Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (1) : 35-50    https://doi.org/10.1007/s11515-014-1294-2
REVIEW
Autophagy in cancer biology and therapy
Noor GAMMOH,Simon WILKINSON()
Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, United Kingdom, EH4 2XR
 Download: PDF(348 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The role of macroautophagy (hereafter autophagy) in cancer biology and response to clinical intervention is complex. It is clear that autophagy is dysregulated in a wide variety of tumor settings, both during tumor initiation and progression, and in response to therapy. However, the pleiotropic mechanistic roles of autophagy in controlling cell behavior make it difficult to predict in a given tumor setting what the role of autophagy, and, by extension, the therapeutic outcome of targeting autophagy, might be. In this review we summarize the evidence in the literature supporting pro- and anti-tumorigenic and-therapeutic roles of autophagy in cancer. This overview encompasses roles of autophagy in nutrient management, cell death, cell senescence, regulation of proteotoxic stress and cellular homeostasis, regulation of tumor-host interactions and participation in changes in metabolism. We also try to understand, where possible, the mechanistic bases of these roles for autophagy. We specifically expand on the emerging role of genetically-engineered mouse models of cancer in shedding light on these issues in vivo. We also consider how any or all of the above functions of autophagy proteins might be targetable by extant or future classes of pharmacologic agents. We conclude by briefly exploring non-canonical roles for subsets of the key autophagy proteins in cellular processes, and how these might impact upon cancer.

Keywords autophagy      cancer      inflammation      metabolism      apoptosis      homeostasis     
Corresponding Author(s): Simon WILKINSON   
Issue Date: 13 May 2014
 Cite this article:   
Noor GAMMOH,Simon WILKINSON. Autophagy in cancer biology and therapy[J]. Front. Biol., 2014, 9(1): 35-50.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1294-2
https://academic.hep.com.cn/fib/EN/Y2014/V9/I1/35
Fig.1  Molecular mechanism of autophagy. 1) Nucleation of the pre-autophagosome structure requires the recruitment of the upstream ATG complexes including the Vps34, ULK and ATG5 complexes. The molecular mechanisms underlying the membrane recruitment of these complexes and their subsequent dissociation upon maturation of the autophagosome are unknown. 2) Maturation of the pre-autophagosome requires the conjugation of cytosolic LC3-I to membrane bound LC3-II catalyzed by E1-, E2- and E3- like enzymes (ATG7, ATG3 and ATG5-ATG12, respectively). The maturing pre-autophagosome encapsulates cytosolic material (such as damaged mitochondria, unfolded proteins and organelles). Selective autophagy can be achieved through the ability of adaptor proteins (such as p62) to interact with LC3 and cellular substrates. 3) Autophagosome-lysosome fusion, resulting in autolysosome formation, is essential for autophagy flux. The molecular players facilitating this step are largely unknown. 4) Degradation of the autophagosome content is catalyzed by lysosomal proteases resulting in the recycling of nutrients and energy back to the cytoplasm. The conclusion of this step denotes a complete autophagic flux.
Pro-cancerAnti-cancer
Tumour cell dormancy and maintenance of metabolism under nutrient stressClearance of toxic organelles and damaged proteins, ameliorating genotoxic insults
Survival and avoidance of senescence by cancer cells in no chemotherapy settingContribution to programmed cell death mechanisms
Survival by varied mechanisms of cancer cells upon chemotherapuetic treatmentRepression of NF-κB-driven, or other, inflammatory gene expression programmes
Tolerance of the aneuploid stateFacilitation of oncogene-induced death and senescence in certain settings
Cell survival by clearance of toxic organelles and damaged proteins, and reduction in associated ROS productionElimination of oncogenic drivers of proliferation and aberrant cell survival
Degradation of signaling molecules or scaffolds such as p62, Src and Tax1BP1Possibly- although currently unlikely- direct function as a programmed cell death mechanism
Activation of canonical NF-κB signalingMaintenance of genomic stability
Required for appropriate mitochondrial and glycolytic metabolism in KRAS mutant lung and pancreatic cancersAnti-tumor immune responses
Suppression of angiogenesis
Deregulation of metabolism upon autophagy loss in KRAS-driven pancreatic cancer may be harnessed by the cancer if p53 is also absent.
Tab.1  Summary of pro- and anti- cancer processes which autophagy promotes. Each of these may be a composite of multiple mechanistic roles of autophagy, determined by the work of several groups. Please see the text for details.
Fig.2  Potential manipulation of autophagy during anti-cancer therapy. Highlighted using red lines are potential molecules that can be targeted to inhibit autophagy meanwhile in green line are potential ways to activate autophagy. 1) Autophagy can be activated using anti-cancer agents (e.g. Etoposide & Cisplatin), mTOR inhibitors (e.g. Rapamycin & CCI-779), small peptides and leucine starvation. 2) Inhibiting ULK1 kinase activity is of interest to disrupt autophagy. However, ULK complex proteins have non-autophagic functions and autophagy can take place in their absence. 3) The class III PI3K, Vps34, is currently being targeted to inhibit autophagy using inhibitors such as 3-MA and wortmannin. Vps34 is also involved in endosomal trafficking and its inhibition can disrupt autophagy as well as multiple cellular functions. 4) Targeting core autophagy machinery may provide some specificity. Individual members of the ATG5 complex have autophagy-independent activities involving DNA damage response, apoptosis, immune response and mitochondrial function. Disrupting the complex formation (e.g. by inhibiting ATG5-ATG12 conjugation) may specifically abrogate autophagy. E1- and E2-like enzymes have non-autophagy functions; however targeting their enzymatic activities may lead to specific inhibition of autophagy. 5) Potential disruption of autophagosome-lysosome fusion may be specific to autophagy. The molecular players involved are not yet identified. 6) Pharmacological inhibition of lysosome function (e.g. using CQ or Bafilomycin A1) may affect carcinogenesis independently of autophagy. Furthermore, the disruption of autophagy at either early stages involving autophagosome formation or later events that abrogate autophagic degradation can lead to differential consequences during anti-cancer therapy as discussed in the text.
1 Barré B, Perkins N D (2010). The Skp2 promoter integrates signaling through the NF-κB, p53, and Akt/GSK3β pathways to regulate autophagy and apoptosis. Mol Cell, 38(4): 524–538
https://doi.org/10.1016/j.molcel.2010.03.018 pmid: 20513428
2 Behrends C, Sowa M E, Gygi S P, Harper J W (2010). Network organization of the human autophagy system. Nature, 466(7302): 68–76
https://doi.org/10.1038/nature09204 pmid: 20562859
3 Bellodi C, Lidonnici M R, Hamilton A, Helgason G V, Soliera A R, Ronchetti M, Galavotti S, Young K W, Selmi T, Yacobi R, Van Etten R A, Donato N, Hunter A, Dinsdale D, Tirrò E, Vigneri P, Nicotera P, Dyer M J, Holyoake T, Salomoni P, Calabretta B (2009). Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest, 119(5): 1109–1123
https://doi.org/10.1172/JCI35660 pmid: 19363292
4 Bensaad K, Cheung E C, Vousden K H (2009). Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J, 28(19): 3015–3026
https://doi.org/10.1038/emboj.2009.242 pmid: 19713938
5 Bj?rk?y G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol, 171(4): 603–614
https://doi.org/10.1083/jcb.200507002 pmid: 16286508
6 Boya P, González-Polo R A, Casares N, Perfettini J L, Dessen P, Larochette N, Métivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005). Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol, 25(3): 1025–1040
https://doi.org/10.1128/MCB.25.3.1025-1040.2005 pmid: 15657430
7 Capparelli C, Guido C, Whitaker-Menezes D, Bonuccelli G, Balliet R, Pestell T G, Goldberg A F, Pestell R G, Howell A, Sneddon S, Birbe R, Tsirigos A, Martinez-Outschoorn U, Sotgia F, Lisanti M P (2012). Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle, 11(12): 2285–2302
https://doi.org/10.4161/cc.20718 pmid: 22684298
8 Cesari R, Martin E S, Calin G A, Pentimalli F, Bichi R, McAdams H, Trapasso F, Drusco A, Shimizu M, Masciullo V, D’Andrilli G, Scambia G, Picchio M C, Alder H, Godwin A K, Croce C M (2003). Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci USA, 100(10): 5956–5961
https://doi.org/10.1073/pnas.0931262100 pmid: 12719539
9 Chang T K, Shravage B V, Hayes S D, Powers C M, Simin R T, Wade Harper J, Baehrecke E H (2013). Uba1 functions in Atg7- and Atg3-independent autophagy. Nat Cell Biol, 15(9): 1067–1078
https://doi.org/10.1038/ncb2804 pmid: 23873149
10 Cheong H, Lindsten T, Wu J, Lu C, Thompson C B (2011). Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci USA, 108(27): 11121–11126
https://doi.org/10.1073/pnas.1107969108 pmid: 21690395
11 Cheong H, Wu J, Gonzales L K, Guttentag S H, Thompson C B, Lindsten T (2014). Analysis of a lung defect in autophagy-deficient mouse strains. Autophagy, 10(1): 45–56
https://doi.org/10.4161/auto.26505 pmid: 24275123
12 Ciechanover A (2005). Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol, 6(1): 79–87
https://doi.org/10.1038/nrm1552 pmid: 15688069
13 Colleran A, Ryan A, O’Gorman A, Mureau C, Liptrot C, Dockery P, Fearnhead H, Egan L J (2011). Autophagosomal IkappaB alpha degradation plays a role in the long term control of tumor necrosis factor-alpha-induced nuclear factor-kappaB (NF-κB) activity. J Biol Chem, 286(26): 22886–22893
https://doi.org/10.1074/jbc.M110.199950 pmid: 21454695
14 Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison P R, Gasco M, Garrone O, Crook T, Ryan K M (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 126(1): 121–134
https://doi.org/10.1016/j.cell.2006.05.034 pmid: 16839881
15 Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gélinas C, Fan Y, Nelson D A, Jin S, White E (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 10(1): 51–64
https://doi.org/10.1016/j.ccr.2006.06.001 pmid: 16843265
16 Deretic V, Saitoh T, Akira S (2013). Autophagy in infection, inflammation and immunity. Nat Rev Immunol, 13(10): 722–737
https://doi.org/10.1038/nri3532 pmid: 24064518
17 Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, Antonioli M, Pagliarini V, Matteoni S, Fuoco C, Giunta L, D’Amelio M, Nardacci R, Romagnoli A, Piacentini M, Cecconi F, Fimia G M (2010). The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol, 191(1): 155–168
https://doi.org/10.1083/jcb.201002100 pmid: 20921139
18 Djavaheri-Mergny M, Amelotti M, Mathieu J, Besan?on F, Bauvy C, Souquère S, Pierron G, Codogno P (2006). NF-κB activation represses tumor necrosis factor-α-induced autophagy. J Biol Chem, 281(41): 30373–30382
https://doi.org/10.1074/jbc.M602097200 pmid: 16857678
19 D?rr J R, Yu Y, Milanovic M, Beuster G, Zasada C, D?britz J H, Lisec J, Lenze D, Gerhardt A, Schleicher K, Kratzat S, Purfürst B, Walenta S, Mueller-Klieser W, Gr?ler M, Hummel M, Keller U, Buck A K, D?rken B, Willmitzer L, Reimann M, Kempa S, Lee S, Schmitt C A (2013). Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature, 501(7467): 421–425
https://doi.org/10.1038/nature12437 pmid: 23945590
20 Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V (2011). Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J, 30(23): 4701–4711
https://doi.org/10.1038/emboj.2011.398 pmid: 22068051
21 Duran A, Amanchy R, Linares J F, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J, Diaz-Meco M T (2011). p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell, 44(1): 134–146
https://doi.org/10.1016/j.molcel.2011.06.038 pmid: 21981924
22 Elgendy M, Sheridan C, Brumatti G, Martin S J (2011). Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol Cell, 42(1): 23–35
https://doi.org/10.1016/j.molcel.2011.02.009 pmid: 21353614
23 Fliss P M, Jowers T P, Brinkmann M M, Holstermann B, Mack C, Dickinson P, Hohenberg H, Ghazal P, Brune W (2012). Viral mediated redirection of NEMO/IKKγ to autophagosomes curtails the inflammatory cascade. PLoS Pathog, 8(2): e1002517
https://doi.org/10.1371/journal.ppat.1002517 pmid: 22319449
24 Gammoh N, Florey O, Overholtzer M, Jiang X (2013). Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and-independent autophagy. Nat Struct Mol Biol, 20(2): 144–149
https://doi.org/10.1038/nsmb.2475 pmid: 23262492
25 Ganley I G, Lam H, Wang J, Ding X, Chen S, Jiang X (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem, 284(18): 12297–12305
https://doi.org/10.1074/jbc.M900573200 pmid: 19258318
26 Gao C, Cao W, Bao L, Zuo W, Xie G, Cai T, Fu W, Zhang J, Wu W, Zhang X, Chen Y G (2010a). Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol, 12(8): 781–790
https://doi.org/10.1038/ncb2082 pmid: 20639871
27 Gao Z, Gammoh N, Wong P M, Erdjument-Bromage H, Tempst P, Jiang X (2010b). Processing of autophagic protein LC3 by the 20S proteasome. Autophagy, 6(1): 126–137
https://doi.org/10.4161/auto.6.1.10928 pmid: 20061800
28 Garg A D, Dudek A M, Ferreira G B, Verfaillie T, Vandenabeele P, Krysko D V, Mathieu C, Agostinis P (2013). ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy, 9(9): 1292–1307
https://doi.org/10.4161/auto.25399 pmid: 23800749
29 Geng J, Klionsky D J (2008). The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep, 9(9): 859–864
https://doi.org/10.1038/embor.2008.163 pmid: 18704115
30 Goussetis D J, Gounaris E, Wu E J, Vakana E, Sharma B, Bogyo M, Altman J K, Platanias L C (2012). Autophagic degradation of the BCR-ABL oncoprotein and generation of antileukemic responses by arsenic trioxide. Blood, 120(17): 3555–3562
https://doi.org/10.1182/blood-2012-01-402578 pmid: 22898604
31 Grivennikov S I, Greten F R, Karin M (2010). Immunity, inflammation, and cancer. Cell, 140(6): 883–899
https://doi.org/10.1016/j.cell.2010.01.025 pmid: 20303878
32 Guo J Y, Chen H Y, Mathew R, Fan J, Strohecker A M, Karsli-Uzunbas G, Kamphorst J J, Chen G, Lemons J M, Karantza V, Coller H A, Dipaola R S, Gelinas C, Rabinowitz J D, White E (2011). Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev, 25(5): 460–470
https://doi.org/10.1101/gad.2016311 pmid: 21317241
33 Guo J Y, Karsli-Uzunbas G, Mathew R, Aisner S C, Kamphorst J J, Strohecker A M, Chen G, Price S, Lu W, Teng X, Snyder E, Santanam U, Dipaola R S, Jacks T, Rabinowitz J D, White E (2013). Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev, 27(13): 1447–1461
https://doi.org/10.1101/gad.219642.113 pmid: 23824538
34 He C, Wei Y, Sun K, Li B, Dong X, Zou Z, Liu Y, Kinch L N, Khan S, Sinha S, Xavier R J, Grishin N V, Xiao G, Eskelinen E L, Scherer P E, Whistler J L, Levine B (2013). Beclin 2 functions in autophagy, degradation of G protein-coupled receptors, and metabolism. Cell, 154(5): 1085–1099
https://doi.org/10.1016/j.cell.2013.07.035 pmid: 23954414
35 Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, Iwadate M, Yamamoto M, Lee M S, Tanaka K, Komatsu M (2011). Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol, 193(2): 275–284
https://doi.org/10.1083/jcb.201102031 pmid: 21482715
36 Isakson P, Bj?r?s M, B?e S O, Simonsen A (2010). Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood, 116(13): 2324–2331
https://doi.org/10.1182/blood-2010-01-261040 pmid: 20574048
37 Jia L, Gopinathan G, Sukumar J T, Gribben J G (2012). Blocking autophagy prevents bortezomib-induced NF-κB activation by reducing I-κBα degradation in lymphoma cells. PLoS ONE, 7(2): e32584
https://doi.org/10.1371/journal.pone.0032584 pmid: 22393418
38 Jin S M, Youle R J (2012). PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci, 125(Pt 4): 795–799
https://doi.org/10.1242/jcs.093849 pmid: 22448035
39 Johansen T, Lamark T (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy, 7(3): 279–296
https://doi.org/10.4161/auto.7.3.14487 pmid: 21189453
40 Jung C H, Jun C B, Ro S H, Kim Y M, Otto N M, Cao J, Kundu M, Kim D H (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell, 20(7): 1992–2003
https://doi.org/10.1091/mbc.E08-12-1249 pmid: 19225151
41 Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, White E (2007). Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev, 21(13): 1621–1635
https://doi.org/10.1101/gad.1565707 pmid: 17606641
42 Kenzelmann Broz D, Spano Mello S, Bieging K T, Jiang D, Dusek R L, Brady C A, Sidow A, Attardi L D (2013). Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev, 27(9): 1016–1031
https://doi.org/10.1101/gad.212282.112 pmid: 23651856
43 Kim J, Kim Y C, Fang C, Russell R C, Kim J H, Fan W, Liu R, Zhong Q, Guan K L (2013a). Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell, 152(1–2): 290–303
https://doi.org/10.1016/j.cell.2012.12.016 pmid: 23332761
44 Kim J, Kundu M, Viollet B, Guan K L (2011a). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 13(2): 132–141
https://doi.org/10.1038/ncb2152 pmid: 21258367
45 Kim K W, Paul P, Qiao J, Chung D H (2013b). Autophagy mediates paracrine regulation of vascular endothelial cells. Lab Invest, 93(6): 639–645
https://doi.org/10.1038/labinvest.2013.57 pmid: 23608754
46 Kim M J, Woo S J, Yoon C H, Lee J S, An S, Choi Y H, Hwang S G, Yoon G, Lee S J (2011b). Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J Biol Chem, 286(15): 12924–12932
https://doi.org/10.1074/jbc.M110.138958 pmid: 21300795
47 Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou Y S, Ueno I, Sakamoto A, Tong K I, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol, 12(3): 213–223
pmid: 20173742
48 Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol, 169(3): 425–434
https://doi.org/10.1083/jcb.200412022 pmid: 15866887
49 Kon M, Kiffin R, Koga H, Chapochnick J, Macian F, Varticovski L, Cuervo A M (2011). Chaperone-mediated autophagy is required for tumor growth. Sci Transl Med, 3: 109ra117
50 Kraft C, Peter M, Hofmann K (2010). Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol, 12(9): 836–841
https://doi.org/10.1038/ncb0910-836 pmid: 20811356
51 Kuballa P, Nolte W M, Castoreno A B, Xavier R J (2012). Autophagy and the immune system. Annu Rev Immunol, 30(1): 611–646
https://doi.org/10.1146/annurev-immunol-020711-074948 pmid: 22449030
52 Kuo T C, Chen C T, Baron D, Onder T T, Loewer S, Almeida S, Weismann C M, Xu P, Houghton J M, Gao F B, Daley G Q, Doxsey S (2011). Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol, 13(10): 1214–1223
https://doi.org/10.1038/ncb2332 pmid: 21909099
53 Lau A, Zheng Y, Tao S, Wang H, Whitman S A, White E, Zhang D D (2013). Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner. Mol Cell Biol, 33(12): 2436–2446
https://doi.org/10.1128/MCB.01748-12 pmid: 23589329
54 Lee E J, Tournier C (2011). The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy, 7(7): 689–695
https://doi.org/10.4161/auto.7.7.15450 pmid: 21460635
55 Lee I H, Kawai Y, Fergusson M M, Rovira I I, Bishop A J, Motoyama N, Cao L, Finkel T (2012). Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science, 336(6078): 225–228
https://doi.org/10.1126/science.1218395 pmid: 22499945
56 Lee S J, Kim H P, Jin Y, Choi A M, Ryter S W (2011). Beclin 1 deficiency is associated with increased hypoxia-induced angiogenesis. Autophagy, 7(8): 829–839
https://doi.org/10.4161/auto.7.8.15598 pmid: 21685724
57 Levine B, Mizushima N, Virgin H W (2011). Autophagy in immunity and inflammation. Nature, 469(7330): 323–335
https://doi.org/10.1038/nature09782 pmid: 21248839
58 Liu H, He Z, von Rutte T, Yousefi S, Hunger R E, Simon H U (2013). Down-Regulation of Autophagy-Related Protein 5 (ATG5) Contributes to the Pathogenesis of Early-Stage Cutaneous Melanoma. Sci Transl Med, 5: 202ra123
59 Lock R, Roy S, Kenific C M, Su J S, Salas E, Ronen S M, Debnath J (2011). Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell, 22(2): 165–178
https://doi.org/10.1091/mbc.E10-06-0500 pmid: 21119005
60 Lu Z, Luo R Z, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills G B, Liao W S, Bast R C Jr (2008). The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest, 118(12): 3917–3929
pmid: 19033662
61 Lum J J, Bauer D E, Kong M, Harris M H, Li C, Lindsten T, Thompson C B (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 120(2): 237–248
https://doi.org/10.1016/j.cell.2004.11.046 pmid: 15680329
62 Maes H, Rubio N, Garg A D, Agostinis P (2013). Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med, 19(7): 428–446
https://doi.org/10.1016/j.molmed.2013.04.005 pmid: 23714574
63 Maskey D, Yousefi S, Schmid I, Zlobec I, Perren A, Friis R, Simon H U (2013). ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nature Commun, 4: 2130
64 Mathew R, Karp C M, Beaudoin B, Vuong N, Chen G, Chen H Y, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola R S, Karantza-Wadsworth V, White E (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell, 137(6): 1062–1075
https://doi.org/10.1016/j.cell.2009.03.048 pmid: 19524509
65 Mathew R, Kongara S, Beaudoin B, Karp C M, Bray K, Degenhardt K, Chen G, Jin S, White E (2007). Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev, 21(11): 1367–1381
https://doi.org/10.1101/gad.1545107 pmid: 17510285
66 Maycotte P, Aryal S, Cummings C T, Thorburn J, Morgan M J, Thorburn A (2012). Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy, 8(2): 200–212
https://doi.org/10.4161/auto.8.2.18554 pmid: 22252008
67 Michaud M, Martins I, Sukkurwala A Q, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, Tailler M, Menger L, Vacchelli E, Galluzzi L, Ghiringhelli F, di Virgilio F, Zitvogel L, Kroemer G (2011). Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science, 334(6062): 1573–1577
https://doi.org/10.1126/science.1208347 pmid: 22174255
68 Mizushima N, Komatsu M (2011). Autophagy: renovation of cells and tissues. Cell, 147(4): 728–741
https://doi.org/10.1016/j.cell.2011.10.026 pmid: 22078875
69 Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001). Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol, 152(4): 657–668
https://doi.org/10.1083/jcb.152.4.657 pmid: 11266458
70 Mortensen M, Soilleux E J, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, Stranks A J, Glanville J, Knight S, Jacobsen S E, Kranc K R, Simon A K (2011). The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med, 208(3): 455–467
https://doi.org/10.1084/jem.20101145 pmid: 21339326
71 Musiwaro P, Smith M, Manifava M, Walker S A, Ktistakis N T (2013). Characteristics and requirements of basal autophagy in HEK 293 cells. Autophagy, 9(9): 1407–1417
https://doi.org/10.4161/auto.25455 pmid: 23800949
72 Narita M, Young A R, Arakawa S, Samarajiwa S A, Nakashima T, Yoshida S, Hong S, Berry L S, Reichelt S, Ferreira M, Tavaré S, Inoki K, Shimizu S, Narita M (2011). Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science, 332(6032): 966–970
https://doi.org/10.1126/science.1205407 pmid: 21512002
73 Newman A C, Scholefield C L, Kemp A J, Newman M, McIver E G, Kamal A, Wilkinson S (2012). TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-κB signalling. PLoS ONE, 7(11): e50672
https://doi.org/10.1371/journal.pone.0050672 pmid: PMID: 23209807
74 Noman M Z, Janji B, Kaminska B, Van Moer K, Pierson S, Przanowski P, Buart S, Berchem G, Romero P, Mami-Chouaib F, Chouaib S (2011). Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res, 71(18): 5976–5986
https://doi.org/10.1158/0008-5472.CAN-11-1094 pmid: 21810913
75 Paul S, Kashyap A K, Jia W, He Y W, Schaefer B C (2012). Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-κB. Immunity, 36(6): 947–958
https://doi.org/10.1016/j.immuni.2012.04.008 pmid: 22658522
76 Penna F, Costamagna D, Pin F, Camperi A, Fanzani A, Chiarpotto E M, Cavallini G, Bonelli G, Baccino F M, Costelli P (2013). Autophagic degradation contributes to muscle wasting in cancer cachexia. Am J Pathol, 182(4): 1367–1378
https://doi.org/10.1016/j.ajpath.2012.12.023 pmid: 23395093
77 Petherick K J, Williams A C, Lane J D, Ordó?ez-Morán P, Huelsken J, Collard T J, Smartt H J, Batson J, Malik K, Paraskeva C, Greenhough A (2013). Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J, 32(13): 1903–1916
https://doi.org/10.1038/emboj.2013.123 pmid: 23736261
78 Pohl C, Jentsch S (2009). Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat Cell Biol, 11(1): 65–70
https://doi.org/10.1038/ncb1813 pmid: 19079246
79 Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen E L, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest, 112(12): 1809–1820
pmid: 14638851
80 Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C, Debnath J (2010). ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell, 142(4): 590–600
https://doi.org/10.1016/j.cell.2010.07.018 pmid: 20723759
81 Reggiori F, Komatsu M, Finley K, Simonsen A (2012). Autophagy: more than a nonselective pathway. Int J Cell Biol, 2012: 219625
https://doi.org/10.1155/2012/219625 pmid: 22666256
82 Rosenfeldt M T, O’Prey J, Morton J P, Nixon C, MacKay G, Mrowinska A, Au A, Rai T S, Zheng L, Ridgway R, Adams P D, Anderson K I, Gottlieb E, Sansom O J, Ryan K M (2013). p53 status determines the role of autophagy in pancreatic tumour development. Nature, 504(7479): 296–300
https://doi.org/10.1038/nature12865 pmid: 24305049
83 Rubinstein A D, Eisenstein M, Ber Y, Bialik S, Kimchi A (2011). The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell, 44(5): 698–709
https://doi.org/10.1016/j.molcel.2011.10.014 pmid: 22152474
84 Rubinsztein D C, Shpilka T, Elazar Z (2012). Mechanisms of autophagosome biogenesis. Curr Biol, 22(1): R29–R34
https://doi.org/10.1016/j.cub.2011.11.034 pmid: 22240478
85 Russell R C, Tian Y, Yuan H, Park H W, Chang Y Y, Kim J, Kim H, Neufeld T P, Dillin A, Guan K L (2013). ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol, 15(7): 741–750
https://doi.org/10.1038/ncb2757 pmid: 23685627
86 Saitoh T, Fujita N, Jang M H, Uematsu S, Yang B G, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S (2008). Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature, 456(7219): 264–268
https://doi.org/10.1038/nature07383 pmid: 18849965
87 Sandilands E, Serrels B, McEwan D G, Morton J P, Macagno J P, McLeod K, Stevens C, Brunton V G, Langdon W Y, Vidal M, Sansom O J, Dikic I, Wilkinson S, Frame M C (2012a). Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat Cell Biol, 14(1): 51–60
https://doi.org/10.1038/ncb2386 pmid: 22138575
88 Sandilands E, Serrels B, Wilkinson S, Frame M C (2012b). Src-dependent autophagic degradation of Ret in FAK-signalling-defective cancer cells. EMBO Rep, 13(8): 733–740
https://doi.org/10.1038/embor.2012.92 pmid: 22732841
89 Shang L, Wang X (2011). AMPK and mTOR coordinate the regulation of Ulk1 and mammalian autophagy initiation. Autophagy, 7(8): 924–926
https://doi.org/10.4161/auto.7.8.15860 pmid: 21521945
90 Sheen J H, Zoncu R, Kim D, Sabatini D M (2011). Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell, 19(5): 613–628
https://doi.org/10.1016/j.ccr.2011.03.012 pmid: 21575862
91 Shibata T, Ohta T, Tong K I, Kokubu A, Odogawa R, Tsuta K, Asamura H, Yamamoto M, Hirohashi S (2008). Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci USA, 105(36): 13568–13573
https://doi.org/10.1073/pnas.0806268105 pmid: 18757741
92 Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson C B, Tsujimoto Y (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol, 6(12): 1221–1228
https://doi.org/10.1038/ncb1192 pmid: 15558033
93 Shoji-Kawata S, Sumpter R, Leveno M, Campbell G R, Zou Z, Kinch L, Wilkins A D, Sun Q, Pallauf K, MacDuff D, Huerta C, Virgin H W, Helms J B, Eerland R, Tooze S A, Xavier R, Lenschow D J, Yamamoto A, King D, Lichtarge O, Grishin N V, Spector S A, Kaloyanova D V, Levine B (2013). Identification of a candidate therapeutic autophagy-inducing peptide. Nature, 494(7436): 201–206
https://doi.org/10.1038/nature11866 pmid: 23364696
94 Stingele S, Stoehr G, Peplowska K, Cox J, Mann M, Storchova Z (2012). Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol Syst Biol, 8: 608
https://doi.org/10.1038/msb.2012.40 pmid: 22968442
95 Strohecker A M, Guo J Y, Karsli-Uzunbas G, Price S M, Chen G J, Mathew R, McMahon M, White E (2013). Autophagy sustains mitochondrial glutamine metabolism and growth of BRAFV600E-driven lung tumors. Cancer Discov. doi: 10.1158/2159-8290.CD-13-0397
96 Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q, Wang X, He C, Pan H (2013). Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis, 4(10): e838
https://doi.org/10.1038/cddis.2013.350 pmid: 24113172
97 Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011). Autophagy-deficient mice develop multiple liver tumors. Genes Dev, 25(8): 795–800
https://doi.org/10.1101/gad.2016211 pmid: 21498569
98 Tang Y C, Williams B R, Siegel J J, Amon A (2011). Identification of aneuploidy-selective antiproliferation compounds. Cell, 144(4): 499–512
https://doi.org/10.1016/j.cell.2011.01.017 pmid: 21315436
99 Wang R C, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J, Levine B (2012a). Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science, 338(6109): 956–959
https://doi.org/10.1126/science.1225967 pmid: 23112296
100 Wang Y, Wang X D, Lapi E, Sullivan A, Jia W, He Y W, Ratnayaka I, Zhong S, Goldin R D, Goemans C G, Tolkovsky A M, Lu X (2012b). Autophagic activity dictates the cellular response to oncogenic RAS. Proc Natl Acad Sci USA, 109(33): 13325–13330
https://doi.org/10.1073/pnas.1120193109 pmid: 22847423
101 Wei H, Wei S, Gan B, Peng X, Zou W, Guan J L (2011). Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev, 25(14): 1510–1527
https://doi.org/10.1101/gad.2051011 pmid: 21764854
102 Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, Kinch L, Koduru P, Christudass C S, Veltri R W, Grishin N V, Peyton M, Minna J, Bhagat G, Levine B (2013). EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell, 154(6): 1269–1284
https://doi.org/10.1016/j.cell.2013.08.015 pmid: 24034250
103 Weidberg H, Shpilka T, Shvets E, Abada A, Shimron F, Elazar Z (2011). LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev Cell, 20(4): 444–454
https://doi.org/10.1016/j.devcel.2011.02.006 pmid: 21497758
104 Wild P, Farhan H, McEwan D G, Wagner S, Rogov V V, Brady N R, Richter B, Korac J, Waidmann O, Choudhary C, D?tsch V, Bumann D, Dikic I (2011). Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science, 333(6039): 228–233
https://doi.org/10.1126/science.1205405 pmid: 21617041
105 Wilkinson S, O’Prey J, Fricker M, Ryan K M (2009). Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity. Genes Dev, 23(11): 1283–1288
https://doi.org/10.1101/gad.521709 pmid: 19487569
106 Wirawan E, Vanden Berghe T, Lippens S, Agostinis P, Vandenabeele P (2012). Autophagy: for better or for worse. Cell Res, 22(1): 43–61
https://doi.org/10.1038/cr.2011.152 pmid: 21912435
107 Wong P M, Puente C, Ganley I G, Jiang X (2013). The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy, 9(2): 124–137
https://doi.org/10.4161/auto.23323 pmid: 23295650
108 Xie Z, Klionsky D J (2007). Autophagosome formation: core machinery and adaptations. Nat Cell Biol, 9(10): 1102–1109
https://doi.org/10.1038/ncb1007-1102 pmid: 17909521
109 Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel J M, Dell’antonio G, Mautner J, Tonon G, Haigis M, Shirihai O S, Doglioni C, Bardeesy N, Kimmelman A C (2011). Pancreatic cancers require autophagy for tumor growth. Genes Dev, 25(7): 717–729
https://doi.org/10.1101/gad.2016111 pmid: 21406549
110 Yee K S, Wilkinson S, James J, Ryan K M, Vousden K H (2009). PUMA- and Bax-induced autophagy contributes to apoptosis. Cell Death Differ, 16(8): 1135–1145
https://doi.org/10.1038/cdd.2009.28 pmid: 19300452
111 Young A R, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot J F, Tavaré S, Arakawa S, Shimizu S, Watt F M, Narita M (2009). Autophagy mediates the mitotic senescence transition. Genes Dev, 23(7): 798–803
https://doi.org/10.1101/gad.519709 pmid: 19279323
112 Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon H U (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol, 8(10): 1124–1132
https://doi.org/10.1038/ncb1482 pmid: 16998475
113 Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke E H, Lenardo M J (2004). Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science, 304(5676): 1500–1502
https://doi.org/10.1126/science.1096645 pmid: 15131264
114 Yu L, Wan F, Dutta S, Welsh S, Liu Z, Freundt E, Baehrecke E H, Lenardo M (2006). Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci USA, 103(13): 4952–4957
https://doi.org/10.1073/pnas.0511288103 pmid: 16547133
115 Yue Z, Jin S, Yang C, Levine A J, Heintz N (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA, 100(25): 15077–15082
https://doi.org/10.1073/pnas.2436255100 pmid: 14657337
116 Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L, Zhu W G (2010). Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol, 12(7): 665–675
https://doi.org/10.1038/ncb2069 pmid: 20543840
[1] Karimeh Haghani, Pouyan Asadi, Gholamreza Taheripak, Ali Noori-Zadeh, Shahram Darabi, Salar Bakhtiyari. Association of mitochondrial dysfunction and lipid metabolism with type 2 diabetes mellitus: A review of literature[J]. Front. Biol., 2018, 13(6): 406-417.
[2] Vivek Vishnu Anasa, Palaniyandi Ravanan, Priti Talwar. Multifaceted roles of ASB proteins and its pathological significance[J]. Front. Biol., 2018, 13(5): 376-388.
[3] Dingcheng Gao, Vivek Mittal, Yi Ban, Ana Rita Lourenco, Shira Yomtoubian, Sharrell Lee. Metastatic tumor cells – genotypes and phenotypes[J]. Front. Biol., 2018, 13(4): 277-286.
[4] Soumya Nair, Sandra Suresh, Arya Kaniyassery, Panchami Jaya, Jayanthi Abraham. A review on melatonin action as therapeutic agent in cancer[J]. Front. Biol., 2018, 13(3): 180-189.
[5] Mallahalli S. Manu, Kuruvanthe S. Rachana, Gopal M. Advirao. Insulin inhibits the JNK mediated cell death via upregulation of AKT expression in Schwann cells grown in hyperglycemia[J]. Front. Biol., 2018, 13(2): 137-144.
[6] Muhammad Naveed, Mohammad Raees, Irfan Liaqat, Mohammad Kashif. Clastogenic ROS and biophotonics in precancerous diagnosis[J]. Front. Biol., 2018, 13(2): 103-122.
[7] Nima Heidary, Hedayat Sahraei, Mohammad Reza Afarinesh, Zahra Bahari, Gholam Hossein Meftahi. Investigating the inhibition of NMDA glutamate receptors in the basolateral nucleus of the amygdala on the pain and inflammation induced by formalin in male Wistar rats[J]. Front. Biol., 2018, 13(2): 149-155.
[8] D. Brooke Widner, D. Clark Files, Kathryn E. Weaver, Yusuke Shiozawa. Preclinical and clinical studies on cancer-associated cachexia[J]. Front. Biol., 2018, 13(1): 11-18.
[9] Razia Rahman, Lokesh Kumar Gahlot, Yasha Hasija. miRACA: A database for miRNAs associated with cancers and age related disorders (ARD)[J]. Front. Biol., 2018, 13(1): 36-50.
[10] Amir Abdoli. High salt and fat intake, inflammation, and risk of cancer[J]. Front. Biol., 2017, 12(6): 387-391.
[11] Andrew Brandmaier, Sheng-Qi Hou, Sandra Demaria, Silvia C. Formenti, Wen H. Shen. PTEN at the interface of immune tolerance and tumor suppression[J]. Front. Biol., 2017, 12(3): 163-174.
[12] Jun Sun. Intestinal organoid as an in vitromodel in studying host-microbial interactions[J]. Front. Biol., 2017, 12(2): 94-102.
[13] Pang-Kuo Lo,Benjamin Wolfson,Qun Zhou. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1[J]. Front. Biol., 2016, 11(6): 413-426.
[14] Sahar Al Seesi,Alok Das Mohapatra,Arpita Pawashe,Ion I. Mandoiu,Fei Duan. Finding neoepitopes in mouse models of personalized cancer immunotherapy[J]. Front. Biol., 2016, 11(5): 366-375.
[15] Liang Hu,Edward Trope,Qi-Long Ying. Metabolism of pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 355-365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed