Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (1) : 18-34    https://doi.org/10.1007/s11515-014-1293-3
REVIEW
Structural biology of the macroautophagy machinery
Leon H. CHEW,Calvin K. YIP()
Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
 Download: PDF(452 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Macroautophagy is a conserved degradative process mediated through formation of a unique double-membrane structure, the autophagosome. The discovery of autophagy-related (Atg) genes required for autophagosome formation has led to the characterization of approximately 20 genes mediating this process. Recent structural studies of the Atg proteins have provided the molecular basis for their function. Here we summarize the recent progress in elucidating the structural basis for autophagosome formation.

Keywords macroautophagy      autophagy      Atg proteins      structural biology      X-ray crystallography      single-particle electron microscopy     
Corresponding Author(s): Calvin K. YIP   
Issue Date: 13 May 2014
 Cite this article:   
Leon H. CHEW,Calvin K. YIP. Structural biology of the macroautophagy machinery[J]. Front. Biol., 2014, 9(1): 18-34.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1293-3
https://academic.hep.com.cn/fib/EN/Y2014/V9/I1/18
Fig.1  Overview of macroautophagy. Autophagosome formation begins at the preautophagosomal structure (PAS). Expansion of the PAS leads to formation of a cup-shaped membrane known as a phagophore. Elongation of the phagophore sequesters cytoplasmic content until the vesicle is sealed off, forming a complete mature autophagosome. The autophagosome is subsequently targeted to the lysosome where the inner membrane and its content would be degraded by hydrolytic enzymes. The overall contributions of each Atg functional group to the different steps of autophagosome biogenesis are depicted.
Functional groupRole in autophagosome formationYeastHumanStructural biology referenceTechniqueSpecies studied
Atg1 complexAtg1 is a serine/threonine kinase with a role in tethering membranes. Atg17-Atg31-Atg29 acts a scaffold for assembling the Atg1 complexAtg1ULK1
Atg13ATG13Jao et al., 2013X-ray crystallographyLachancea thermotolerans
Atg17FIP200Ragusa et al., 2012X-ray crystallographyLachancea thermotolerans
Chew et al., 2013EMSaccharomyces cerevisiae
Atg29N/ARagusa et al., 2012X-ray crystallographyLachancea thermotolerans
Chew et al., 2013EMSaccharomyces cerevisiae
Atg31N/ARagusa et al., 2012X-ray crystallographyLachancea thermotolerans
Chew et al., 2013EMSaccharomyces cerevisiae
ATG101
PI(3)K complexProduces Ptdins(3)P on autophagic membranes. Atg14 and Atg6 have shown membrane binding capabilities.Vps34VPS34Miller et al., 2010X-ray crystallographyDrosophila melanogaster
Vps15VPS15Heenan et al., 2009X-ray crystallographySaccharomyces cerevisiae
Atg14ATG14L/BARKOR
Vps30/Atg6Beclin1Oberstein et al., 2007X-ray crystallographyHomo sapiens
Feng et al., 2007X-ray crystallographyHomo sapiens
Huang et al., 2012X-ray crystallographyHomo sapiens
Li et al., 2012X-ray crystallographyRattus norvegicus
Noda et al., 2012X-ray crystallographySaccharomyces cerevisiae
Atg38
Atg9Integral membrane protein. Provides early membrane source for PAS formation.Atg9Atg9
Atg18–Atg2 complexAtg18 specifically binds PI(3)P . Recruits ubiquitin-like conjugation system.Atg18WIPI1-4Krick et al., 2012X-ray crystallographyKluyveromyces lactis (Hsv2)
Watanabe et al., 2012X-ray crystallographyKluyveromyces marxianus (Hsv2)
Baskaran et al., 2012X-ray crystallographyKluyveromyces lactis (Hsv2)
Atg2Atg2
Atg12 conjugationAtg12 is conjugated torAtg5 through a ubiquitin-like cascade. Atg12-Atg5 conjugates form a complex with Atg16. Atg5 can bind membranes and may tether membranes through dimerization of Atg16.Atg12ATG12Suzuki et al., 2005X-ray crystallographyArabidopsis thaliana
Atg7ATG7Taherbhoy et al., 2011X-ray crystallographySaccharomyces cerevisiae
Noda et al., 2011X-ray crystallographySaccharomyces cerevisiae
NMR
Hong et al., 2011X-ray crystallographySaccharomyces cerevisiae
Kaiser et al., 2012X-ray crystallographySaccharomyces cerevisiae
Yamaguchi et al., 2012aX-ray crystallographyKluyveromyces marxianus
Arabidopsis thaliana
Atg10ATG10Yamaguchi et al., 2012aX-ray crystallographyKluyveromyces marxianus
Kaiser et al., 2012X-ray crystallographySaccharomyces cerevisiae
Hong et al., 2012X-ray crystallographySaccharomyces cerevisiae
Yamaguchi et al., 2012bX-ray crystallographyKluyveromyces marxianus
Atg5ATG5Matsushita et al., 2007X-ray crystallographySaccharomyces cerevisiae
Otomo et al., 2013X-ray crystallographyHomo sapiens
Yamaguchi et al., 2012bX-ray crystallographyKluyveromyces marxianus
NMR
Noda et al., 2013X-ray crystallographySaccharomyces cerevisiae
Metlagel et al., 2013X-ray crystallographyHomo sapiens
Atg16ATG16L1/2Fujioka et al., 2010X-ray crystallographySaccharomyces cerevisiae
Atg8 conjugationAtg8 is lipidated to PE through an ubiquitin-like cascade. Atg4 proteolytically activates Atg8 followed by conjugation to the enzymes Atg7 (E1), Atg3 (E2).Atg8LC3A/B/C GABARAP GATE-16Paz et al., 2000X-ray crystallographyBos taurus (GATE-16)
Coyle et al., 2002X-ray crystallographyHomo sapiens (GABARAP)
Knight et al., 2002X-ray crystallographyHomo sapiens (GABARAP)
Sugawara et al., 2004X-ray crystallographyRattus norvegicus (LC3)
Schwarten et al., 2010NMRSaccharomyces cerevisiae
Kumeta et al., 2010NMRSaccharomyces cerevisiae
Noda et al., 2011X-ray crystallographySaccharomyces cerevisiae
Hong et al., 2011X-ray crystallography, NMRSaccharomyces cerevisiae
Atg4ATG4A-DSugawara et al., 2005X-ray crystallographyHomo sapiens
Kumanomidou et al., 2006X-ray crystallographyHomo sapiens
Satoo et al., 2009X-ray CrystallographyHomo Sapiens
Atg7ATG7see above
Atg3ATG3Yamada et al., 2007X-ray crystallographySaccharomyces cerevisiae
Tab.1  Functional groups for autophagosome formation
Fig.2  Model of Atg1 kinase complex function. (A) Crystal structure of the Atg13-HORMA domain (PDB: 4J2G). Residues in red highlight the putative phosphate-sensing motif. (B) Model of vesicle tethering mediated by the Atg1 kinase complex. Atg17 (orange) and Atg31-Atg29 (blue) are constitutively formed during nutrient-rich conditions and are localized to the PAS. Upon autophagy induction, Atg17 recruits Atg9 vesicles through direct interaction with Atg9 and may function as a tether for these vesicles. Atg13 and Atg1 are recruited to the PAS where the C-terminal domain of Atg1 (Atg1-CTD) can function to bind the high-curved Atg9 vesicles. The dimerization of Atg1-CTD may promote fusion of Atg9 vesicles. PDB codes for structures depicted: 4HPQ (Atg17-Atg31-Atg29), 4J2G (Atg13 HORMA domain).
Fig.3  Components of the autophagy specific class III PI(3)K complex. (A) Structural organization of Beclin1. Beclin1 is a central hub for regulation of class III PI(3)K complex. Beclin1 can be subdivided into three functional domains; the N-terminal Bcl-2 homology (BH3) domain (PDB: 2P1L. residues 107-135), the central coiled-coil domain (CCD; PDB: 3Q8T, residues 144-269), and the evolutionarily conserved domain (ECD; PDB: 4DDP, residues 248-450). (B) Model of class III PI(3)K formation. This complex is composed of Vps34 (red), Vps15 (yellow), Atg6/Beclin1 (blue), Atg14 (orange) and Atg38 (brown). Complex formation occurs through interaction of Atg14 with Atg6/Beclin1 and Vps34 with Vps15, which is further stabilized by association with Atg38. The class III PI(3)K complex produces PtdIns(3)P at the autophagosome membrane through the catalytic activity of the PI(3) kinase Vps34. This complex is targeted and anchored to membranes by myristoylated Vps15 and the intrinsic membrane binding ability of Atg14 and Atg6/Beclin1. Following PtdIns(3)P production, Atg18 is recruited through two phosphoinositide binding sites. A small hydrophobic loop may facilitate its insertion into the membrane. Atg2 can be recruited in an Atg18 dependent or independent mechanism to interact with effectors. PDB codes for structures depicted: 3GRE (Vps15), 4DDP (Beclin1 ECD), 3Q8T (Beclin1 CCD), 2X6H (Vps34), 4EXV (Hsv2/Atg18).
Fig.4  Atg8-family of ubiquitin-like proteins. (A) NMR structure of yeast Atg8. Several interaction interfaces are labeled. (B) Comparison of Atg8-family protein structures exhibiting the ubiquitin-like fold. PDB Code for structure depicted: 2KQ7 (Atg8), 1UGM (LC3), 1GNU (GABARAP), 1EO6 (GATE-16), 1UBI (ubiquitin).
Fig.5  Model of Atg12-Atg5-Atg16 complex. (A) Dimer model of the Atg12-Atg5-Atg16 complex. Atg12 is covalently linked to Atg5. Atg16 is bridged through Atg5 and has a C terminus coiled-coil dimerization domain that mediates dimerization of this complex. Atg12 contains an Atg3 binding region highlighted in red. Atg5 has a membrane binding region highlighted in yellow. (B) Comparison of the Atg3 binding pocket of Atg12 to LC3-interacting region (LIR) peptides in complex with Atg8-family members. The peptide is depicted in magenta. Atg12 (4NAW), LC3 (2K6Q), Atg8 (2ZPN). C. A model for Atg12-Atg5-Atg16 membrane tethering. Membrane binding occurs through Atg5. This positioning of the complex allows for the freely exposed Atg3 binding region on Atg12. Structures were made from PDB files: 4GDK (Atg12-Atg5-Atg16) and 3A7O (Atg16 dimer).
1 AitaV M, LiangX H, MurtyV V, PincusD L, YuW, CayanisE, KalachikovS, GilliamT C, LevineB (1999). Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics, 59(1): 59–65
doi: 10.1006/geno.1999.5851 pmid: 10395800
2 ArakiY, KuW C, AkiokaM, MayA I, HayashiY, ArisakaF, IshihamaY, OhsumiY (2013). Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. J Cell Biol, 203(2): 299–313
doi: 10.1083/jcb.201304123 pmid: 24165940
3 AshrafiG, SchwarzT L (2013). The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ, 20(1): 31–42
doi: 10.1038/cdd.2012.81 pmid: 22743996
4 AxeE L, WalkerS A, ManifavaM, ChandraP, RoderickH L, HabermannA, GriffithsG, KtistakisN T (2008). Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol, 182(4): 685–701
doi: 10.1083/jcb.200803137 pmid: 18725538
5 BaskaranS, RagusaM J, BouraE, HurleyJ H (2012). Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol Cell, 47(3): 339–348
doi: 10.1016/j.molcel.2012.05.027 pmid: 22704557
6 BirgisdottirA B, LamarkT, JohansenT (2013). The LIR motif- crucial for selective autophagy. J Cell Sci, 126(Pt 15): 3237–3247
pmid: 23908376
7 BurdaP, PadillaS M, SarkarS, EmrS D (2002). Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J Cell Sci, 115(Pt 20): 3889–3900
doi: 10.1242/jcs.00090 pmid: 12244127
8 ChanE Y W, LongattiA, McKnightN C, ToozeS A (2009). Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol, 29(1): 157–171
doi: 10.1128/MCB.01082-08 pmid: 18936157
9 CheongH, NairU, GengJ, KlionskyD J (2008). The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell, 19(2): 668–681
doi: 10.1091/mbc.E07-08-0826 pmid: 18077553
10 CheongH, YorimitsuT, ReggioriF, LegakisJ E, WangC W, KlionskyD J (2005). Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell, 16(7): 3438–3453
doi: 10.1091/mbc.E04-10-0894 pmid: 15901835
11 ChoiA M K, RyterS W, LevineB (2013). Autophagy in human health and disease. N Engl J Med, 368(7): 651–662
doi: 10.1056/NEJMra1205406 pmid: 23406030
12 CoyleJ E, QamarS, RajashankarK R, NikolovD B (2002). Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding. Neuron, 33(1): 63–74
doi: 10.1016/S0896-6273(01)00558-X pmid: 11779480
13 DoveS K, PiperR C, McEwenR K, YuJ W, KingM C, HughesD C, ThuringJ, HolmesA B, CookeF T, MichellR H, ParkerP J, LemmonM A (2004). Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J, 23(9): 1922–1933
doi: 10.1038/sj.emboj.7600203 pmid: 15103325
14 FanW, NassiriA, ZhongQ (2011). Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci USA, 108(19): 7769–7774
doi: 10.1073/pnas.1016472108 pmid: 21518905
15 FengW, HuangS, WuH, ZhangM (2007). Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol, 372(1): 223–235
doi: 10.1016/j.jmb.2007.06.069 pmid: 17659302
16 FogelA I, DlouhyB J, WangC, RyuS W, NeutznerA, HassonS A, SiderisD P, AbeliovichH, YouleR J (2013). Role of membrane association and Atg14-dependent phosphorylation in beclin-1-mediated autophagy. Mol Cell Biol, 33(18): 3675–3688
doi: 10.1128/MCB.00079-13 pmid: 23878393
17 FujiokaY, NodaN N, NakatogawaH, OhsumiY, InagakiF (2010). Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J Biol Chem, 285(2): 1508–1515
doi: 10.1074/jbc.M109.053520 pmid: 19889643
18 FuruyaN, YuJ, ByfieldM, PattingreS, LevineB (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy, 1(1): 46–52
doi: 10.4161/auto.1.1.1542 pmid: 16874027
19 GammohN, FloreyO, OverholtzerM, JiangX (2013). Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and-independent autophagy. Nat Struct Mol Biol, 20(2): 144–149
doi: 10.1038/nsmb.2475 pmid: 23262492
20 GanleyI G, LamH, WangJ, DingX, ChenS, JiangX (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem, 284(18): 12297–12305
doi: 10.1074/jbc.M900573200 pmid: 19258318
21 GaugelA, BakulaD, HoffmannA, Proikas-CezanneT (2012). Defining regulatory and phosphoinositide-binding sites in the human WIPI-1 β-propeller responsible for autophagosomal membrane localization downstream of mTORC1 inhibition. J Mol Signal, 7(1): 16
doi: 10.1186/1750-2187-7-16 pmid: 23088497
22 HaileyD W, RamboldA S, Satpute-KrishnanP, MitraK, SougratR, KimP K, Lippincott-SchwartzJ (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 141(4): 656–667
doi: 10.1016/j.cell.2010.04.009 pmid: 20478256
23 HamasakiM, FurutaN, MatsudaA, NezuA, YamamotoA, FujitaN, OomoriH, NodaT, HaraguchiT, HiraokaY, AmanoA, YoshimoriT (2013). Autophagosomes form at ER-mitochondria contact sites. Nature, 495(7441): 389–393
doi: 10.1038/nature11910 pmid: 23455425
24 Hayashi-NishinoM, FujitaN, NodaT, YamaguchiA, YoshimoriT, YamamotoA (2009). A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol, 11(12): 1433–1437
doi: 10.1038/ncb1991 pmid: 19898463
25 HeenanE J, VanhookeJ L, TempleB R, BettsL, SondekJ E, DohlmanH G (2009). Structure and function of Vps15 in the endosomal G protein signaling pathway. Biochemistry, 48(27): 6390–6401
doi: 10.1021/bi900621w pmid: 19445518
26 HongS B, KimB W, KimJ H, SongH K (2012). Structure of the autophagic E2 enzyme Atg10. Acta Crystallogr D Biol Crystallogr, 68(Pt 10): 1409–1417
doi: 10.1107/S0907444912034166 pmid: 22993095
27 HongS B, KimB W, LeeK E, KimS W, JeonH, KimJ, SongH K (2011). Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat Struct Mol Biol, 18(12): 1323–1330
doi: 10.1038/nsmb.2165 pmid: 22056771
28 HosokawaN, SasakiT, IemuraS, NatsumeT, HaraT, MizushimaN (2009). Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy, 5(7): 973–979
doi: 10.4161/auto.5.7.9296 pmid: 19597335
29 HuangW, ChoiW, HuW, MiN, GuoQ, MaM, LiuM, TianY, LuP, WangF L, DengH, LiuL, GaoN, YuL, ShiY (2012). Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein. Cell Res, 22(3): 473–489
doi: 10.1038/cr.2012.24 pmid: 22310240
30 IchimuraY, KirisakoT, TakaoT, SatomiY, ShimonishiY, IshiharaN, MizushimaN, TanidaI, KominamiE, OhsumiM, NodaT, OhsumiY (2000). A ubiquitin-like system mediates protein lipidation. Nature, 408(6811): 488–492
doi: 10.1038/35044114 pmid: 11100732
31 ItakuraE, KishiC, InoueK, MizushimaN (2008). Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell, 19(12): 5360–5372
doi: 10.1091/mbc.E08-01-0080 pmid: 18843052
32 JaoC C, RagusaM J, StanleyR E, HurleyJ H (2013). A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy. Proc Natl Acad Sci USA, 110(14): 5486–5491
doi: 10.1073/pnas.1220306110 pmid: 23509291
33 KabeyaY, KamadaY, BabaM, TakikawaH, SasakiM, OhsumiY (2005). Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell, 16(5): 2544–2553
doi: 10.1091/mbc.E04-08-0669 pmid: 15743910
34 KabeyaY, MizushimaN, YamamotoA, Oshitani-OkamotoS, OhsumiY, YoshimoriT (2004). LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci, 117(Pt 13): 2805–2812
doi: 10.1242/jcs.01131 pmid: 15169837
35 KabeyaY, NodaN N, FujiokaY, SuzukiK, InagakiF, OhsumiY (2009). Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 389(4): 612–615
doi: 10.1016/j.bbrc.2009.09.034 pmid: 19755117
36 KaiserS E, MaoK, TaherbhoyA M, YuS, OlszewskiJ L, DudaD M, KurinovI, DengA, FennT D, KlionskyD J, SchulmanB A (2012). Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat Struct Mol Biol, 19(12): 1242–1249
doi: 10.1038/nsmb.2415 pmid: 23142976
37 KakutaS, YamamotoH, NegishiL, Kondo-KakutaC, HayashiN, OhsumiY (2012). Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site. J Biol Chem, 287(53): 44261–44269
doi: 10.1074/jbc.M112.411454 pmid: 23129774
38 KamadaY, FunakoshiT, ShintaniT, NaganoK, OhsumiM, OhsumiY (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol, 150(6): 1507–1513
doi: 10.1083/jcb.150.6.1507 pmid: 10995454
39 KaranasiosE, StapletonE, ManifavaM, KaizukaT, MizushimaN, WalkerS A, KtistakisN T (2013). Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J Cell Sci, 126(Pt 22): 5224–5238
doi: 10.1242/jcs.132415 pmid: 24013547
40 KiharaA, NodaT, IshiharaN, OhsumiY (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol, 152, 519–30
41 KijanskaM, DohnalI, ReiterW, KasparS, StoffelI, AmmererG, KraftC, PeterM (2010). Activation of Atg1 kinase in autophagy by regulated phosphorylation. Autophagy, 6(8): 1168–1178
doi: 10.4161/auto.6.8.13849 pmid: 20953146
42 KimJ, KunduM, ViolletB, GuanK L (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 13(2): 132–141
doi: 10.1038/ncb2152 pmid: 21258367
43 KnightD, HarrisR, McAlisterM S B, PhelanJ P, GeddesS, MossS J, DriscollP C, KeepN H (2002). The X-ray crystal structure and putative ligand-derived peptide binding properties of gamma-aminobutyric acid receptor type A receptor-associated protein. J Biol Chem, 277(7): 5556–5561
doi: 10.1074/jbc.M109753200 pmid: 11729197
44 KobayashiT, SuzukiK, OhsumiY (2012). Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PAS-targeted Atg2. FEBS Lett, 586(16): 2473–2478
doi: 10.1016/j.febslet.2012.06.008 pmid: 22728243
45 Kondo-OkamotoN, NodaN N, SuzukiS W, NakatogawaH, TakahashiI, MatsunamiM, HashimotoA, InagakiF, OhsumiY, OkamotoK (2012). Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J Biol Chem, 287(13): 10631–10638
doi: 10.1074/jbc.M111.299917 pmid: 22308029
46 KraftC, DeplazesA, SohrmannM, PeterM (2008). Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol, 10(5): 602–610
doi: 10.1038/ncb1723 pmid: 18391941
47 KraftC, KijanskaM, KalieE, SiergiejukE, LeeS S, SemplicioG, StoffelI, BrezovichA, VermaM, HansmannI, AmmererG, HofmannK, ToozeS, PeterM (2012). Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J, 31(18): 3691–3703
doi: 10.1038/emboj.2012.225 pmid: 22885598
48 KrickR, BusseR A, ScaciocA, StephanM, JanshoffA, ThummM, KühnelK (2012). Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a β-propeller protein family. Proc Natl Acad Sci USA, 109(30): E2042–E2049
doi: 10.1073/pnas.1205128109 pmid: 22753491
49 KrickR, MueheY, PrickT, BremerS, SchlotterhoseP, EskelinenE L, MillenJ, GoldfarbD S, ThummM (2008). Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol Biol Cell, 19(10): 4492–4505
doi: 10.1091/mbc.E08-04-0363 pmid: 18701704
50 KuB, WooJ S, LiangC, LeeK H, HongH S, eX, KimK S, JungJ U, OhB H (2008). Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine gamma-herpesvirus 68. PLoS Pathog, 4(2): e25
doi: 10.1371/journal.ppat.0040025 pmid: 18248095
51 KumaA, MizushimaN, IshiharaN, OhsumiY (2002). Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem, 277(21): 18619–18625
doi: 10.1074/jbc.M111889200 pmid: 11897782
52 KumanomidouT, MizushimaT, KomatsuM, SuzukiA, TanidaI, SouY S, UenoT, KominamiE, TanakaK, YamaneT (2006). The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. J Mol Biol, 355(4): 612–618
doi: 10.1016/j.jmb.2005.11.018 pmid: 16325851
53 KumetaH, WatanabeM, NakatogawaH, YamaguchiM, OguraK, AdachiW, FujiokaY, NodaN N, OhsumiY, InagakiF (2010). The NMR structure of the autophagy-related protein Atg8. J Biomol NMR, 47(3): 237–241
doi: 10.1007/s10858-010-9420-1 pmid: 20428927
54 LambC A, YoshimoriT, ToozeS A (2013). The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol, 14(12): 759–774
doi: 10.1038/nrm3696 pmid: 24201109
55 LiX, HeL, CheK H, FunderburkS F, PanL, PanN, ZhangM, YueZ, ZhaoY (2012). Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat Commun, 3: 662
doi: 10.1038/ncomms1648 pmid: 22314358
56 LiangX H, JacksonS, SeamanM, BrownK, KempkesB, HibshooshH, LevineB (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762): 672–676
doi: 10.1038/45257 pmid: 10604474
57 LiangX H, KleemanL K, JiangH H, GordonG, GoldmanJ E, BerryG, HermanB, LevineB (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol, 72(11): 8586–8596
pmid: 9765397
58 LiuK, CzajaM J (2013). Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ, 20(1): 3–11
doi: 10.1038/cdd.2012.63 pmid: 22595754
59 LiuX, DaiS, ZhuY, MarrackP, KapplerJ W (2003). The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity, 19(3): 341–352
doi: 10.1016/S1074-7613(03)00234-6 pmid: 14499110
60 MaoK, ChewL H, Inoue-AonoY, CheongH, NairU, PopelkaH, YipC K, KlionskyD J (2013). Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc Natl Acad Sci USA, 110(31): E2875–E2884
doi: 10.1073/pnas.1300064110 pmid: 23858448
61 MatsunagaK, SaitohT, TabataK, OmoriH, SatohT, KurotoriN, MaejimaI, Shirahama-NodaK, IchimuraT, IsobeT, AkiraS, NodaT, YoshimoriT (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol, 11(4): 385–396
doi: 10.1038/ncb1846 pmid: 19270696
62 MatsushitaM, SuzukiN N, ObaraK, FujiokaY, OhsumiY, InagakiF (2007). Structure of Atg5.Atg16, a complex essential for autophagy. J Biol Chem, 282(9): 6763–6772
doi: 10.1074/jbc.M609876200 pmid: 17192262
63 MatsuuraA, TsukadaM, WadaY, OhsumiY (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 192, 245–250
64 MautheM, JacobA, FreibergerS, HentschelK, StierhofY D, CodognoP, Proikas-CezanneT (2011). Resveratrol-mediated autophagy requires WIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy, 7(12): 1448–1461
doi: 10.4161/auto.7.12.17802 pmid: 22082875
65 Meiling-WesseK, BarthH, VossC, EskelinenE L, EppleU D, ThummM (2004). Atg21 is required for effective recruitment of Atg8 to the preautophagosomal structure during the Cvt pathway. J Biol Chem, 279(36): 37741–37750
doi: 10.1074/jbc.M401066200 pmid: 15194695
66 MercerC A, KaliappanA, DennisP B (2009). A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy, 5(5): 649–662
doi: 10.4161/auto.5.5.8249 pmid: 19287211
67 MetlagelZ, OtomoC, TakaesuG, OtomoT (2013). Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. Proc Natl Acad Sci USA, 110(47): 18844–18849
doi: 10.1073/pnas.1314755110 pmid: 24191030
68 MillerS, TavshanjianB, OleksyA, PerisicO, HousemanB T, ShokatK M, WilliamsR L (2010). Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science, 327(5973): 1638–1642
doi: 10.1126/science.1184429 pmid: 20339072
69 MizushimaN, NodaT, YoshimoriT, TanakaY, IshiiT, GeorgeM D, KlionskyD J, OhsumiM, OhsumiY (1998). A protein conjugation system essential for autophagy. Nature, 395(6700): 395–398
doi: 10.1038/26506 pmid: 9759731
70 MizushimaN, YoshimoriT, OhsumiY (2011). The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol, 27(1): 107–132
doi: 10.1146/annurev-cellbio-092910-154005 pmid: 21801009
71 MoreauK, RavikumarB, RennaM, PuriC, RubinszteinD C (2011). Autophagosome precursor maturation requires homotypic fusion. Cell, 146(2): 303–317
doi: 10.1016/j.cell.2011.06.023 pmid: 21784250
72 MoreauK, RennaM, RubinszteinD C (2013). Connections between SNAREs and autophagy. Trends Biochem Sci, 38(2): 57–63
doi: 10.1016/j.tibs.2012.11.004 pmid: 23306003
73 NairU, JotwaniA, GengJ, GammohN, RichersonD, YenW L, GriffithJ, NagS, WangK, MossT, BabaM, McNewJ A, JiangX, ReggioriF, MeliaT J, KlionskyD J (2011). SNARE proteins are required for macroautophagy. Cell, 146(2): 290–302
doi: 10.1016/j.cell.2011.06.022 pmid: 21784249
74 NairU, YenW L, MariM, CaoY, XieZ, BabaM, ReggioriF, KlionskyD J (2012). A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy, 8(5): 780–793
doi: 10.4161/auto.19385 pmid: 22622160
75 NakatogawaH, IchimuraY, OhsumiY (2007). Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell, 130(1): 165–178
doi: 10.1016/j.cell.2007.05.021 pmid: 17632063
76 NakatogawaH, IshiiJ, AsaiE, OhsumiY (2012). Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy, 8(2): 1–10
doi: 10.4161/auto.8.2.18373 pmid: 22082964
77 NakatogawaH, SuzukiK, KamadaY, OhsumiY (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol, 10(7): 458–467
doi: 10.1038/nrm2708 pmid: 19491929
78 NishimuraT, KaizukaT, CadwellK, SahaniM H, SaitohT, AkiraS, VirginH W, MizushimaN (2013). FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Rep, 14(3): 284–291
doi: 10.1038/embor.2013.6 pmid: 23392225
79 NodaN N, FujiokaY, HanadaT, OhsumiY, InagakiF (2013). Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep, 14(2): 206–211
doi: 10.1038/embor.2012.208 pmid: 23238393
80 NodaN N, KobayashiT, AdachiW, FujiokaY, OhsumiY, InagakiF (2012). Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy. J Biol Chem, 287(20): 16256–16266
doi: 10.1074/jbc.M112.348250 pmid: 22437838
81 NodaN N, KumetaH, NakatogawaH, SatooK, AdachiW, IshiiJ, FujiokaY, OhsumiY, InagakiF (2008). Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells, 13(12): 1211–1218
doi: 10.1111/j.1365-2443.2008.01238.x pmid: 19021777
82 NodaN N, OhsumiY, InagakiF (2009). ATG systems from the protein structural point of view. Chem Rev, 109(4): 1587–1598
doi: 10.1021/cr800459r pmid: 19236009
83 NodaN N, SatooK, FujiokaY, KumetaH, OguraK, NakatogawaH, OhsumiY, InagakiF (2011). Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol Cell, 44(3): 462–475
doi: 10.1016/j.molcel.2011.08.035 pmid: 22055191
84 NodaT, KimJ, HuangW P, BabaM, TokunagaC, OhsumiY, KlionskyD J (2000). Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol, 148(3): 465–480
doi: 10.1083/jcb.148.3.465 pmid: 10662773
85 NodaT, MatsunagaK, Taguchi-AtarashiN, YoshimoriT (2010). Regulation of membrane biogenesis in autophagy via PI3P dynamics. Semin Cell Dev Biol, 21(7): 671–676
doi: 10.1016/j.semcdb.2010.04.002 pmid: 20403452
86 ObaraK, NodaT, NiimiK, OhsumiY (2008a). Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae. Genes Cells, 13(6): 537–547
doi: 10.1111/j.1365-2443.2008.01188.x pmid: 18533003
87 ObaraK, SekitoT, NiimiK, OhsumiY (2008b). The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem, 283(35): 23972–23980
doi: 10.1074/jbc.M803180200 pmid: 18586673
88 ObaraK, SekitoT, OhsumiY (2006). Assortment of phosphatidylinositol 3-kinase complexes—Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell, 17(4): 1527–1539
doi: 10.1091/mbc.E05-09-0841 pmid: 16421251
89 ObersteinA, JeffreyP D, ShiY (2007). Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem, 282(17): 13123–13132
doi: 10.1074/jbc.M700492200 pmid: 17337444
90 OtomoC, MetlagelZ, TakaesuG, OtomoT (2013). Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol, 20(1): 59–66
doi: 10.1038/nsmb.2431 pmid: 23202584
91 PanaretouC, DominJ, CockcroftS, WaterfieldM D (1997). Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase.Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J Biol Chem, 272(4): 2477–2485
doi: 10.1074/jbc.272.4.2477 pmid: 8999962
92 PazY, ElazarZ, FassD (2000). Structure of GATE-16, membrane transport modulator and mammalian ortholog of autophagocytosis factor Aut7p. J Biol Chem, 275(33): 25445–25450
doi: 10.1074/jbc.C000307200 pmid: 10856287
93 PolsonH E J, de LartigueJ, RigdenD J, ReedijkM, UrbéS, ClagueM J, ToozeS A (2010). Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy, 6(4): 506–522
doi: 10.4161/auto.6.4.11863 pmid: 20505359
94 Proikas-CezanneT, WaddellS, GaugelA, FrickeyT, LupasA, NordheimA (2004). WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene, 23(58): 9314–9325
doi: 10.1038/sj.onc.1208331 pmid: 15602573
95 PuriC, RennaM, BentoC F, MoreauK, RubinszteinD C (2013). Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell, 154(6): 1285–1299
doi: 10.1016/j.cell.2013.08.044 pmid: 24034251
96 RagusaM J, StanleyR E, HurleyJ H (2012). Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell, 151(7): 1501–1512
doi: 10.1016/j.cell.2012.11.028 pmid: 23219485
97 RavikumarB, MoreauK, JahreissL, PuriC, RubinszteinD C (2010). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol, 12(8): 747–757
doi: 10.1038/ncb2078 pmid: 20639872
98 ReggioriF, KlionskyD J (2013). Autophagic processes in yeast: mechanism, machinery and regulation. Genetics, 194(2): 341–361
doi: 10.1534/genetics.112.149013 pmid: 23733851
99 ReggioriF, TuckerK A, StromhaugP E, KlionskyD J (2004). The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell, 6(1): 79–90
doi: 10.1016/S1534-5807(03)00402-7 pmid: 14723849
100 RennerL D, WeibelD B (2011). Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci USA, 108(15): 6264–6269
doi: 10.1073/pnas.1015757108 pmid: 21444798
101 RieterE, VinkeF, BakulaD, CebolleroE, UngermannC, Proikas-CezanneT, ReggioriF (2013). Atg18 function in autophagy is regulated by specific sites within its β-propeller. J Cell Sci, 126(Pt 2): 593–604
doi: 10.1242/jcs.115725 pmid: 23230146
102 SattlerM, LiangH, NettesheimD, MeadowsR P, HarlanJ E, EberstadtM, YoonH S, ShukerS B, ChangB S, MinnA J, ThompsonC B, FesikS W (1997). Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science, 275: 983–986
102 SatooK, NodaN N, KumetaH, FujiokaY, MizushimaN, OhsumiY, InagakiF (2009). The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J, 28(9): 1341–1350
doi: 10.1038/emboj.2009.80 pmid: 19322194
103 SchwartenM, StoldtM, MohrlüderJ, WillboldD (2010). Solution structure of Atg8 reveals conformational polymorphism of the N-terminal domain. Biochem Biophys Res Commun, 395(3): 426–431
doi: 10.1016/j.bbrc.2010.04.043 pmid: 20382112
104 SeglenP O, GordonP B (1982). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA, 79(6): 1889–1892
doi: 10.1073/pnas.79.6.1889 pmid: 6952238
105 SekitoT, KawamataT, IchikawaR, SuzukiK, OhsumiY (2009). Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells, 14(5): 525–538
doi: 10.1111/j.1365-2443.2009.01299.x pmid: 19371383
106 SironiL, MapelliM, KnappS, De AntoniA, JeangK T, MusacchioA (2002). Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint. EMBO J, 21(10): 2496–2506
doi: 10.1093/emboj/21.10.2496 pmid: 12006501
107 StrϕmhaugP E, ReggioriF, GuanJ, WangC W, KlionskyD J (2004). Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell, 15(8): 3553–3566
doi: 10.1091/mbc.E04-02-0147 pmid: 15155809
108 SugawaraK, SuzukiN N, FujiokaY, MizushimaN, OhsumiY, InagakiF (2004). The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells, 9(7): 611–618
doi: 10.1111/j.1356-9597.2004.00750.x pmid: 15265004
109 SugawaraK, SuzukiN N, FujiokaY, MizushimaN, OhsumiY, InagakiF (2005). Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J Biol Chem, 280(48): 40058–40065
doi: 10.1074/jbc.M509158200 pmid: 16183633
110 SunL L, LiM, SuoF, LiuX M, ShenE Z, YangB, DongM Q, HeW Z, DuL L (2013). Global analysis of fission yeast mating genes reveals new autophagy factors. PLoS Genet, 9(8): e1003715
doi: 10.1371/journal.pgen.1003715 pmid: 23950735
111 SuzukiK (2013). Selective autophagy in budding yeast. Cell Death Differ, 20(1): 43–48
doi: 10.1038/cdd.2012.73 pmid: 22705847
112 SuzukiK, KubotaY, SekitoT, OhsumiY (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells, 12(2): 209–218
doi: 10.1111/j.1365-2443.2007.01050.x pmid: 17295840
113 SuzukiK, OhsumiY (2007). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett, 581(11): 2156–2161
doi: 10.1016/j.febslet.2007.01.096 pmid: 17382324
114 SuzukiN N, YoshimotoK, FujiokaY, OhsumiY, InagakiF (2005). The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy, 1(2): 119–126
doi: 10.4161/auto.1.2.1859 pmid: 16874047
115 TaherbhoyA M, TaitS W, KaiserS E, WilliamsA H, DengA, NourseA, HammelM, KurinovI, RockC O, GreenD R, SchulmanB A (2011). Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol Cell, 44(3): 451–461
doi: 10.1016/j.molcel.2011.08.034 pmid: 22055190
116 TakeshigeK, BabaM, TsuboiS, NodaT, OhsumiY (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol, 119(2): 301–311
doi: 10.1083/jcb.119.2.301 pmid: 1400575
117 TsukadaM, OhsumiY (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 333(1-2): 169–174
doi: 10.1016/0014-5793(93)80398-E pmid: 8224160
118 WatanabeY, KobayashiT, YamamotoH, HoshidaH, AkadaR, InagakiF, OhsumiY, NodaN N (2012). Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J Biol Chem, 287(38): 31681–31690
doi: 10.1074/jbc.M112.397570 pmid: 22851171
119 WeidbergH, ShpilkaT, ShvetsE, AbadaA, ShimronF, ElazarZ (2011a). LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev Cell, 20(4): 444–454
doi: 10.1016/j.devcel.2011.02.006 pmid: 21497758
120 WeidbergH, ShvetsE, ElazarZ (2011b). Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem, 80(1): 125–156
doi: 10.1146/annurev-biochem-052709-094552 pmid: 21548784
121 WeidbergH, ShvetsE, ShpilkaT, ShimronF, ShinderV, ElazarZ (2010). LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J, 29(11): 1792–1802
doi: 10.1038/emboj.2010.74 pmid: 20418806
122 WuY T, TanH L, ShuiG, BauvyC, HuangQ, WenkM R, OngC N, CodognoP, ShenH M (2010). Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem, 285(14): 10850–10861
doi: 10.1074/jbc.M109.080796 pmid: 20123989
123 XieZ, NairU, KlionskyD J (2008). Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell, 19(8): 3290–3298
doi: 10.1091/mbc.E07-12-1292 pmid: 18508918
124 YamadaY, SuzukiN N, HanadaT, IchimuraY, KumetaH, FujiokaY, OhsumiY, InagakiF (2007). The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J Biol Chem, 282(11): 8036–8043
doi: 10.1074/jbc.M611473200 pmid: 17227760
125 YamaguchiM, MatobaK, SawadaR, FujiokaY, NakatogawaH, YamamotoH, KobashigawaY, HoshidaH, AkadaR, OhsumiY, NodaN N, InagakiF (2012a). Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat Struct Mol Biol, 19(12): 1250–1256
doi: 10.1038/nsmb.2451 pmid: 23142983
126 YamaguchiM, NodaN N, NakatogawaH, KumetaH, OhsumiY, InagakiF (2010). Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J Biol Chem, 285(38): 29599–29607
doi: 10.1074/jbc.M110.113670 pmid: 20615880
127 YamaguchiM, NodaN N, YamamotoH, ShimaT, KumetaH, KobashigawaY, AkadaR, OhsumiY, InagakiF (2012b). Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure, 20(7): 1244–1254
doi: 10.1016/j.str.2012.04.018 pmid: 22682742
128 YamamotoH, KakutaS, WatanabeT M, KitamuraA, SekitoT, Kondo-KakutaC, IchikawaR, KinjoM, OhsumiY (2012). Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol, 198(2): 219–233
doi: 10.1083/jcb.201202061 pmid: 22826123
129 Ylä-AnttilaP, VihinenH, JokitaloE, EskelinenE L (2009). 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy, 5(8): 1180–1185
doi: 10.4161/auto.5.8.10274 pmid: 19855179
130 YuZ Q, NiT, HongB, WangH Y, JiangF J, ZouS, ChenY, ZhengX L, KlionskyD J, LiangY, XieZ (2012). Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy, 8(6): 1–10
doi: 10.4161/auto.19652 pmid: 22082964
131 ZhongY, WangQ J, LiX, YanY, BackerJ M, ChaitB T, HeintzN, YueZ (2009). Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol, 11(4): 468–476
doi: 10.1038/ncb1854 pmid: 19270693
132 ChewL H, SetiaputraD, KlionskyD J, YipC K (2013). Structural characterization of the Saccharomyces cerevisiae autophagy regulatory complex Atg17-Atg31-Atg29. Autophagy, 9: 1467–1474
133 KabeyaY, MizushimaN, UenoT, YamamotoA, KirisakoT, NodaT, KominamiE, OhsumiY, YoshimoriT (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 19: 5720–5728
134 LipatovaZ, BelogortsevaN, ZhangX Q, KimJ, TaussigD, SegevN (2012). Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proc Natl Acad Sci U S A, 109: 6981–6986
135 PetrosA M, NettesheimD G, WangY, OlejniczakE T, MeadowsR P, MackJ, SwiftK, MatayoshiE D, ZhangH, ThompsonC B, FesikS W (2010). Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci, 9: 2528–2534
136 RomanovJ, WalczakM, IbiricuI, SchüchnerS, OgrisE, KraftC, MartensS (2012). Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J, 31: 4304–4317
doi: 10.1038/emboj.2009.80 pmid: 19322194
138 YehY Y, ShahK H, ChouC C, HsiaoH H, WrasmanK M, StephanJ S, StamatakosD, KhooK H, HermanP K (2011). The identification and analysis of phosphorylation sites on the Atg1 protein kinase. Autophagy, 7: 716–726
[1] Yanan Sun,Jie Yang,Zhenyi Ma. Functions of the adaptor protein p66Shc in solid tumors[J]. Front. Biol., 2015, 10(6): 487-494.
[2] Altea Rocchi,Congcong He. Emerging roles of autophagy in metabolism and metabolic disorders[J]. Front. Biol., 2015, 10(2): 154-164.
[3] Noor GAMMOH,Simon WILKINSON. Autophagy in cancer biology and therapy[J]. Front. Biol., 2014, 9(1): 35-50.
[4] Xiaoyan LIU, Jozsef GAL, Haining ZHU. Sequestosome 1/p62: a multi-domain protein with multi-faceted functions[J]. Front Biol, 2012, 7(3): 189-201.
[5] Hongya HAN, Lishu ZHANG, Xinxian DAI, Yanpeng ZHENG. Cross-talking between autophagy and viral infection in mammalian cells[J]. Front Biol, 2010, 5(6): 507-515.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed