Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (3) : 189-201    https://doi.org/10.1007/s11515-012-1217-z
REVIEW
Sequestosome 1/p62: a multi-domain protein with multi-faceted functions
Xiaoyan LIU, Jozsef GAL, Haining ZHU()
Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
 Download: PDF(387 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The sequestosome 1/p62 protein has been implicated in the regulation of a multitude of cellular processes such as NF-кB signaling, NRF2-driven oxidative stress response, protein turnover through the ubiquitin-proteasome pathway and the autophagosome/lysosome pathway, apoptosis and cellular metabolism. The domain structure of p62 also reflects this functional complexity since the protein appears to be a mosaic of protein interaction domains and motifs. Deregulation of the level and function of p62 and/or p62 mutations have been linked to a number of human diseases including Paget’s disease of the bone, obesity, liver diseases, tumorigenesis and neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer’s disease. In this article, we review the current understanding of the involvement of p62 in cellular processes under physiologic and pathological conditions.

Keywords sequestosome 1/p62      autophagy      ubiquitin-proteasome system      NF-κB signaling      Paget′s disease of bone      amyotrophic lateral sclerosis     
Corresponding Author(s): ZHU Haining,Email:haining@uky.edu   
Issue Date: 01 June 2012
 Cite this article:   
Jozsef GAL,Haining ZHU,Xiaoyan LIU. Sequestosome 1/p62: a multi-domain protein with multi-faceted functions[J]. Front Biol, 2012, 7(3): 189-201.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1217-z
https://academic.hep.com.cn/fib/EN/Y2012/V7/I3/189
Fig.1  The domain structure of p62. The PB1, ZZ-type zinc finger, SMIR, TB, LIR and UBA domains and the responding molecules interacting with these domains are illustrated.
Fig.2  The role of p62 as a substrate receptor in protein turnover. The p62 protein targets substrates both to the ubiquitin-proteasome system and the autophagy-lysosome pathway. Misfolded proteins are recognized by p62 by ubiquitin-dependent or-independent mechanisms. The UBA domain is critical for the ubiquitin-dependent recognition of substrates. The SMIR motif is responsible for recognizing proteins such as familial ALS-related SOD1 mutants in an ubiquitin-independent manner. The LC3 interaction region (LIR) is necessary for targeting the substrates to autophagy.
Fig.3  The role of p62 in the TNFα- and RANKL-induced NF-κB signaling pathways. The binding of TNFα to the TNF receptor induces the recruitment of TRADD to the receptor, which in turn recruits TRAF2 and RIP1. RIP1 recruits p62 and activates the phosphorylation of the IKK complex by aPKC. The binding of RANKL to RANK leads to the recruitment of TRAF6 which in turn recruits p62 and activates the aPKC-dependent phosphorylation of IKK and subsequent NF-κB nuclear translocation and activation. It is noted that polyubiquitinated RIP1 and TRAF6 can both activate the IKK complex through a p62 independent pathway involving the TAB/TAK1 complex.
1 Aggarwal B B (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol , 3(9): 745–756
doi: 10.1038/nri1184 pmid:12949498
2 Babu J R, Geetha T, Wooten M W (2005). Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem , 94(1): 192–203
doi: 10.1111/j.1471-4159.2005.03181.x pmid:15953362
3 Bj?rk?y G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol , 171(4): 603–614
doi: 10.1083/jcb.200507002 pmid:16286508
4 Blonska M, Shambharkar P B, Kobayashi M, Zhang D, Sakurai H, Su B, Lin X (2005). TAK1 is recruited to the tumor necrosis factor-alpha (TNF-alpha) receptor 1 complex in a receptor-interacting protein (RIP)-dependent manner and cooperates with MEKK3 leading to NF-kappaB activation. J Biol Chem , 280(52): 43056–43063
doi: 10.1074/jbc.M507807200 pmid:16260783
5 Bost F, Aouadi M, Caron L, Even P, Belmonte N, Prot M, Dani C, Hofman P, Pagès G, Pouysségur J, Le Marchand-Brustel Y, Binétruy B (2005). The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes , 54(2): 402–411
doi: 10.2337/diabetes.54.2.402 pmid:15677498
6 Bost F, Caron L, Marchetti I, Dani C, Le Marchand-Brustel Y, Binétruy B (2002). Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem J , 361(3): 621–627
doi: 10.1042/0264-6021:3610621 pmid:11802792
7 Braak H, Ludolph A, Thal D R, Del Tredici K (2010). Amyotrophic lateral sclerosis: dash-like accumulation of phosphorylated TDP-43 in somatodendritic and axonal compartments of somatomotor neurons of the lower brainstem and spinal cord. Acta Neuropathol , 120(1): 67–74
doi: 10.1007/s00401-010-0683-0 pmid:20379728
8 Cavey J R, Ralston S H, Sheppard P W, Ciani B, Gallagher T R, Long J E, Searle M S, Layfield R (2006). Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget’s disease of bone. Calcif Tissue Int , 78(5): 271–277
doi: 10.1007/s00223-005-1299-6 pmid:16691492
9 Chamoux E, Couture J, Bisson M, Morissette J, Brown J P, Roux S (2009). The p62 P392L mutation linked to Paget’s disease induces activation of human osteoclasts. Mol Endocrinol , 23(10): 1668–1680
doi: 10.1210/me.2009-0066 pmid:19589897
10 Ciani B, Layfield R, Cavey J R, Sheppard P W, Searle M S (2003). Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget’s disease of bone. J Biol Chem , 278(39): 37409–37412
doi: 10.1074/jbc.M307416200 pmid:12857745
11 Copple I M, Lister A, Obeng A D, Kitteringham N R, Jenkins R E, Layfield R, Foster B J, Goldring C E, Park B K (2010). Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway. J Biol Chem , 285(22): 16782–16788
doi: 10.1074/jbc.M109.096545 pmid:20378532
12 Cullinan S B, Gordan J D, Jin J, Harper J W, Diehl J A (2004). The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol , 24(19): 8477–8486
doi: 10.1128/MCB.24.19.8477-8486.2004 pmid:15367669
13 Darnay B G, Besse A, Poblenz A T, Lamothe B, Jacoby J J (2007). TRAFs in RANK signaling. Adv Exp Med Biol , 597: 152–159
doi: 10.1007/978-0-387-70630-6_12 pmid:17633024
14 de Bie P, Ciechanover A (2011). Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and non-proteolytic mechanisms. Cell Death Differ , 18(9): 1393–1402
doi: 10.1038/cdd.2011.16 pmid:21372847
15 Deng H X, Zhai H, Bigio E H, Yan J, Fecto F, Ajroud K, Mishra M, Ajroud-Driss S, Heller S, Sufit R, Siddique N, Mugnaini E, Siddique T (2010). FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann Neurol , 67(6): 739–748
pmid:20517935
16 Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen Z J (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell , 103(2): 351–361
doi: 10.1016/S0092-8674(00)00126-4 pmid:11057907
17 Denk H, Stumptner C, Fuchsbichler A, Müller T, Farr G, Müller W, Terracciano L, Zatloukal K (2006). Are the Mallory bodies and intracellular hyaline bodies in neoplastic and non-neoplastic hepatocytes related? J Pathol , 208(5): 653–661
doi: 10.1002/path.1946 pmid:16477590
18 Duran A, Amanchy R, Linares J F, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J, Diaz-Meco M T (2011). p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell , 44(1): 134–146
doi: 10.1016/j.molcel.2011.06.038 pmid:21981924
19 Duran A, Linares J F, Galvez A S, Wikenheiser K, Flores J M, Diaz-Meco M T, Moscat J (2008). The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell , 13(4): 343–354
doi: 10.1016/j.ccr.2008.02.001 pmid:18394557
20 Durán A, Serrano M, Leitges M, Flores J M, Picard S, Brown J P, Moscat J, Diaz-Meco M T (2004). The atypical PKC-interacting protein p62 is an important mediator of RANK-activated osteoclastogenesis. Dev Cell , 6(2): 303–309
doi: 10.1016/S1534-5807(03)00403-9 pmid:14960283
21 Ea C K, Deng L, Xia Z P, Pineda G, Chen Z J (2006). Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell , 22(2): 245–257
doi: 10.1016/j.molcel.2006.03.026 pmid:16603398
22 Falchetti A, Di Stefano M, Marini F, Del Monte F, Mavilia C, Strigoli D, De Feo M L, Isaia G, Masi L, Amedei A, Cioppi F, Ghinoi V, Bongi S M, Di Fede G, Sferrazza C, Rini G B, Melchiorre D, Matucci-Cerinic M, Brandi M L (2004). Two novel mutations at exon 8 of the Sequestosome 1 (SQSTM1) gene in an Italian series of patients affected by Paget’s disease of bone (PDB). J Bone Miner Res , 19(6): 1013–1017
doi: 10.1359/JBMR.040203 pmid:15125799
23 Falchetti A, Di Stefano M, Marini F, Ortolani S, Ulivieri M F, Bergui S, Masi L, Cepollaro C, Benucci M, Di Munno O, Rossini M, Adami S, Del Puente A, Isaia G, Torricelli F, Brandi M L, and the GenePage Project (2009). Genetic epidemiology of Paget’s disease of bone in Italy: sequestosome1/p62 gene mutational test and haplotype analysis at 5q35 in a large representative series of sporadic and familial Italian cases of Paget’s disease of bone. Calcif Tissue Int , 84(1): 20–37
doi: 10.1007/s00223-008-9192-8 pmid:19067022
24 Fecto F, Yan J, Vemula S P, Liu E, Yang Y, Chen W, Zheng J G, Shi Y, Siddique N, Arrat H, Donkervoort S, Ajroud-Driss S, Sufit R L, Heller S L, Deng H X, Siddique T (2011). SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol , 68(11): 1440–1446
doi: 10.1001/archneurol.2011.250 pmid:22084127
25 Feng Y, Longmore G D (2005). The LIM protein Ajuba influences interleukin-1-induced NF-kappaB activation by affecting the assembly and activity of the protein kinase Czeta/p62/TRAF6 signaling complex. Mol Cell Biol , 25(10): 4010–4022
doi: 10.1128/MCB.25.10.4010-4022.2005 pmid:15870274
26 Ferguson C J, Lenk G M, Meisler M H (2009). Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet , 18(24): 4868–4878
doi: 10.1093/hmg/ddp460 pmid:19793721
27 Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Maler?d L, Fisher E M, Isaacs A, Brech A, Stenmark H, Simonsen A (2007). Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol , 179(3): 485–500
doi: 10.1083/jcb.200702115 pmid:17984323
28 Gal J, Str?m A L, Kilty R, Zhang F, Zhu H (2007). p62 accumulates and enhances aggregate formation in model systems of familial amyotrophic lateral sclerosis. J Biol Chem , 282(15): 11068–11077
doi: 10.1074/jbc.M608787200 pmid:17296612
29 Gal J, Str?m A L, Kwinter D M, Kilty R, Zhang J, Shi P, Fu W, Wooten M W, Zhu H (2009). Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. J Neurochem , 111(4): 1062–1073
doi: 10.1111/j.1471-4159.2009.06388.x pmid:19765191
30 Geetha T, Jiang J, Wooten M W (2005). Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling. Mol Cell , 20(2): 301–312
doi: 10.1016/j.molcel.2005.09.014 pmid:16246731
31 Geetha T, Seibenhener M L, Chen L, Madura K, Wooten M W (2008). p62 serves as a shuttling factor for TrkA interaction with the proteasome. Biochem Biophys Res Commun , 374(1): 33–37
doi: 10.1016/j.bbrc.2008.06.082 pmid:18598672
32 Goode A, Layfield R (2010). Recent advances in understanding the molecular basis of Paget disease of bone. J Clin Pathol , 63(3): 199–203
doi: 10.1136/jcp.2009.064428 pmid:19858527
33 Gump J M, Thorburn A (2011). Autophagy and apoptosis: what is the connection? Trends Cell Biol , 21(7): 387–392
doi: 10.1016/j.tcb.2011.03.007 pmid:21561772
34 Habelhah H, Takahashi S, Cho S G, Kadoya T, Watanabe T, Ronai Z (2004). Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-kappaB. EMBO J , 23(2): 322–332
doi: 10.1038/sj.emboj.7600044 pmid:14713952
35 Helfrich M H, Hocking L J (2008). Genetics and aetiology of Pagetic disorders of bone. Arch Biochem Biophys , 473(2): 172–182
doi: 10.1016/j.abb.2008.02.045 pmid:18359282
36 Heyninck K, Beyaert R (2001). Crosstalk between NF-kappaB-activating and apoptosis-inducing proteins of the TNF-receptor complex. Mol Cell Biol Res Commun , 4(5): 259–265
doi: 10.1006/mcbr.2001.0295 pmid:11529675
37 Hiji M, Takahashi T, Fukuba H, Yamashita H, Kohriyama T, Matsumoto M (2008). White matter lesions in the brain with frontotemporal lobar degeneration with motor neuron disease: TDP-43-immunopositive inclusions co-localize with p62, but not ubiquitin. Acta Neuropathol , 116(2): 183–191
doi: 10.1007/s00401-008-0402-2 pmid:18584184
38 Hocking L J, Lucas G J, Daroszewska A, Cundy T, Nicholson G C, Donath J, Walsh J P, Finlayson C, Cavey J R, Ciani B, Sheppard P W, Searle M S, Layfield R, Ralston S H (2004). Novel UBA domain mutations of SQSTM1 in Paget’s disease of bone: genotype phenotype correlation, functional analysis, and structural consequences. J Bone Miner Res , 19(7): 1122–1127
doi: 10.1359/JBMR.0403015 pmid:15176995
39 Hocking L J, Lucas G J, Daroszewska A, Mangion J, Olavesen M, Cundy T, Nicholson G C, Ward L, Bennett S T, Wuyts W, Van Hul W, Ralston S H (2002). Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget’s disease. Hum Mol Genet , 11(22): 2735–2739
doi: 10.1093/hmg/11.22.2735 pmid:12374763
40 Hou W, Han J, Lu C, Goldstein L A, Rabinowich H (2010). Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy , 6(7): 891–900
doi: 10.4161/auto.6.7.13038 pmid:20724831
41 Hsu H, Huang J, Shu H B, Baichwal V, Goeddel D V (1996). TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity , 4(4): 387–396
doi: 10.1016/S1074-7613(00)80252-6 pmid:8612133
42 Hsu H, Lacey D L, Dunstan C R, Solovyev I, Colombero A, Timms E, Tan H L, Elliott G, Kelley M J, Sarosi I, Wang L, Xia X Z, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass M B, Boyle W J (1999). Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA , 96(7): 3540–3545
doi: 10.1073/pnas.96.7.3540 pmid:10097072
43 Ichimura Y, Kumanomidou T, Sou Y S, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M (2008). Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem , 283(33): 22847–22857
doi: 10.1074/jbc.M802182200 pmid:18524774
44 Ishii T, Yanagawa T, Kawane T, Yuki K, Seita J, Yoshida H, Bannai S (1996). Murine peritoneal macrophages induce a novel 60-kDa protein with structural similarity to a tyrosine kinase p56lck-associated protein in response to oxidative stress. Biochem Biophys Res Commun , 226(2): 456–460
doi: 10.1006/bbrc.1996.1377 pmid:8806656
45 Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y (1997). An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun , 236(2): 313–322
doi: 10.1006/bbrc.1997.6943 pmid:9240432
46 Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel J D, Yamamoto M (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev , 13(1): 76–86
doi: 10.1101/gad.13.1.76 pmid:9887101
47 Jain A, Lamark T, Sj?ttem E, Larsen K B, Awuh J A, ?vervatn A, McMahon M, Hayes J D, Johansen T (2010). p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem , 285(29): 22576–22591
doi: 10.1074/jbc.M110.118976 pmid:20452972
48 Jimi E, Aoki K, Saito H, D’Acquisto F, May M J, Nakamura I, Sudo T, Kojima T, Okamoto F, Fukushima H, Okabe K, Ohya K, Ghosh S (2004). Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med , 10(6): 617–624
doi: 10.1038/nm1054 pmid:15156202
49 Jin W, Chang M, Paul E M, Babu G, Lee A J, Reiley W, Wright A, Zhang M, You J, Sun S C (2008). Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest , 118(5): 1858–1866
doi: 10.1172/JCI34257 pmid:18382763
50 Jin Z, Li Y, Pitti R, Lawrence D, Pham V C, Lill J R, Ashkenazi A (2009). Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell , 137(4): 721–735
doi: 10.1016/j.cell.2009.03.015 pmid:19427028
51 Johnson-Pais T L, Wisdom J H, Weldon K S, Cody J D, Hansen M F, Singer F R, Leach R J (2003). Three novel mutations in SQSTM1 identified in familial Paget’s disease of bone. J Bone Miner Res , 18(10): 1748–1753
doi: 10.1359/jbmr.2003.18.10.1748 pmid:14584883
52 Johnson J O, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin V M, Trojanowski J Q, Gibbs J R, Brunetti M, Gronka S, Wuu J, Ding J, McCluskey L, Martinez-Lage M, Falcone D, Hernandez D G, Arepalli S, Chong S, Schymick J C, Rothstein J, Landi F, Wang Y D, Calvo A, Mora G, Sabatelli M, Monsurrò M R, Battistini S, Salvi F, Spataro R, Sola P, Borghero G, the ITALSGEN Consortium, Galassi G, Scholz S W, Taylor J P, Restagno G, Chiò A, Traynor B J (2010). Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron , 68(5): 857–864
doi: 10.1016/j.neuron.2010.11.036 pmid:21145000
53 Jung C H, Ro S H, Cao J, Otto N M, Kim D H (2010). mTOR regulation of autophagy. FEBS Lett , 584(7): 1287–1295
doi: 10.1016/j.febslet.2010.01.017 pmid:20083114
54 Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J , 19(21): 5720–5728
doi: 10.1093/emboj/19.21.5720 pmid:11060023
55 Kim D H, Sarbassov D D, Ali S M, King J E, Latek R R, Erdjument-Bromage H, Tempst P, Sabatini D M (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell , 110(2): 163–175
doi: 10.1016/S0092-8674(02)00808-5 pmid:12150925
56 Kim P K, Hailey D W, Mullen R T, Lippincott-Schwartz J (2008). Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci USA , 105(52): 20567–20574
doi: 10.1073/pnas.0810611105 pmid:19074260
57 Klionsky D J, Abeliovich H, Agostinis P, Agrawal D K, Aliev G, Askew D S, Baba M, Baehrecke E H, Bahr B A, Ballabio A, Bamber B A, Bassham D C, Bergamini E, Bi X, Biard-Piechaczyk M, Blum J S, Bredesen D E, Brodsky J L, Brumell J H, Brunk U T, Bursch W, Camougrand N, Cebollero E, Cecconi F, Chen Y, Chin L S, Choi A, Chu C T, Chung J, Clarke P G, Clark R S, Clarke S G, Clavé C, Cleveland J L, Codogno P, Colombo M I, Coto-Montes A, Cregg J M, Cuervo A M, Debnath J, Demarchi F, Dennis P B, Dennis P A, Deretic V, Devenish R J, Di Sano F, Dice J F, Difiglia M, Dinesh-Kumar S, Distelhorst C W, Djavaheri-Mergny M, Dorsey F C, Dr?ge W, Dron M, Dunn W A Jr, Duszenko M, Eissa N T, Elazar Z, Esclatine A, Eskelinen E L, Fésüs L, Finley K D, Fuentes J M, Fueyo J, Fujisaki K, Galliot B, Gao F B, Gewirtz D A, Gibson S B, Gohla A, Goldberg A L, Gonzalez R, González-Estévez C, Gorski S, Gottlieb R A, H?ussinger D, He Y W, Heidenreich K, Hill J A, H?yer-Hansen M, Hu X, Huang W P, Iwasaki A, J??ttel? M, Jackson W T, Jiang X, Jin S, Johansen T, Jung J U, Kadowaki M, Kang C, Kelekar A, Kessel D H, Kiel J A, Kim H P, Kimchi A, Kinsella T J, Kiselyov K, Kitamoto K, Knecht E, Komatsu M, Kominami E, Kondo S, Kovács A L, Kroemer G, Kuan C Y, Kumar R, Kundu M, Landry J, Laporte M, Le W, Lei H Y, Lenardo M J, Levine B, Lieberman A, Lim K L, Lin F C, Liou W, Liu L F, Lopez-Berestein G, López-Otín C, Lu B, Macleod K F, Malorni W, Martinet W, Matsuoka K, Mautner J, Meijer A J, Meléndez A, Michels P, Miotto G, Mistiaen W P, Mizushima N, Mograbi B, Monastyrska I, Moore M N, Moreira P I, Moriyasu Y, Motyl T, Münz C, Murphy L O, Naqvi N I, Neufeld T P, Nishino I, Nixon R A, Noda T, Nürnberg B, Ogawa M, Oleinick N L, Olsen L J, Ozpolat B, Paglin S, Palmer G E, Papassideri I, Parkes M, Perlmutter D H, Perry G, Piacentini M, Pinkas-Kramarski R, Prescott M, Proikas-Cezanne T, Raben N, Rami A, Reggiori F, Rohrer B, Rubinsztein D C, Ryan K M, Sadoshima J, Sakagami H, Sakai Y, Sandri M, Sasakawa C, Sass M, Schneider C, Seglen P O, Seleverstov O, Settleman J, Shacka J J, Shapiro I M, Sibirny A, Silva-Zacarin E C, Simon H U, Simone C, Simonsen A, Smith M A, Spanel-Borowski K, Srinivas V, Steeves M, Stenmark H, Stromhaug P E, Subauste C S, Sugimoto S, Sulzer D, Suzuki T, Swanson M S, Tabas I, Takeshita F, Talbot N J, Tallóczy Z, Tanaka K, Tanaka K, Tanida I, Taylor G S, Taylor J P, Terman A, Tettamanti G, Thompson C B, Thumm M, Tolkovsky A M, Tooze S A, Truant R, Tumanovska L V, Uchiyama Y, Ueno T, Uzcátegui N L, van der Klei I, Vaquero E C, Vellai T, Vogel M W, Wang H G, Webster P, Wiley J W, Xi Z, Xiao G, Yahalom J, Yang J M, Yap G, Yin X M, Yoshimori T, Yu L, Yue Z, Yuzaki M, Zabirnyk O, Zheng X, Zhu X, Deter R L (2008). Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy , 4(2): 151–175
pmid:18188003
58 Kobayashi A, Kang M I, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol , 24(16): 7130–7139
doi: 10.1128/MCB.24.16.7130-7139.2004 pmid:15282312
59 Komatsu M, Ichimura Y (2010). Physiological significance of selective degradation of p62 by autophagy. FEBS Lett , 584(7): 1374–1378
doi: 10.1016/j.febslet.2010.02.017 pmid:20153326
60 Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou Y S, Ueno I, Sakamoto A, Tong K I, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol , 12(3): 213–223
pmid:20173742
61 Komatsu M, Waguri S, Koike M, Sou Y S, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, Tanaka K (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell , 131(6): 1149–1163
doi: 10.1016/j.cell.2007.10.035 pmid:18083104
62 Korolchuk V I, Menzies F M, Rubinsztein D C (2010). Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett , 584(7): 1393–1398
doi: 10.1016/j.febslet.2009.12.047 pmid:20040365
63 Kuusisto E, Salminen A, Alafuzoff I (2001a). Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport , 12(10): 2085–2090
doi: 10.1097/00001756-200107200-00009 pmid:11447312
64 Kuusisto E, Salminen A, Alafuzoff I (2002). Early accumulation of p62 in neurofibrillary tangles in Alzheimer’s disease: possible role in tangle formation. Neuropathol Appl Neurobiol , 28(3): 228–237
doi: 10.1046/j.1365-2990.2002.00394.x pmid:12060347
65 Kuusisto E, Suuronen T, Salminen A (2001b). Ubiquitin-binding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells. Biochem Biophys Res Commun , 280(1): 223–228
doi: 10.1006/bbrc.2000.4107 pmid:11162503
66 Lacey D L, Timms E, Tan H L, Kelley M J, Dunstan C R, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian Y X, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle W J (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell , 93(2): 165–176
doi: 10.1016/S0092-8674(00)81569-X pmid:9568710
67 Lallena M J, Diaz-Meco M T, Bren G, Payá C V, Moscat J (1999). Activation of IkappaB kinase beta by protein kinase C isoforms. Mol Cell Biol , 19(3): 2180–2188
pmid:10022904
68 Lamark T, Perander M, Outzen H, Kristiansen K, ?vervatn A, Michaelsen E, Bj?rk?y G, Johansen T (2003). Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem , 278(36): 34568–34581
doi: 10.1074/jbc.M303221200 pmid:12813044
69 Lamothe B, Webster W K, Gopinathan A, Besse A, Campos A D, Darnay B G (2007). TRAF6 ubiquitin ligase is essential for RANKL signaling and osteoclast differentiation. Biochem Biophys Res Commun , 359(4): 1044–1049
doi: 10.1016/j.bbrc.2007.06.017 pmid:17572386
70 Lau A, Wang X J, Zhao F, Villeneuve N F, Wu T, Jiang T, Sun Z, White E, Zhang D D (2010). A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol , 30(13): 3275–3285
doi: 10.1128/MCB.00248-10 pmid:20421418
71 Laurin N, Brown J P, Morissette J, Raymond V (2002). Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum Genet , 70(6): 1582–1588
doi: 10.1086/340731 pmid:11992264
72 Layfield R (2007). The molecular pathogenesis of Paget disease of bone. Expert Rev Mol Med , 9(27): 1–13
doi: 10.1017/S1462399407000464 pmid:17903332
73 Layfield R, Ciani B, Ralston S H, Hocking L J, Sheppard P W, Searle M S, Cavey J R (2004). Structural and functional studies of mutations affecting the UBA domain of SQSTM1 (p62) which cause Paget’s disease of bone. Biochem Soc Trans , 32(5): 728–730
doi: 10.1042/BST0320728 pmid:15493999
74 Layfield R, Hocking L J (2004). SQSTM1 and Paget’s disease of bone. Calcif Tissue Int , 75(5): 347–357
doi: 10.1007/s00223-004-0041-0 pmid:15365659
75 Lee T H, Shank J, Cusson N, Kelliher M A (2004). The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J Biol Chem , 279(32): 33185–33191
doi: 10.1074/jbc.M404206200 pmid:15175328
76 Lewis T S, Shapiro P S, Ahn N G (1998). Signal transduction through MAP kinase cascades. Adv Cancer Res , 74: 49–139
doi: 10.1016/S0065-230X(08)60765-4 pmid:9561267
77 Li H, Kobayashi M, Blonska M, You Y, Lin X (2006). Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J Biol Chem , 281(19): 13636–13643
doi: 10.1074/jbc.M600620200 pmid:16543241
78 Maekawa S, Leigh P N, King A, Jones E, Steele J C, Bodi I, Shaw C E, Hortobagyi T, Al-Sarraj S (2009). TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations. Neuropathology , 29(6): 672–683
doi: 10.1111/j.1440-1789.2009.01029.x pmid:19496940
79 Martin P, Diaz-Meco M T, Moscat J (2006). The signaling adapter p62 is an important mediator of T helper 2 cell function and allergic airway inflammation. EMBO J , 25(15): 3524–3533
doi: 10.1038/sj.emboj.7601250 pmid:16874300
80 Mathew R, Karp C M, Beaudoin B, Vuong N, Chen G, Chen H Y, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola R S, Karantza-Wadsworth V, White E (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell , 137(6): 1062–1075
doi: 10.1016/j.cell.2009.03.048 pmid:19524509
81 Matsuoka T, Fujii N, Kondo A, Iwaki A, Hokonohara T, Honda H, Sasaki K, Suzuki S O, Iwaki T (2011). An autopsied case of sporadic adult-onset amyotrophic lateral sclerosis with FUS-positive basophilic inclusions. Neuropathology , 31(1): 71–76
82 McMahon M, Itoh K, Yamamoto M, Hayes J D (2003). Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem , 278(24): 21592–21600
doi: 10.1074/jbc.M300931200 pmid:12682069
83 Micheau O, Tschopp J (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell , 114(2): 181–190
doi: 10.1016/S0092-8674(03)00521-X pmid:12887920
84 Mizuno Y, Amari M, Takatama M, Aizawa H, Mihara B, Okamoto K (2006). Immunoreactivities of p62, an ubiqutin-binding protein, in the spinal anterior horn cells of patients with amyotrophic lateral sclerosis. J Neurol Sci , 249(1): 13–18
doi: 10.1016/j.jns.2006.05.060 pmid:16820172
85 Moscat J, Diaz-Meco M T (2011). Feedback on fat: p62-mTORC1-autophagy connections. Cell , 147(4): 724–727
doi: 10.1016/j.cell.2011.10.021 pmid:22078874
86 Moscat J, Diaz-Meco M T, Wooten M W (2007). Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci , 32(2): 95–100
doi: 10.1016/j.tibs.2006.12.002 pmid:17174552
87 Motohashi H, Yamamoto M (2004). Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med , 10(11): 549–557
doi: 10.1016/j.molmed.2004.09.003 pmid:15519281
88 Nagaoka U, Kim K, Jana N R, Doi H, Maruyama M, Mitsui K, Oyama F, Nukina N (2004). Increased expression of p62 in expanded polyglutamine-expressing cells and its association with polyglutamine inclusions. J Neurochem , 91(1): 57–68
doi: 10.1111/j.1471-4159.2004.02692.x pmid:15379887
89 Najat D, Garner T, Hagen T, Shaw B, Sheppard P W, Falchetti A, Marini F, Brandi M L, Long J E, Cavey J R, Searle M S, Layfield R (2009). Characterization of a non-UBA domain missense mutation of sequestosome 1 (SQSTM1) in Paget’s disease of bone. J Bone Miner Res , 24(4): 632–642
doi: 10.1359/jbmr.081204 pmid:19049332
90 Nakano T, Nakaso K, Nakashima K, Ohama E (2004). Expression of ubiquitin-binding protein p62 in ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis with dementia: analysis of five autopsy cases with broad clinicopathological spectrum. Acta Neuropathol , 107(4): 359–364
doi: 10.1007/s00401-004-0821-7 pmid:14762676
91 Norman J M, Cohen G M, Bampton E T (2010). The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy , 6(8): 1042–1056
doi: 10.4161/auto.6.8.13337 pmid:21121091
92 Pagès G, Guérin S, Grall D, Bonino F, Smith A, Anjuere F, Auberger P, Pouysségur J (1999). Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science , 286(5443): 1374–1377
doi: 10.1126/science.286.5443.1374 pmid:10558995
93 Pankiv S, Clausen T H, Lamark T, Brech A, Bruun J A, Outzen H, ?vervatn A, Bj?rk?y G, Johansen T (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem , 282(33): 24131–24145
doi: 10.1074/jbc.M702824200 pmid:17580304
94 Parkhitko A, Myachina F, Morrison T A, Hindi K M, Auricchio N, Karbowniczek M, Wu J J, Finkel T, Kwiatkowski D J, Yu J J, Henske E P (2011). Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci USA , 108(30): 12455–12460
doi: 10.1073/pnas.1104361108 pmid:21746920
95 Parkinson N, Ince P G, Smith M O, Highley R, Skibinski G, Andersen P M, Morrison K E, Pall H S, Hardiman O, Collinge J, Shaw P J, Fisher E M, and the MRC Proteomics in ALS Study, and the FReJA Consortium (2006). ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology , 67(6): 1074–1077
doi: 10.1212/01.wnl.0000231510.89311.8b pmid:16807408
96 Polak P, Cybulski N, Feige J N, Auwerx J, Rüegg M A, Hall M N (2008). Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab , 8(5): 399–410
doi: 10.1016/j.cmet.2008.09.003 pmid:19046571
97 Puls A, Schmidt S, Grawe F, Stabel S (1997). Interaction of protein kinase C zeta with ZIP, a novel protein kinase C-binding protein. Proc Natl Acad Sci USA , 94(12): 6191–6196
doi: 10.1073/pnas.94.12.6191 pmid:9177193
98 Quinn J M, Elliott J, Gillespie M T, Martin T J (1998). A combination of osteoclast differentiation factor and macrophage-colony stimulating factor is sufficient for both human and mouse osteoclast formation in vitro. Endocrinology , 139(10): 4424–4427
doi: 10.1210/en.139.10.4424 pmid:9751528
99 Rabouille C, Levine T P, Peters J M, Warren G (1995). An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell , 82(6): 905–914
doi: 10.1016/0092-8674(95)90270-8 pmid:7553851
100 Ramesh Babu J, Lamar Seibenhener M, Peng J, Strom A L, Kemppainen R, Cox N, Zhu H, Wooten M C, Diaz-Meco M T, Moscat J, Wooten M W (2008). Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J Neurochem , 106(1): 107–120
doi: 10.1111/j.1471-4159.2008.05340.x pmid:18346206
101 Ravikumar B, Vacher C, Berger Z, Davies J E, Luo S, Oroz L G, Scaravilli F, Easton D F, Duden R, O’Kane C J, Rubinsztein D C (2004). Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet , 36(6): 585–595
doi: 10.1038/ng1362 pmid:15146184
102 Rea S L, Walsh J P, Ward L, Magno A L, Ward B K, Shaw B, Layfield R, Kent G N, Xu J, Ratajczak T (2009). Sequestosome 1 mutations in Paget’s disease of bone in Australia: prevalence, genotype/phenotype correlation, and a novel non-UBA domain mutation (P364S) associated with increased NF-kappaB signaling without loss of ubiquitin binding. J Bone Miner Res , 24(7): 1216–1223
doi: 10.1359/jbmr.090214 pmid:19257822
103 Rea S L, Walsh J P, Ward L, Yip K, Ward B K, Kent G N, Steer J H, Xu J, Ratajczak T (2006). A novel mutation (K378X) in the sequestosome 1 gene associated with increased NF-kappaB signaling and Paget’s disease of bone with a severe phenotype. J Bone Miner Res , 21(7): 1136–1145
doi: 10.1359/jbmr.060405 pmid:16813535
104 Rodriguez A, Durán A, Selloum M, Champy M F, Diez-Guerra F J, Flores J M, Serrano M, Auwerx J, Diaz-Meco M T, Moscat J (2006). Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab , 3(3): 211–222
doi: 10.1016/j.cmet.2006.01.011 pmid:16517408
105 Rusten T E, Simonsen A (2008). ESCRT functions in autophagy and associated disease. Cell Cycle , 7(9): 1166–1172
doi: 10.4161/cc.7.9.5784 pmid:18418046
106 Sanz L, Diaz-Meco M T, Nakano H, Moscat J (2000). The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J , 19(7): 1576–1586
doi: 10.1093/emboj/19.7.1576 pmid:10747026
107 Sanz L, Sanchez P, Lallena M J, Diaz-Meco M T, Moscat J (1999). The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation. EMBO J , 18(11): 3044–3053
doi: 10.1093/emboj/18.11.3044 pmid:10356400
108 Seibenhener M L, Babu J R, Geetha T, Wong H C, Krishna N R, Wooten M W (2004). Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol , 24(18): 8055–8068
doi: 10.1128/MCB.24.18.8055-8068.2004 pmid:15340068
109 Seibenhener M L, Geetha T, Wooten M W (2007). Sequestosome 1/p62—more than just a scaffold. FEBS Lett , 581(2): 175–179
doi: 10.1016/j.febslet.2006.12.027 pmid:17188686
110 Seilhean D, Cazeneuve C, Thuriès V, Russaouen O, Millecamps S, Salachas F, Meininger V, Leguern E, Duyckaerts C (2009). Accumulation of TDP-43 and alpha-actin in an amyotrophic lateral sclerosis patient with the K17I ANG mutation. Acta Neuropathol , 118(4): 561–573
doi: 10.1007/s00401-009-0545-9 pmid:19449021
111 Shi C S, Kehrl J H (2003). Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J Biol Chem , 278(17): 15429–15434
doi: 10.1074/jbc.M211796200 pmid:12591926
112 Shin J (1998). P62 and the sequestosome, a novel mechanism for protein metabolism. Arch Pharm Res , 21(6): 629–633
doi: 10.1007/BF02976748 pmid:9868528
113 Shvets E, Fass E, Scherz-Shouval R, Elazar Z (2008). The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J Cell Sci , 121(16): 2685–2695
doi: 10.1242/jcs.026005 pmid:18653543
114 Sundaram K, Shanmugarajan S, Rao D S, Reddy S V (2011). Mutant p62P392L stimulation of osteoclast differentiation in Paget’s disease of bone. Endocrinology , 152(11): 4180–4189
doi: 10.1210/en.2011-1225 pmid:21878516
115 Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011). Autophagy-deficient mice develop multiple liver tumors. Genes Dev , 25(8): 795–800
doi: 10.1101/gad.2016211 pmid:21498569
116 Tateishi T, Hokonohara T, Yamasaki R, Miura S, Kikuchi H, Iwaki A, Tashiro H, Furuya H, Nagara Y, Ohyagi Y, Nukina N, Iwaki T, Fukumaki Y, Kira J I (2010). Multiple system degeneration with basophilic inclusions in Japanese ALS patients with FUS mutation. Acta Neuropathol , 119(3): 355–364
doi: 10.1007/s00401-009-0621-1 pmid:19967541
117 Teitelbaum S L, Ross F P (2003). Genetic regulation of osteoclast development and function. Nat Rev Genet , 4(8): 638–649
doi: 10.1038/nrg1122 pmid:12897775
118 Um S H, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini P R, Kozma S C, Auwerx J, Thomas G (2004). Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature , 431(7005): 200–205
doi: 10.1038/nature02866 pmid:15306821
119 Vadlamudi R K, Joung I, Strominger J L, Shin J (1996). p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins. J Biol Chem , 271(34): 20235–20237
doi: 10.1074/jbc.271.34.20235 pmid:8702753
120 Van Antwerp D J, Martin S J, Verma I M, Green D R (1998). Inhibition of TNF-induced apoptosis by NF-kappa B. Trends Cell Biol , 8(3): 107–111
doi: 10.1016/S0962-8924(97)01215-4 pmid:9695819
121 Varelas P N, Bertorini T E, Kapaki E, Papageorgiou C T (1997). Paget’s disease of bone and motor neuron disease. Muscle Nerve , 20(5): 630
pmid:9140378
122 Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, Imakado S, Kotsuji T, Otsuka F, Roop D R, Harada T, Engel J D, Yamamoto M (2003). Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet , 35(3): 238–245
doi: 10.1038/ng1248 pmid:14517554
123 Wang C, Deng L, Hong M, Akkaraju G R, Inoue J, Chen Z J (2001). TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature , 412(6844): 346–351
doi: 10.1038/35085597 pmid:11460167
124 Watts G D, Wymer J, Kovach M J, Mehta S G, Mumm S, Darvish D, Pestronk A, Whyte M P, Kimonis V E (2004). Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet , 36(4): 377–381
doi: 10.1038/ng1332 pmid:15034582
125 Wilson M I, Gill D J, Perisic O, Quinn M T, Williams R L (2003). PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62. Mol Cell , 12(1): 39–50
doi: 10.1016/S1097-2765(03)00246-6 pmid:12887891
126 Wooten M W, Geetha T, Babu J R, Seibenhener M L, Peng J, Cox N, Diaz-Meco M T, Moscat J (2008). Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins. J Biol Chem , 283(11): 6783–6789
doi: 10.1074/jbc.M709496200 pmid:18174161
127 Wooten M W, Geetha T, Seibenhener M L, Babu J R, Diaz-Meco M T, Moscat J (2005). The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. J Biol Chem , 280(42): 35625–35629
doi: 10.1074/jbc.C500237200 pmid:16079148
128 Wooten M W, Seibenhener M L, Mamidipudi V, Diaz-Meco M T, Barker P A, Moscat J (2001). The atypical protein kinase C-interacting protein p62 is a scaffold for NF-kappaB activation by nerve growth factor. J Biol Chem , 276(11): 7709–7712
doi: 10.1074/jbc.C000869200 pmid:11244088
129 Wu Y, Zhou B P (2010). TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer , 102(4): 639–644
doi: 10.1038/sj.bjc.6605530 pmid:20087353
130 Xu J, Wu H F, Ang E S, Yip K, Woloszyn M, Zheng M H, Tan R X (2009). NF-kappaB modulators in osteolytic bone diseases. Cytokine Growth Factor Rev , 20(1): 7–17
doi: 10.1016/j.cytogfr.2008.11.007 pmid:19046922
131 Yang W L, Zhang X, Lin H K (2010). Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene , 29(32): 4493–4503
doi: 10.1038/onc.2010.190 pmid:20531303
132 Yue Z (2007). Regulation of neuronal autophagy in axon: implication of autophagy in axonal function and dysfunction/degeneration. Autophagy , 3(2): 139–141
pmid:17204855
133 Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, Kleinert R, Prinz M, Aguzzi A, Denk H (2002). p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol , 160(1): 255–263
doi: 10.1016/S0002-9440(10)64369-6 pmid:11786419
134 Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S (2009). Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci U S A , 106(47): 19860–19865
pmid:19910529
135 Zhong X, Shen Y, Ballar P, Apostolou A, Agami R, Fang S (2004). AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. J Biol Chem , 279(44): 45676–45684
doi: 10.1074/jbc.M409034200 pmid:15331598
[1] Lauren A. Howell,Robert J. Tomko Jr.,Andrew R. Kusmierczyk. Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis[J]. Front. Biol., 2017, 12(1): 19-48.
[2] Yanan Sun,Jie Yang,Zhenyi Ma. Functions of the adaptor protein p66Shc in solid tumors[J]. Front. Biol., 2015, 10(6): 487-494.
[3] Altea Rocchi,Congcong He. Emerging roles of autophagy in metabolism and metabolic disorders[J]. Front. Biol., 2015, 10(2): 154-164.
[4] Leon H. CHEW,Calvin K. YIP. Structural biology of the macroautophagy machinery[J]. Front. Biol., 2014, 9(1): 18-34.
[5] Noor GAMMOH,Simon WILKINSON. Autophagy in cancer biology and therapy[J]. Front. Biol., 2014, 9(1): 35-50.
[6] Hongya HAN, Lishu ZHANG, Xinxian DAI, Yanpeng ZHENG. Cross-talking between autophagy and viral infection in mammalian cells[J]. Front Biol, 2010, 5(6): 507-515.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed