|
|
Structural biology of the macroautophagy machinery |
Leon H. CHEW,Calvin K. YIP( ) |
Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada |
|
|
Abstract Macroautophagy is a conserved degradative process mediated through formation of a unique double-membrane structure, the autophagosome. The discovery of autophagy-related (Atg) genes required for autophagosome formation has led to the characterization of approximately 20 genes mediating this process. Recent structural studies of the Atg proteins have provided the molecular basis for their function. Here we summarize the recent progress in elucidating the structural basis for autophagosome formation.
|
Keywords
macroautophagy
autophagy
Atg proteins
structural biology
X-ray crystallography
single-particle electron microscopy
|
Corresponding Author(s):
Calvin K. YIP
|
Issue Date: 13 May 2014
|
|
1 |
AitaV M, LiangX H, MurtyV V, PincusD L, YuW, CayanisE, KalachikovS, GilliamT C, LevineB (1999). Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics, 59(1): 59–65 doi: 10.1006/geno.1999.5851 pmid: 10395800
|
2 |
ArakiY, KuW C, AkiokaM, MayA I, HayashiY, ArisakaF, IshihamaY, OhsumiY (2013). Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. J Cell Biol, 203(2): 299–313 doi: 10.1083/jcb.201304123 pmid: 24165940
|
3 |
AshrafiG, SchwarzT L (2013). The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ, 20(1): 31–42 doi: 10.1038/cdd.2012.81 pmid: 22743996
|
4 |
AxeE L, WalkerS A, ManifavaM, ChandraP, RoderickH L, HabermannA, GriffithsG, KtistakisN T (2008). Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol, 182(4): 685–701 doi: 10.1083/jcb.200803137 pmid: 18725538
|
5 |
BaskaranS, RagusaM J, BouraE, HurleyJ H (2012). Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol Cell, 47(3): 339–348 doi: 10.1016/j.molcel.2012.05.027 pmid: 22704557
|
6 |
BirgisdottirA B, LamarkT, JohansenT (2013). The LIR motif- crucial for selective autophagy. J Cell Sci, 126(Pt 15): 3237–3247 pmid: 23908376
|
7 |
BurdaP, PadillaS M, SarkarS, EmrS D (2002). Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J Cell Sci, 115(Pt 20): 3889–3900 doi: 10.1242/jcs.00090 pmid: 12244127
|
8 |
ChanE Y W, LongattiA, McKnightN C, ToozeS A (2009). Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol, 29(1): 157–171 doi: 10.1128/MCB.01082-08 pmid: 18936157
|
9 |
CheongH, NairU, GengJ, KlionskyD J (2008). The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell, 19(2): 668–681 doi: 10.1091/mbc.E07-08-0826 pmid: 18077553
|
10 |
CheongH, YorimitsuT, ReggioriF, LegakisJ E, WangC W, KlionskyD J (2005). Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell, 16(7): 3438–3453 doi: 10.1091/mbc.E04-10-0894 pmid: 15901835
|
11 |
ChoiA M K, RyterS W, LevineB (2013). Autophagy in human health and disease. N Engl J Med, 368(7): 651–662 doi: 10.1056/NEJMra1205406 pmid: 23406030
|
12 |
CoyleJ E, QamarS, RajashankarK R, NikolovD B (2002). Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding. Neuron, 33(1): 63–74 doi: 10.1016/S0896-6273(01)00558-X pmid: 11779480
|
13 |
DoveS K, PiperR C, McEwenR K, YuJ W, KingM C, HughesD C, ThuringJ, HolmesA B, CookeF T, MichellR H, ParkerP J, LemmonM A (2004). Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J, 23(9): 1922–1933 doi: 10.1038/sj.emboj.7600203 pmid: 15103325
|
14 |
FanW, NassiriA, ZhongQ (2011). Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci USA, 108(19): 7769–7774 doi: 10.1073/pnas.1016472108 pmid: 21518905
|
15 |
FengW, HuangS, WuH, ZhangM (2007). Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol, 372(1): 223–235 doi: 10.1016/j.jmb.2007.06.069 pmid: 17659302
|
16 |
FogelA I, DlouhyB J, WangC, RyuS W, NeutznerA, HassonS A, SiderisD P, AbeliovichH, YouleR J (2013). Role of membrane association and Atg14-dependent phosphorylation in beclin-1-mediated autophagy. Mol Cell Biol, 33(18): 3675–3688 doi: 10.1128/MCB.00079-13 pmid: 23878393
|
17 |
FujiokaY, NodaN N, NakatogawaH, OhsumiY, InagakiF (2010). Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J Biol Chem, 285(2): 1508–1515 doi: 10.1074/jbc.M109.053520 pmid: 19889643
|
18 |
FuruyaN, YuJ, ByfieldM, PattingreS, LevineB (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy, 1(1): 46–52 doi: 10.4161/auto.1.1.1542 pmid: 16874027
|
19 |
GammohN, FloreyO, OverholtzerM, JiangX (2013). Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and-independent autophagy. Nat Struct Mol Biol, 20(2): 144–149 doi: 10.1038/nsmb.2475 pmid: 23262492
|
20 |
GanleyI G, LamH, WangJ, DingX, ChenS, JiangX (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem, 284(18): 12297–12305 doi: 10.1074/jbc.M900573200 pmid: 19258318
|
21 |
GaugelA, BakulaD, HoffmannA, Proikas-CezanneT (2012). Defining regulatory and phosphoinositide-binding sites in the human WIPI-1 β-propeller responsible for autophagosomal membrane localization downstream of mTORC1 inhibition. J Mol Signal, 7(1): 16 doi: 10.1186/1750-2187-7-16 pmid: 23088497
|
22 |
HaileyD W, RamboldA S, Satpute-KrishnanP, MitraK, SougratR, KimP K, Lippincott-SchwartzJ (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 141(4): 656–667 doi: 10.1016/j.cell.2010.04.009 pmid: 20478256
|
23 |
HamasakiM, FurutaN, MatsudaA, NezuA, YamamotoA, FujitaN, OomoriH, NodaT, HaraguchiT, HiraokaY, AmanoA, YoshimoriT (2013). Autophagosomes form at ER-mitochondria contact sites. Nature, 495(7441): 389–393 doi: 10.1038/nature11910 pmid: 23455425
|
24 |
Hayashi-NishinoM, FujitaN, NodaT, YamaguchiA, YoshimoriT, YamamotoA (2009). A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol, 11(12): 1433–1437 doi: 10.1038/ncb1991 pmid: 19898463
|
25 |
HeenanE J, VanhookeJ L, TempleB R, BettsL, SondekJ E, DohlmanH G (2009). Structure and function of Vps15 in the endosomal G protein signaling pathway. Biochemistry, 48(27): 6390–6401 doi: 10.1021/bi900621w pmid: 19445518
|
26 |
HongS B, KimB W, KimJ H, SongH K (2012). Structure of the autophagic E2 enzyme Atg10. Acta Crystallogr D Biol Crystallogr, 68(Pt 10): 1409–1417 doi: 10.1107/S0907444912034166 pmid: 22993095
|
27 |
HongS B, KimB W, LeeK E, KimS W, JeonH, KimJ, SongH K (2011). Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat Struct Mol Biol, 18(12): 1323–1330 doi: 10.1038/nsmb.2165 pmid: 22056771
|
28 |
HosokawaN, SasakiT, IemuraS, NatsumeT, HaraT, MizushimaN (2009). Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy, 5(7): 973–979 doi: 10.4161/auto.5.7.9296 pmid: 19597335
|
29 |
HuangW, ChoiW, HuW, MiN, GuoQ, MaM, LiuM, TianY, LuP, WangF L, DengH, LiuL, GaoN, YuL, ShiY (2012). Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein. Cell Res, 22(3): 473–489 doi: 10.1038/cr.2012.24 pmid: 22310240
|
30 |
IchimuraY, KirisakoT, TakaoT, SatomiY, ShimonishiY, IshiharaN, MizushimaN, TanidaI, KominamiE, OhsumiM, NodaT, OhsumiY (2000). A ubiquitin-like system mediates protein lipidation. Nature, 408(6811): 488–492 doi: 10.1038/35044114 pmid: 11100732
|
31 |
ItakuraE, KishiC, InoueK, MizushimaN (2008). Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell, 19(12): 5360–5372 doi: 10.1091/mbc.E08-01-0080 pmid: 18843052
|
32 |
JaoC C, RagusaM J, StanleyR E, HurleyJ H (2013). A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy. Proc Natl Acad Sci USA, 110(14): 5486–5491 doi: 10.1073/pnas.1220306110 pmid: 23509291
|
33 |
KabeyaY, KamadaY, BabaM, TakikawaH, SasakiM, OhsumiY (2005). Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell, 16(5): 2544–2553 doi: 10.1091/mbc.E04-08-0669 pmid: 15743910
|
34 |
KabeyaY, MizushimaN, YamamotoA, Oshitani-OkamotoS, OhsumiY, YoshimoriT (2004). LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci, 117(Pt 13): 2805–2812 doi: 10.1242/jcs.01131 pmid: 15169837
|
35 |
KabeyaY, NodaN N, FujiokaY, SuzukiK, InagakiF, OhsumiY (2009). Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 389(4): 612–615 doi: 10.1016/j.bbrc.2009.09.034 pmid: 19755117
|
36 |
KaiserS E, MaoK, TaherbhoyA M, YuS, OlszewskiJ L, DudaD M, KurinovI, DengA, FennT D, KlionskyD J, SchulmanB A (2012). Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat Struct Mol Biol, 19(12): 1242–1249 doi: 10.1038/nsmb.2415 pmid: 23142976
|
37 |
KakutaS, YamamotoH, NegishiL, Kondo-KakutaC, HayashiN, OhsumiY (2012). Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site. J Biol Chem, 287(53): 44261–44269 doi: 10.1074/jbc.M112.411454 pmid: 23129774
|
38 |
KamadaY, FunakoshiT, ShintaniT, NaganoK, OhsumiM, OhsumiY (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol, 150(6): 1507–1513 doi: 10.1083/jcb.150.6.1507 pmid: 10995454
|
39 |
KaranasiosE, StapletonE, ManifavaM, KaizukaT, MizushimaN, WalkerS A, KtistakisN T (2013). Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J Cell Sci, 126(Pt 22): 5224–5238 doi: 10.1242/jcs.132415 pmid: 24013547
|
40 |
KiharaA, NodaT, IshiharaN, OhsumiY (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol, 152, 519–30
|
41 |
KijanskaM, DohnalI, ReiterW, KasparS, StoffelI, AmmererG, KraftC, PeterM (2010). Activation of Atg1 kinase in autophagy by regulated phosphorylation. Autophagy, 6(8): 1168–1178 doi: 10.4161/auto.6.8.13849 pmid: 20953146
|
42 |
KimJ, KunduM, ViolletB, GuanK L (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 13(2): 132–141 doi: 10.1038/ncb2152 pmid: 21258367
|
43 |
KnightD, HarrisR, McAlisterM S B, PhelanJ P, GeddesS, MossS J, DriscollP C, KeepN H (2002). The X-ray crystal structure and putative ligand-derived peptide binding properties of gamma-aminobutyric acid receptor type A receptor-associated protein. J Biol Chem, 277(7): 5556–5561 doi: 10.1074/jbc.M109753200 pmid: 11729197
|
44 |
KobayashiT, SuzukiK, OhsumiY (2012). Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PAS-targeted Atg2. FEBS Lett, 586(16): 2473–2478 doi: 10.1016/j.febslet.2012.06.008 pmid: 22728243
|
45 |
Kondo-OkamotoN, NodaN N, SuzukiS W, NakatogawaH, TakahashiI, MatsunamiM, HashimotoA, InagakiF, OhsumiY, OkamotoK (2012). Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J Biol Chem, 287(13): 10631–10638 doi: 10.1074/jbc.M111.299917 pmid: 22308029
|
46 |
KraftC, DeplazesA, SohrmannM, PeterM (2008). Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol, 10(5): 602–610 doi: 10.1038/ncb1723 pmid: 18391941
|
47 |
KraftC, KijanskaM, KalieE, SiergiejukE, LeeS S, SemplicioG, StoffelI, BrezovichA, VermaM, HansmannI, AmmererG, HofmannK, ToozeS, PeterM (2012). Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J, 31(18): 3691–3703 doi: 10.1038/emboj.2012.225 pmid: 22885598
|
48 |
KrickR, BusseR A, ScaciocA, StephanM, JanshoffA, ThummM, KühnelK (2012). Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a β-propeller protein family. Proc Natl Acad Sci USA, 109(30): E2042–E2049 doi: 10.1073/pnas.1205128109 pmid: 22753491
|
49 |
KrickR, MueheY, PrickT, BremerS, SchlotterhoseP, EskelinenE L, MillenJ, GoldfarbD S, ThummM (2008). Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol Biol Cell, 19(10): 4492–4505 doi: 10.1091/mbc.E08-04-0363 pmid: 18701704
|
50 |
KuB, WooJ S, LiangC, LeeK H, HongH S, eX, KimK S, JungJ U, OhB H (2008). Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine gamma-herpesvirus 68. PLoS Pathog, 4(2): e25 doi: 10.1371/journal.ppat.0040025 pmid: 18248095
|
51 |
KumaA, MizushimaN, IshiharaN, OhsumiY (2002). Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem, 277(21): 18619–18625 doi: 10.1074/jbc.M111889200 pmid: 11897782
|
52 |
KumanomidouT, MizushimaT, KomatsuM, SuzukiA, TanidaI, SouY S, UenoT, KominamiE, TanakaK, YamaneT (2006). The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. J Mol Biol, 355(4): 612–618 doi: 10.1016/j.jmb.2005.11.018 pmid: 16325851
|
53 |
KumetaH, WatanabeM, NakatogawaH, YamaguchiM, OguraK, AdachiW, FujiokaY, NodaN N, OhsumiY, InagakiF (2010). The NMR structure of the autophagy-related protein Atg8. J Biomol NMR, 47(3): 237–241 doi: 10.1007/s10858-010-9420-1 pmid: 20428927
|
54 |
LambC A, YoshimoriT, ToozeS A (2013). The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol, 14(12): 759–774 doi: 10.1038/nrm3696 pmid: 24201109
|
55 |
LiX, HeL, CheK H, FunderburkS F, PanL, PanN, ZhangM, YueZ, ZhaoY (2012). Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat Commun, 3: 662 doi: 10.1038/ncomms1648 pmid: 22314358
|
56 |
LiangX H, JacksonS, SeamanM, BrownK, KempkesB, HibshooshH, LevineB (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762): 672–676 doi: 10.1038/45257 pmid: 10604474
|
57 |
LiangX H, KleemanL K, JiangH H, GordonG, GoldmanJ E, BerryG, HermanB, LevineB (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol, 72(11): 8586–8596 pmid: 9765397
|
58 |
LiuK, CzajaM J (2013). Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ, 20(1): 3–11 doi: 10.1038/cdd.2012.63 pmid: 22595754
|
59 |
LiuX, DaiS, ZhuY, MarrackP, KapplerJ W (2003). The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity, 19(3): 341–352 doi: 10.1016/S1074-7613(03)00234-6 pmid: 14499110
|
60 |
MaoK, ChewL H, Inoue-AonoY, CheongH, NairU, PopelkaH, YipC K, KlionskyD J (2013). Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc Natl Acad Sci USA, 110(31): E2875–E2884 doi: 10.1073/pnas.1300064110 pmid: 23858448
|
61 |
MatsunagaK, SaitohT, TabataK, OmoriH, SatohT, KurotoriN, MaejimaI, Shirahama-NodaK, IchimuraT, IsobeT, AkiraS, NodaT, YoshimoriT (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol, 11(4): 385–396 doi: 10.1038/ncb1846 pmid: 19270696
|
62 |
MatsushitaM, SuzukiN N, ObaraK, FujiokaY, OhsumiY, InagakiF (2007). Structure of Atg5.Atg16, a complex essential for autophagy. J Biol Chem, 282(9): 6763–6772 doi: 10.1074/jbc.M609876200 pmid: 17192262
|
63 |
MatsuuraA, TsukadaM, WadaY, OhsumiY (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 192, 245–250
|
64 |
MautheM, JacobA, FreibergerS, HentschelK, StierhofY D, CodognoP, Proikas-CezanneT (2011). Resveratrol-mediated autophagy requires WIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy, 7(12): 1448–1461 doi: 10.4161/auto.7.12.17802 pmid: 22082875
|
65 |
Meiling-WesseK, BarthH, VossC, EskelinenE L, EppleU D, ThummM (2004). Atg21 is required for effective recruitment of Atg8 to the preautophagosomal structure during the Cvt pathway. J Biol Chem, 279(36): 37741–37750 doi: 10.1074/jbc.M401066200 pmid: 15194695
|
66 |
MercerC A, KaliappanA, DennisP B (2009). A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy, 5(5): 649–662 doi: 10.4161/auto.5.5.8249 pmid: 19287211
|
67 |
MetlagelZ, OtomoC, TakaesuG, OtomoT (2013). Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. Proc Natl Acad Sci USA, 110(47): 18844–18849 doi: 10.1073/pnas.1314755110 pmid: 24191030
|
68 |
MillerS, TavshanjianB, OleksyA, PerisicO, HousemanB T, ShokatK M, WilliamsR L (2010). Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science, 327(5973): 1638–1642 doi: 10.1126/science.1184429 pmid: 20339072
|
69 |
MizushimaN, NodaT, YoshimoriT, TanakaY, IshiiT, GeorgeM D, KlionskyD J, OhsumiM, OhsumiY (1998). A protein conjugation system essential for autophagy. Nature, 395(6700): 395–398 doi: 10.1038/26506 pmid: 9759731
|
70 |
MizushimaN, YoshimoriT, OhsumiY (2011). The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol, 27(1): 107–132 doi: 10.1146/annurev-cellbio-092910-154005 pmid: 21801009
|
71 |
MoreauK, RavikumarB, RennaM, PuriC, RubinszteinD C (2011). Autophagosome precursor maturation requires homotypic fusion. Cell, 146(2): 303–317 doi: 10.1016/j.cell.2011.06.023 pmid: 21784250
|
72 |
MoreauK, RennaM, RubinszteinD C (2013). Connections between SNAREs and autophagy. Trends Biochem Sci, 38(2): 57–63 doi: 10.1016/j.tibs.2012.11.004 pmid: 23306003
|
73 |
NairU, JotwaniA, GengJ, GammohN, RichersonD, YenW L, GriffithJ, NagS, WangK, MossT, BabaM, McNewJ A, JiangX, ReggioriF, MeliaT J, KlionskyD J (2011). SNARE proteins are required for macroautophagy. Cell, 146(2): 290–302 doi: 10.1016/j.cell.2011.06.022 pmid: 21784249
|
74 |
NairU, YenW L, MariM, CaoY, XieZ, BabaM, ReggioriF, KlionskyD J (2012). A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy, 8(5): 780–793 doi: 10.4161/auto.19385 pmid: 22622160
|
75 |
NakatogawaH, IchimuraY, OhsumiY (2007). Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell, 130(1): 165–178 doi: 10.1016/j.cell.2007.05.021 pmid: 17632063
|
76 |
NakatogawaH, IshiiJ, AsaiE, OhsumiY (2012). Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy, 8(2): 1–10 doi: 10.4161/auto.8.2.18373 pmid: 22082964
|
77 |
NakatogawaH, SuzukiK, KamadaY, OhsumiY (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol, 10(7): 458–467 doi: 10.1038/nrm2708 pmid: 19491929
|
78 |
NishimuraT, KaizukaT, CadwellK, SahaniM H, SaitohT, AkiraS, VirginH W, MizushimaN (2013). FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Rep, 14(3): 284–291 doi: 10.1038/embor.2013.6 pmid: 23392225
|
79 |
NodaN N, FujiokaY, HanadaT, OhsumiY, InagakiF (2013). Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep, 14(2): 206–211 doi: 10.1038/embor.2012.208 pmid: 23238393
|
80 |
NodaN N, KobayashiT, AdachiW, FujiokaY, OhsumiY, InagakiF (2012). Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy. J Biol Chem, 287(20): 16256–16266 doi: 10.1074/jbc.M112.348250 pmid: 22437838
|
81 |
NodaN N, KumetaH, NakatogawaH, SatooK, AdachiW, IshiiJ, FujiokaY, OhsumiY, InagakiF (2008). Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells, 13(12): 1211–1218 doi: 10.1111/j.1365-2443.2008.01238.x pmid: 19021777
|
82 |
NodaN N, OhsumiY, InagakiF (2009). ATG systems from the protein structural point of view. Chem Rev, 109(4): 1587–1598 doi: 10.1021/cr800459r pmid: 19236009
|
83 |
NodaN N, SatooK, FujiokaY, KumetaH, OguraK, NakatogawaH, OhsumiY, InagakiF (2011). Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol Cell, 44(3): 462–475 doi: 10.1016/j.molcel.2011.08.035 pmid: 22055191
|
84 |
NodaT, KimJ, HuangW P, BabaM, TokunagaC, OhsumiY, KlionskyD J (2000). Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol, 148(3): 465–480 doi: 10.1083/jcb.148.3.465 pmid: 10662773
|
85 |
NodaT, MatsunagaK, Taguchi-AtarashiN, YoshimoriT (2010). Regulation of membrane biogenesis in autophagy via PI3P dynamics. Semin Cell Dev Biol, 21(7): 671–676 doi: 10.1016/j.semcdb.2010.04.002 pmid: 20403452
|
86 |
ObaraK, NodaT, NiimiK, OhsumiY (2008a). Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae. Genes Cells, 13(6): 537–547 doi: 10.1111/j.1365-2443.2008.01188.x pmid: 18533003
|
87 |
ObaraK, SekitoT, NiimiK, OhsumiY (2008b). The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem, 283(35): 23972–23980 doi: 10.1074/jbc.M803180200 pmid: 18586673
|
88 |
ObaraK, SekitoT, OhsumiY (2006). Assortment of phosphatidylinositol 3-kinase complexes—Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell, 17(4): 1527–1539 doi: 10.1091/mbc.E05-09-0841 pmid: 16421251
|
89 |
ObersteinA, JeffreyP D, ShiY (2007). Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem, 282(17): 13123–13132 doi: 10.1074/jbc.M700492200 pmid: 17337444
|
90 |
OtomoC, MetlagelZ, TakaesuG, OtomoT (2013). Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol, 20(1): 59–66 doi: 10.1038/nsmb.2431 pmid: 23202584
|
91 |
PanaretouC, DominJ, CockcroftS, WaterfieldM D (1997). Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase.Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J Biol Chem, 272(4): 2477–2485 doi: 10.1074/jbc.272.4.2477 pmid: 8999962
|
92 |
PazY, ElazarZ, FassD (2000). Structure of GATE-16, membrane transport modulator and mammalian ortholog of autophagocytosis factor Aut7p. J Biol Chem, 275(33): 25445–25450 doi: 10.1074/jbc.C000307200 pmid: 10856287
|
93 |
PolsonH E J, de LartigueJ, RigdenD J, ReedijkM, UrbéS, ClagueM J, ToozeS A (2010). Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy, 6(4): 506–522 doi: 10.4161/auto.6.4.11863 pmid: 20505359
|
94 |
Proikas-CezanneT, WaddellS, GaugelA, FrickeyT, LupasA, NordheimA (2004). WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene, 23(58): 9314–9325 doi: 10.1038/sj.onc.1208331 pmid: 15602573
|
95 |
PuriC, RennaM, BentoC F, MoreauK, RubinszteinD C (2013). Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell, 154(6): 1285–1299 doi: 10.1016/j.cell.2013.08.044 pmid: 24034251
|
96 |
RagusaM J, StanleyR E, HurleyJ H (2012). Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell, 151(7): 1501–1512 doi: 10.1016/j.cell.2012.11.028 pmid: 23219485
|
97 |
RavikumarB, MoreauK, JahreissL, PuriC, RubinszteinD C (2010). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol, 12(8): 747–757 doi: 10.1038/ncb2078 pmid: 20639872
|
98 |
ReggioriF, KlionskyD J (2013). Autophagic processes in yeast: mechanism, machinery and regulation. Genetics, 194(2): 341–361 doi: 10.1534/genetics.112.149013 pmid: 23733851
|
99 |
ReggioriF, TuckerK A, StromhaugP E, KlionskyD J (2004). The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell, 6(1): 79–90 doi: 10.1016/S1534-5807(03)00402-7 pmid: 14723849
|
100 |
RennerL D, WeibelD B (2011). Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci USA, 108(15): 6264–6269 doi: 10.1073/pnas.1015757108 pmid: 21444798
|
101 |
RieterE, VinkeF, BakulaD, CebolleroE, UngermannC, Proikas-CezanneT, ReggioriF (2013). Atg18 function in autophagy is regulated by specific sites within its β-propeller. J Cell Sci, 126(Pt 2): 593–604 doi: 10.1242/jcs.115725 pmid: 23230146
|
102 |
SattlerM, LiangH, NettesheimD, MeadowsR P, HarlanJ E, EberstadtM, YoonH S, ShukerS B, ChangB S, MinnA J, ThompsonC B, FesikS W (1997). Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science, 275: 983–986
|
102 |
SatooK, NodaN N, KumetaH, FujiokaY, MizushimaN, OhsumiY, InagakiF (2009). The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J, 28(9): 1341–1350 doi: 10.1038/emboj.2009.80 pmid: 19322194
|
103 |
SchwartenM, StoldtM, MohrlüderJ, WillboldD (2010). Solution structure of Atg8 reveals conformational polymorphism of the N-terminal domain. Biochem Biophys Res Commun, 395(3): 426–431 doi: 10.1016/j.bbrc.2010.04.043 pmid: 20382112
|
104 |
SeglenP O, GordonP B (1982). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA, 79(6): 1889–1892 doi: 10.1073/pnas.79.6.1889 pmid: 6952238
|
105 |
SekitoT, KawamataT, IchikawaR, SuzukiK, OhsumiY (2009). Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells, 14(5): 525–538 doi: 10.1111/j.1365-2443.2009.01299.x pmid: 19371383
|
106 |
SironiL, MapelliM, KnappS, De AntoniA, JeangK T, MusacchioA (2002). Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint. EMBO J, 21(10): 2496–2506 doi: 10.1093/emboj/21.10.2496 pmid: 12006501
|
107 |
StrϕmhaugP E, ReggioriF, GuanJ, WangC W, KlionskyD J (2004). Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell, 15(8): 3553–3566 doi: 10.1091/mbc.E04-02-0147 pmid: 15155809
|
108 |
SugawaraK, SuzukiN N, FujiokaY, MizushimaN, OhsumiY, InagakiF (2004). The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells, 9(7): 611–618 doi: 10.1111/j.1356-9597.2004.00750.x pmid: 15265004
|
109 |
SugawaraK, SuzukiN N, FujiokaY, MizushimaN, OhsumiY, InagakiF (2005). Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J Biol Chem, 280(48): 40058–40065 doi: 10.1074/jbc.M509158200 pmid: 16183633
|
110 |
SunL L, LiM, SuoF, LiuX M, ShenE Z, YangB, DongM Q, HeW Z, DuL L (2013). Global analysis of fission yeast mating genes reveals new autophagy factors. PLoS Genet, 9(8): e1003715 doi: 10.1371/journal.pgen.1003715 pmid: 23950735
|
111 |
SuzukiK (2013). Selective autophagy in budding yeast. Cell Death Differ, 20(1): 43–48 doi: 10.1038/cdd.2012.73 pmid: 22705847
|
112 |
SuzukiK, KubotaY, SekitoT, OhsumiY (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells, 12(2): 209–218 doi: 10.1111/j.1365-2443.2007.01050.x pmid: 17295840
|
113 |
SuzukiK, OhsumiY (2007). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett, 581(11): 2156–2161 doi: 10.1016/j.febslet.2007.01.096 pmid: 17382324
|
114 |
SuzukiN N, YoshimotoK, FujiokaY, OhsumiY, InagakiF (2005). The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy, 1(2): 119–126 doi: 10.4161/auto.1.2.1859 pmid: 16874047
|
115 |
TaherbhoyA M, TaitS W, KaiserS E, WilliamsA H, DengA, NourseA, HammelM, KurinovI, RockC O, GreenD R, SchulmanB A (2011). Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol Cell, 44(3): 451–461 doi: 10.1016/j.molcel.2011.08.034 pmid: 22055190
|
116 |
TakeshigeK, BabaM, TsuboiS, NodaT, OhsumiY (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol, 119(2): 301–311 doi: 10.1083/jcb.119.2.301 pmid: 1400575
|
117 |
TsukadaM, OhsumiY (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 333(1-2): 169–174 doi: 10.1016/0014-5793(93)80398-E pmid: 8224160
|
118 |
WatanabeY, KobayashiT, YamamotoH, HoshidaH, AkadaR, InagakiF, OhsumiY, NodaN N (2012). Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J Biol Chem, 287(38): 31681–31690 doi: 10.1074/jbc.M112.397570 pmid: 22851171
|
119 |
WeidbergH, ShpilkaT, ShvetsE, AbadaA, ShimronF, ElazarZ (2011a). LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev Cell, 20(4): 444–454 doi: 10.1016/j.devcel.2011.02.006 pmid: 21497758
|
120 |
WeidbergH, ShvetsE, ElazarZ (2011b). Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem, 80(1): 125–156 doi: 10.1146/annurev-biochem-052709-094552 pmid: 21548784
|
121 |
WeidbergH, ShvetsE, ShpilkaT, ShimronF, ShinderV, ElazarZ (2010). LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J, 29(11): 1792–1802 doi: 10.1038/emboj.2010.74 pmid: 20418806
|
122 |
WuY T, TanH L, ShuiG, BauvyC, HuangQ, WenkM R, OngC N, CodognoP, ShenH M (2010). Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem, 285(14): 10850–10861 doi: 10.1074/jbc.M109.080796 pmid: 20123989
|
123 |
XieZ, NairU, KlionskyD J (2008). Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell, 19(8): 3290–3298 doi: 10.1091/mbc.E07-12-1292 pmid: 18508918
|
124 |
YamadaY, SuzukiN N, HanadaT, IchimuraY, KumetaH, FujiokaY, OhsumiY, InagakiF (2007). The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J Biol Chem, 282(11): 8036–8043 doi: 10.1074/jbc.M611473200 pmid: 17227760
|
125 |
YamaguchiM, MatobaK, SawadaR, FujiokaY, NakatogawaH, YamamotoH, KobashigawaY, HoshidaH, AkadaR, OhsumiY, NodaN N, InagakiF (2012a). Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat Struct Mol Biol, 19(12): 1250–1256 doi: 10.1038/nsmb.2451 pmid: 23142983
|
126 |
YamaguchiM, NodaN N, NakatogawaH, KumetaH, OhsumiY, InagakiF (2010). Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J Biol Chem, 285(38): 29599–29607 doi: 10.1074/jbc.M110.113670 pmid: 20615880
|
127 |
YamaguchiM, NodaN N, YamamotoH, ShimaT, KumetaH, KobashigawaY, AkadaR, OhsumiY, InagakiF (2012b). Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure, 20(7): 1244–1254 doi: 10.1016/j.str.2012.04.018 pmid: 22682742
|
128 |
YamamotoH, KakutaS, WatanabeT M, KitamuraA, SekitoT, Kondo-KakutaC, IchikawaR, KinjoM, OhsumiY (2012). Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol, 198(2): 219–233 doi: 10.1083/jcb.201202061 pmid: 22826123
|
129 |
Ylä-AnttilaP, VihinenH, JokitaloE, EskelinenE L (2009). 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy, 5(8): 1180–1185 doi: 10.4161/auto.5.8.10274 pmid: 19855179
|
130 |
YuZ Q, NiT, HongB, WangH Y, JiangF J, ZouS, ChenY, ZhengX L, KlionskyD J, LiangY, XieZ (2012). Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy, 8(6): 1–10 doi: 10.4161/auto.19652 pmid: 22082964
|
131 |
ZhongY, WangQ J, LiX, YanY, BackerJ M, ChaitB T, HeintzN, YueZ (2009). Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol, 11(4): 468–476 doi: 10.1038/ncb1854 pmid: 19270693
|
132 |
ChewL H, SetiaputraD, KlionskyD J, YipC K (2013). Structural characterization of the Saccharomyces cerevisiae autophagy regulatory complex Atg17-Atg31-Atg29. Autophagy, 9: 1467–1474
|
133 |
KabeyaY, MizushimaN, UenoT, YamamotoA, KirisakoT, NodaT, KominamiE, OhsumiY, YoshimoriT (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 19: 5720–5728
|
134 |
LipatovaZ, BelogortsevaN, ZhangX Q, KimJ, TaussigD, SegevN (2012). Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proc Natl Acad Sci U S A, 109: 6981–6986
|
135 |
PetrosA M, NettesheimD G, WangY, OlejniczakE T, MeadowsR P, MackJ, SwiftK, MatayoshiE D, ZhangH, ThompsonC B, FesikS W (2010). Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci, 9: 2528–2534
|
136 |
RomanovJ, WalczakM, IbiricuI, SchüchnerS, OgrisE, KraftC, MartensS (2012). Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J, 31: 4304–4317 doi: 10.1038/emboj.2009.80 pmid: 19322194
|
138 |
YehY Y, ShahK H, ChouC C, HsiaoH H, WrasmanK M, StephanJ S, StamatakosD, KhooK H, HermanP K (2011). The identification and analysis of phosphorylation sites on the Atg1 protein kinase. Autophagy, 7: 716–726
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|