B, Schwartz S L, DiProspero N A, Knight M A, Schuldiner O, Padmanabhan R, Hild M, Berry D L, Garza D, Hubbert C C, Yao T P, Baehrecke E H, Taylor J P (2007). HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature, 447(7146): 859–863
https://doi.org/10.1038/nature05853
135 Panfair D, Ramamurthy A, Kusmierczyk A R (2015). Alpha-ring independent assembly of the 20S proteasome. Sci Rep, 5: 13130
https://doi.org/10.1038/srep13130
136 Paraskevopoulos K, Kriegenburg F, Tatham M H, Rösner H I, Medina B, Larsen I B, Brandstrup R, Hardwick K G, Hay R T, Kragelund B B, Hartmann-Petersen R, Gordon C (2014). Dss1 is a 26S proteasome ubiquitin receptor. Mol Cell, 56(3): 453–461
https://doi.org/10.1016/j.molcel.2014.09.008
137 Park S, Kim W, Tian G, Gygi S P, Finley D (2011). Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem, 286(42): 36652–36666
https://doi.org/10.1074/jbc.M111.285924
138 Park S, Li X, Kim H M, Singh C R, Tian G, Hoyt M A, Lovell S, Battaile K P, Zolkiewski M, Coffino P, Roelofs J, Cheng Y, Finley D (2013). Reconfiguration of the proteasome during chaperone-mediated assembly. Nature, 497(7450): 512–516
https://doi.org/10.1038/nature12123
139 Park S, Roelofs J, Kim W, Robert J, Schmidt M, Gygi S P, Finley D (2009). Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature, 459(7248): 866–870
https://doi.org/10.1038/nature08065
140 Pathare G R, Nagy I, Sledz P, Anderson D J, Zhou H J, Pardon E, Steyaert J, Forster F, Bracher A, Baumeister W (2014). Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. Proc Natl Acad Sci USA, 111(8): 2984–2989
https://doi.org/10.1073/pnas.1400546111
141 Peters L Z, Karmon O, David-Kadoch G, Hazan R, Yu T, Glickman M H, Ben-Aroya S (2015). The protein quality control machinery regulates its misassembled proteasome subunits. PLoS Genet, 11(4): e1005178
https://doi.org/10.1371/journal.pgen.1005178
142 Radhakrishnan S K, den Besten W, Deshaies R J (2014). p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition. eLife, 3: e01856
https://doi.org/10.7554/eLife.01856
143 Radhakrishnan S K, Lee C S, Young P, Beskow A, Chan J Y, Deshaies R J (2010). Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell, 38(1): 17–28
https://doi.org/10.1016/j.molcel.2010.02.029
144 Ramos P C, Hockendorff J, Johnson E S, Varshavsky A, Dohmen R J (1998). Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell, 92(4): 489–499
https://doi.org/10.1016/S0092-8674(00)80942-3
145 Ramos P C, Marques A J, London M K, Dohmen R J (2004). Role of C-terminal extensions of subunits beta2 and beta7 in assembly and activity of eukaryotic proteasomes. J Biol Chem, 279(14): 14323–14330
https://doi.org/10.1074/jbc.M308757200
146 Reits E A, Benham A M, Plougastel B, Neefjes J, Trowsdale J (1997). Dynamics of proteasome distribution in living cells. EMBO J, 16(20): 6087–6094
https://doi.org/10.1093/emboj/16.20.6087
147 Roelofs J, Park S, Haas W, Tian G, McAllister F E, Huo Y, Lee B H, Zhang F, Shi Y, Gygi S P, Finley D (2009). Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature, 459(7248): 861–865
https://doi.org/10.1038/nature08063
148 Russell S J, Steger K A, Johnston S A (1999). Subcellular localization, stoichiometry, and protein levels of 26 S proteasome subunits in yeast. J Biol Chem, 274(31): 21943–21952
https://doi.org/10.1074/jbc.274.31.21943
149 Sa-Moura B, Simões A M, Fraga J, Fernandes H, Abreu I A, Botelho H M, Gomes C M, Marques A J, Dohmen R J, Ramos P C, Macedo-Ribeiro S (2013). Biochemical and biophysical characterization of recombinant yeast proteasome maturation factor ump1. Comput Struct Biotechnol J, 7(8): e201304006
https://doi.org/10.5936/csbj.201304006
150 Sadre-Bazzaz K, Whitby F G, Robinson H, Formosa T, Hill C P (2010). Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol Cell, 37(5): 728–735
https://doi.org/10.1016/j.molcel.2010.02.002
151 Saeki Y, Toh E A, Kudo T, Kawamura H, Tanaka K (2009). Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell, 137(5): 900–913
https://doi.org/10.1016/j.cell.2009.05.005
152 Sakata E, Stengel F, Fukunaga K, Zhou M, Saeki Y, Förster F, Baumeister W, Tanaka K, Robinson C V (2011). The catalytic activity of Ubp6 enhances maturation of the proteasomal regulatory particle. Mol Cell, 42(5): 637–649
https://doi.org/10.1016/j.molcel.2011.04.021
153 Satoh T, Saeki Y, Hiromoto T, Wang Y H, Uekusa Y, Yagi H, Yoshihara H, Yagi-Utsumi M, Mizushima T, Tanaka K, Kato K (2014). Structural basis for proteasome formation controlled by an assembly chaperone nas2. Structure, 22(5): 731–743
https://doi.org/10.1016/j.str.2014.02.014
154 Savulescu A F, Shorer H, Kleifeld O, Cohen I, Gruber R, Glickman M H, Harel A (2011). Nuclear import of an intact preassembled proteasome particle. Mol Biol Cell, 22(6): 880–891
https://doi.org/10.1091/mbc.E10-07-0595
155 Schmidt M, Haas W, Crosas B, Santamaria P G, Gygi S P, Walz T, Finley D (2005). The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat Struct Mol Biol, 12(4): 294–303
https://doi.org/10.1038/nsmb914
156 Schmidtke G, Kraft R, Kostka S, Henklein P, Frömmel C, Löwe J, Huber R, Kloetzel P M, Schmidt M (1996). Analysis of mammalian 20S proteasome biogenesis: the maturation of beta-subunits is an ordered two-step mechanism involving autocatalysis. EMBO J, 15: 6887–6898
157 Schmidtke G, Schmidt M, Kloetzel P M (1997). Maturation of mammalian 20 S proteasome: purification and characterization of 13 S and 16 S proteasome precursor complexes. J Mol Biol, 268(1): 95–106
https://doi.org/10.1006/jmbi.1997.0947
158 Schweitzer A, Aufderheide A, Rudack T, Beck F, Pfeifer G, Plitzko J M, Sakata E, Schulten K, Förster F, Baumeister W (2016). Structure of the human 26S proteasome at a resolution of 3.9 A. Proc Natl Acad Sci USA, 113(28): 7816–7821
https://doi.org/10.1073/pnas.1608050113
159 Sha Z, Goldberg A L (2014). Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Curr Biol, 24(14): 1573–1583
https://doi.org/10.1016/j.cub.2014.06.004
160 Sharon M, Taverner T, Ambroggio X I, Deshaies R J, Robinson C V (2006). Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol, 4(8): e267
https://doi.org/10.1371/journal.pbio.0040267
161 Sharon M, Witt S, Glasmacher E, Baumeister W, Robinson C V (2007). Mass spectrometry reveals the missing links in the assembly pathway of the bacterial 20 S proteasome. J Biol Chem, 282(25): 18448–18457
https://doi.org/10.1074/jbc.M701534200
162 Shi Y, Chen X, Elsasser S, Stocks B B, Tian G, Lee B H, Shi Y, Zhang N, de Poot S A H, Tuebing F, Sun S, Vannoy J, Tarasov S G, Engen J R, Finley D, Walters K J (2016). Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science
https://doi.org/10.1126/science.aad9421
163 Shirozu R, Yashiroda H, Murata S (2015). Identification of minimum Rpn4-responsive elements in genes related to proteasome functions. FEBS Lett, 589(8): 933–940
https://doi.org/10.1016/j.febslet.2015.02.025
164 Singh C R, Lovell S, Mehzabeen N, Chowdhury W Q, Geanes E S, Battaile K P, Roelofs J (2014). 1.15 A resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain. Acta Crystallogr F Struct Biol Commun, 70(4): 418–423
https://doi.org/10.1107/S2053230X14003884
165 Sledz P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, Forster F, Baumeister W (2013). Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc Natl Acad Sci USA, 110(18): 7264–7269
https://doi.org/10.1073/pnas.1305782110
166 Smith D M, Chang S C, Park S, Finley D, Cheng Y, Goldberg A L (2007). Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Mol Cell, 27(5): 731–744
https://doi.org/10.1016/j.molcel.2007.06.033
167 Sokolova V, Li F, Polovin G, Park S (2015). Proteasome activation is mediated via a functional switch of the Rpt6 C-terminal tail following chaperone-dependent assembly. Sci Rep, 5: 14909
https://doi.org/10.1038/srep14909
168 Stadtmueller B M, Hill C P (2011). Proteasome activators. Mol Cell, 41(1): 8–19
https://doi.org/10.1016/j.molcel.2010.12.020
169 Stadtmueller B M, Kish-Trier E, Ferrell K, Petersen C N, Robinson H, Myszka D G, Eckert D M, Formosa T, Hill C P (2012). Structure of a proteasome Pba1-Pba2 complex: implications for proteasome assembly, activation, and biological function. J Biol Chem, 287(44): 37371–37382
https://doi.org/10.1074/jbc.M112.367003
170 Takagi K, Kim S, Yukii H, Ueno M, Morishita R, Endo Y, Kato K, Tanaka K, Saeki Y, Mizushima T (2012). Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26S proteasome, by proteasome-dedicated chaperone Hsm3p. J Biol Chem, 287(15): 12172–12182
https://doi.org/10.1074/jbc.M112.345876
171 Takagi K, Saeki Y, Yashiroda H, Yagi H, Kaiho A, Murata S, Yamane T, Tanaka K, Mizushima T, Kato K (2014). Pba3-Pba4 heterodimer acts as a molecular matchmaker in proteasome alpha-ring formation. Biochem Biophys Res Commun, 450(2): 1110–1114
https://doi.org/10.1016/j.bbrc.2014.06.119
172 Takeuchi J, Tamura T (2004). Recombinant ATPases of the yeast 26S proteasome activate protein degradation by the 20S proteasome. FEBS Lett, 565(1-3): 39–42
https://doi.org/10.1016/j.febslet.2004.03.073
173 Tanaka K, Yoshimura T, Tamura T, Fujiwara T, Kumatori A, Ichihara A (1990). Possible mechanism of nuclear translocation of proteasomes. FEBS Lett, 271(1-2): 41–46
https://doi.org/10.1016/0014-5793(90)80367-R
174 Thompson D, Hakala K, DeMartino G N (2009). Subcomplexes of PA700, the 19S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity. J Biol Chem, 284(37): 24891–24903
https://doi.org/10.1074/jbc.M109.023218
175 Tian G, Park S, Lee M J, Huck B, McAllister F, Hill C P, Gygi S P, Finley D (2011). An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol, 18(11): 1259–1267
https://doi.org/10.1038/nsmb.2147
176 Tomko R J Jr, Funakoshi M, Schneider K, Wang J, Hochstrasser M (2010). Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol Cell, 38(3): 393–403
https://doi.org/10.1016/j.molcel.2010.02.035
177 Tomko R J Jr, Hochstrasser M (2011). Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining. Mol Cell, 44(6): 907–917
https://doi.org/10.1016/j.molcel.2011.11.020
178 Tomko R J Jr, Hochstrasser M (2013). Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem, 82(1): 415–445
https://doi.org/10.1146/annurev-biochem-060410-150257
179 Tomko R J Jr, Hochstrasser M (2014). The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis. Mol Cell, 53(3): 433–443
https://doi.org/10.1016/j.molcel.2013.12.009
180 Tomko R J Jr, Taylor D W, Chen Z A, Wang H W, Rappsilber J, Hochstrasser M (2015). A Single alpha helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly. Cell, 163(2): 432–444
https://doi.org/10.1016/j.cell.2015.09.022
181 Uekusa Y, Okawa K, Yagi-Utsumi M, Serve O, Nakagawa Y, Mizushima T, Yagi H, Saeki Y, Tanaka K, Kato K (2014). Backbone (1)H, (1)(3)C and (1)(5)N assignments of yeast Ump1, an intrinsically disordered protein that functions as a proteasome assembly chaperone. Biomol NMR Assign, 8(2): 383–386
https://doi.org/10.1007/s12104-013-9523-1
182 Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N, Tsukihara T (2002). The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure, 10(5): 609–618
https://doi.org/10.1016/S0969-2126(02)00748-7
183 Unverdorben P, Beck F, led P, Schweitzer A, Pfeifer G, Plitzko J M, Baumeister W, Forster F (2014). Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci USA, 111(15): 5544–5549
https://doi.org/10.1073/pnas.1403409111
184 Ustrell V, Hoffman L, Pratt G, Rechsteiner M (2002). PA200, a nuclear proteasome activator involved in DNA repair. EMBO J, 21(13): 3516–3525
https://doi.org/10.1093/emboj/cdf333
185 Velichutina I, Connerly P L, Arendt C S, Li X, Hochstrasser M (2004). Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast. EMBO J, 23(3): 500–510
https://doi.org/10.1038/sj.emboj.7600059
186 Verma R, (2002). Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science, 298(5593): 611–615
https://doi.org/10.1126/science.1075898
187 Volker C, Lupas A N (2002). Molecular evolution of proteasomes. Curr Top Microbiol Immunol, 268: 1–22
https://doi.org/10.1007/978-3-642-59414-4_1
188 Waite K A, De-La Mota-Peynado A, Vontz G, Roelofs J (2016). Starvation induces proteasome autophagy with different pathways for core and regulatory particles. J Biol Chem, 291(7): 3239–3253
https://doi.org/10.1074/jbc.M115.699124
189 Wang H R, Kania M, Baumeister W, Nederlof P M (1997). Import of human and Thermoplasma 20S proteasomes into nuclei of HeLa cells requires functional NLS sequences. Eur J Cell Biol, 73: 105–113
190 Wang W, Chan J Y (2006). Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function. J Biol Chem, 281(28): 19676–19687
https://doi.org/10.1074/jbc.M602802200
191 Wani P S, Rowland M A, Ondracek A, Deeds E J, Roelofs J (2015). Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association. Nat Commun, 6: 6384
https://doi.org/10.1038/ncomms7384
192 Wani P S, Suppahia A, Capalla X, Ondracek A, Roelofs J (2016). Phosphorylation of the C-terminal tail of proteasome subunit alpha7 is required for binding of the proteasome quality control factor Ecm29. Sci Rep, 6: 27873
https://doi.org/10.1038/srep27873
193 Weberruss M H, Savulescu A F, Jando J, Bissinger T, Harel A, Glickman M H, Enenkel C (2013). Blm10 facilitates nuclear import of proteasome core particles. EMBO J, 32(20): 2697–2707
https://doi.org/10.1038/emboj.2013.192
194 Wei S J, Williams J G, Dang H, Darden T A, Betz B L, Humble M M, Chang F M, Trempus C S, Johnson K, Cannon R E, Tennant R W (2008). Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation. J Mol Biol, 383(3): 693–712
https://doi.org/10.1016/j.jmb.2008.08.044
195 Welk V, Coux O, Kleene V, Abeza C, Trümbach D, Eickelberg O, Meiners S (2016). Inhibition of proteasome activity induces formation of alternative proteasome complexes. J Biol Chem, 291(25): 13147–13159
https://doi.org/10.1074/jbc.M116.717652
196 Wendler P, Lehmann A, Janek K, Baumgart S, Enenkel C (2004). The bipartite nuclear localization sequence of Rpn2 is required for nuclear import of proteasomal base complexes via karyopherin alphabeta and proteasome functions. J Biol Chem, 279(36): 37751–37762
https://doi.org/10.1074/jbc.M403551200
197 Whitby F G, Masters E I, Kramer L, Knowlton J R, Yao Y, Wang C C, Hill C P (2000). Structural basis for the activation of 20S proteasomes by 11S regulators. Nature, 408(6808): 115–120
https://doi.org/10.1038/35040607
198 Witt E, Zantopf D, Schmidt M, Kraft R, Kloetzel P M, Kruger E (2000). Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(beta 5i) incorporation into 20 S proteasomes. J Mol Biol, 301(1): 1–9
https://doi.org/10.1006/jmbi.2000.3959
199 Wollenberg K, Swaffield J C (2001). Evolution of proteasomal ATPases. Mol Biol Evol, 18(6): 962–974
https://doi.org/10.1093/oxfordjournals.molbev.a003897
200 Worden E J, Padovani C, Martin A (2014). Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat Struct Mol Biol, 21(3): 220–227
https://doi.org/10.1038/nsmb.2771
201 Xie Y, Varshavsky A (2001). RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci USA, 98(6): 3056–3061
https://doi.org/10.1073/pnas.071022298
202 Yao T, Cohen R E (2002). A cryptic protease couples deubiquitination and degradation by the proteasome. Nature, 419(6905): 403–407
https://doi.org/10.1038/nature01071
203 Yao Y, Toth C R, Huang L, Wong M L, Dias P, Burlingame A L, Coffino P, Wang C C (1999). alpha5 subunit in Trypanosoma brucei proteasome can self-assemble to form a cylinder of four stacked heptamer rings. Biochem J, 344(Pt 2): 349–358
204 Yashiroda H, Mizushima T, Okamoto K, Kameyama T, Hayashi H, Kishimoto T, Niwa S, Kasahara M, Kurimoto E, Sakata E, Takagi K, Suzuki A, Hirano Y, Murata S, Kato K, Yamane T, Tanaka K (2008). Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat Struct Mol Biol, 15(3): 228–236
https://doi.org/10.1038/nsmb.1386
205 Yashiroda H, Toda Y, Otsu S, Takagi K, Mizushima T, Murata S (2015). N-terminal alpha7 deletion of the proteasome 20S core particle substitutes for yeast PI31 function. Mol Cell Biol, 35(1): 141–152
https://doi.org/10.1128/MCB.00582-14
206 Yu Y, Smith D M, Kim H M, Rodriguez V, Goldberg A L, Cheng Y (2010). Interactions of PAN’s C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. EMBO J, 29(3): 692–702
https://doi.org/10.1038/emboj.2009.382
207 Yu Z, Livnat-Levanon N, Kleifeld O, Mansour W, Nakasone M A, Castaneda C A, Dixon E K, Fushman D, Reis N, Pick E, Glickman M H (2015). Base-CP proteasome can serve as a platform for stepwise lid formation. Biosci Rep, 35(3): e00194
https://doi.org/10.1042/BSR20140173
208 Zaiss D M, Standera S, Kloetzel P M, Sijts A J (2002). PI31 is a modulator of proteasome formation and antigen processing. Proc Natl Acad Sci USA, 99(22): 14344–14349
https://doi.org/10.1073/pnas.212257299
209 Zhang F, Hu M, Tian G, Zhang P, Finley D, Jeffrey P D, Shi Y (2009). Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell, 34(4): 473–484
https://doi.org/10.1016/j.molcel.2009.04.021
210 Zhang Y, Lucocq J M, Yamamoto M, Hayes J D (2007). The NHB1 (N-terminal homology box 1) sequence in transcription factor Nrf1 is required to anchor it to the endoplasmic reticulum and also to enable its asparagine-glycosylation. Biochem J, 408(2): 161–172
https://doi.org/10.1042/BJ20070761
211 Zhu K, Dunner K Jr, McConkey D J (2010). Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene, 29(3): 451–462
https://doi.org/10.1038/onc.2009.343
212 Zuhl F, Seemuller E, Golbik R, Baumeister W (1997). Dissecting the assembly pathway of the 20S proteasome. FEBS Lett, 418(1-2): 189–194
https://doi.org/10.1016/S0014-5793(97)01370-7
213 Zwickl P, Kleinz J, Baumeister W (1994). Critical elements in proteasome assembly. Nat Struct Biol, 1(11): 765–770
https://doi.org/10.1038/nsb1194-765
214 Zwickl P, Ng D, Woo K M, Klenk H P, Goldberg A L (1999). An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26S proteasome, activates protein breakdown by 20 S proteasomes. J Biol Chem, 274(37): 26008–26014
https://doi.org/10.1074/jbc.274.37.26008
[1] Xiaoyan LIU, Jozsef GAL, Haining ZHU. Sequestosome 1/p62: a multi-domain protein with multi-faceted functions[J]. Front Biol, 2012, 7(3): 189-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed