Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2018, Vol. 13 Issue (3) : 180-189    https://doi.org/10.1007/s11515-018-1503-5
REVIEW
A review on melatonin action as therapeutic agent in cancer
Soumya Nair, Sandra Suresh, Arya Kaniyassery, Panchami Jaya, Jayanthi Abraham()
Microbial Biotechnology Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
 Download: PDF(160 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Melatonin is a hormone which is produced from pineal gland in human and is said to have various impacts in human body like controlling sleep wake cycle, regulating the immune and cardiovascular system and regulating the peripheral organ functioning to name a few. Researchers have reported that the melatonin levels correlates with cancer risks.

OBJECTIVE: In this review article, focus has been given to the therapeutic applications and impact of melatonin hormone in human behavior and physiologic activities. Through this article we aim in compiling the scattered information regarding melatonin and its various aspects of importance in human system.

METHODS: We made an analysis of existing hypothesis and studies published on melatonin and circadian rhythm, factors effecting Melatonin secretions in body, sleep disturbances and cancer risks and melatonin therapy in cancer patients.

RESULTS: Melatonin's role as an endogenous synchronizer, growing evidence suggests its anti-oxidative activity as well as its having a role in modulating immune responses. Fluctuating melatonin levels can be boosted by ingesting products containing melatonin. A large portion of the examinations detailed by the researchers clearly conclude that keeping up an impeccable sleep-wake cycle and having a healthy diet is extremely important to keep up the regular melatonin levels and in order to stay fit.

CONCLUSION: Melatonin is considered as a critical hormone that controls and regulates many functions in our body. Melatonin production is emphatically related to the night time duration. Its most absolute biological role is to convey information to the body about day length for a variety of physiologic functions. In addition to melatonin's role as an endogenous synchronizer, growing evidence suggests its anti-oxidative activity as well as its having a role in modulating immune responses. At present, a growing interest is focused on the validity of the anti-tumor mechanisms of melatonin.

Keywords Melatonin      circadian rhythm      breast cancer      pineal gland      melatonin therapy      peripheral organ functioning     
Corresponding Author(s): Jayanthi Abraham   
Online First Date: 19 July 2018    Issue Date: 31 July 2018
 Cite this article:   
Soumya Nair,Sandra Suresh,Arya Kaniyassery, et al. A review on melatonin action as therapeutic agent in cancer[J]. Front. Biol., 2018, 13(3): 180-189.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-018-1503-5
https://academic.hep.com.cn/fib/EN/Y2018/V13/I3/180
Reference No. of patients Aim Result
Sturgeon et al., 2012 48725 participants in the Women’s Health Initiative Observational Study, among who 452 adjudicated incident cases of endometrial cancer. 7.5 years of follow-up. Night-shift work is associated with increase in endometrial cancer risk Indication of reduced risk associated with longer sleep duration, although no statistically significant association was observed.
Wu et al., 2008 33528 women
525 incident cases of breast cancer
Sleep duration hypothesized to be inversely associated with breast cancer risk Sleep duration may influence breast cancer risk, possibly via its effect on melatonin levels
Schernhammer et al., 2008 3966 eligible postmenopausal women Low urinary melatonin levels have been associated with an increased risk of breast cancer in premenopausal women. Results from this prospective study provide evidence for a statistically significant inverse association between melatonin levels, as measured in overnight morning urine, and invasive breast cancer risk in postmenopausal women.
Travis et al., 2004 127 patients diagnosed with breast cancer and among 353 control subjects Experimental data from animals suggest a protective role for the pineal hormone melatonin in the etiology of breast cancer No evidence was found that the level of melatonin is strongly associated with the risk for breast cancer.
Bartsch et al., 1992 8 young men,
7 elderly patients with benign prostatic hyperplasia
9 patients of similar age with primary prostate cancer
Depression of serum melatonin in PC is due to a reduced pineal activity and is not caused by an enhanced metabolic degradation in the liver. These results imply it is feasible to estimate changes in pineal function of prostate cancer patients by means of non-invasive determination using urinary melatonin and aMT6s.
Bartsch et al., 1992 17 with breast cancer
4 with untreated benign breast disease
17 with breast cancer
4 with untreated benign breast disease
The nocturnal melatonin and 6-sulfatoxymelatonin concentrations were significantly depressed in the group of patients with primary breast cancer compared with controls (P less than 0.01, P less than 0.025). The circadian amplitudes of melatonin and 6-sulfatoxymelatonin were also depressed by 81% (Pless than 0.01) and 63% (P less than 0.01).
Bartsch et al., 1989 35 with breast cancer
28 with untreated benign breast disease
Stage-dependent depression of melatonin in patients with primary breast cancer A 50% depression of peak and amplitude occurred in the group of patients with primary breast cancer compared with age-matched controls (P less than 0.001, P less than 0.01). The peak declined with increasing tumor size: 27% at Stage T1, 53% at T2 (Pless than 0.001), and 73% at T3 (P less than 0.05). In contrast, patients with secondary breast cancer, particularly those receiving antiestrogen therapy, had a melatonin peak similar to controls.
Tab.1  Study conducted on cancer patients
8 Abbas S A, Khan U A, Helal Uddin A B M (2011). Seasonal changes effects on the serotonin and Melatonin transmission. Can J App Sci, 1(2): 1–9
9 Ames B N, Gold L S (1990). Dietary carcinogens, environmental pollution, and cancer: some misconceptions. Med Oncol Tumor Pharmacother, 7(2-3): 69–85
pmid: 2232941
10 Anisimov V N, Kvetnoy I M, Chumakova N K, Kvetnaya T V, Molotkov A O, Pogudina N A, Popovich I G, Popuchiev V V, Zabezhinski M A, Bartsch H, Bartsch C (1999). Melatonin and colon carcinogenesis. II. Intestinal melatonin-containing cells and serum melatonin level in rats with 1,2-dimethylhydrazine-induced colon tumors. Exp Toxicol Pathol, 51(1): 47–52
https://doi.org/10.1016/S0940-2993(99)80062-1 pmid: 10048713
11 Anisimov V N, Popovich I G, Shtylik A V, Zabezhinski M A, Ben-Huh H, Gurevich P, Berman V, Tendler Y, Zusman I (2000a). Melatonin and colon carcinogenesis. III. Effect of melatonin on proliferative activity and apoptosis in colon mucosa and colon tumors induced by 1,2-dimethylhydrazine in rats. Exp Toxicol Pathol, 52(1): 71–76
https://doi.org/10.1016/S0940-2993(00)80022-6 pmid: 10779155
12 Anisimov V N, Popovich I G, Zabezhinski M A (1997). Melatonin and colon carcinogenesis: I. Inhibitory effect of melatonin on development of intestinal tumors induced by 1,2-dimethylhydrazine in rats. Carcinogenesis, 18(8): 1549–1553
https://doi.org/10.1093/carcin/18.8.1549 pmid: 9276629
13 Anisimov V N, Zabezhinski M A, Popovich I G, Zaripova E A, Musatov S A, Andre V, Vigreux C, Godard T, Sichel F (2000b). Inhibitory effect of melatonin on 7, 12-dimethylbenz[a]anthracene-induced carcinogenesis of the uterine cervix and vagina in mice and mutagenesis in vitro. Cancer Lett, 156(2): 199–205
https://doi.org/10.1016/S0304-3835(00)00463-8 pmid: 10880770
14 Attenburrow M E, Cowen P J, Sharpley A L (1996). Low dose melatonin improves sleep in healthy middle-aged subjects. Psychopharmacology (Berl), 126(2): 179–181
https://doi.org/10.1007/BF02246354 pmid: 8856838
15 Bartsch C, Bartsch H, Fuchs U, Lippert T H, Bellmann O, Gupta D (1989). Stage-dependent depression of melatonin in patients with primary breast cancer. Correlation with prolactin, thyroid stimulating hormone, and steroid receptors. Cancer, 64(2): 426–433
https://doi.org/10.1002/1097-0142(19890715)64:2<426::AID-CNCR2820640215>3.0.CO;2-O pmid: 2736489
16 Bartsch C, Bartsch H, Schmidt A, Ilg S, Bichler K H, Flüchter S H (1992). Melatonin and 6-sulfatoxymelatonin circadian rhythms in serum and urine of primary prostate cancer patients: evidence for reduced pineal activity and relevance of urinary determinations. Clin Chim Acta, 209(3): 153–167
https://doi.org/10.1016/0009-8981(92)90164-L pmid: 1395046
17 Benarroch E E (2008). Suprachiasmatic nucleus and melatonin: reciprocal interactions and clinical correlations. Neurology, 71(8): 594–598
https://doi.org/10.1212/01.wnl.0000324283.57261.37 pmid: 18711114
18 Blask D E (2009). Melatonin, sleep disturbance and cancer risk. Sleep Med Rev, 13(4): 257–264
https://doi.org/10.1016/j.smrv.2008.07.007 pmid: 19095474
19 Blask D E, Dauchy R T, Sauer L A (2005). Putting cancer to sleep at night: the neuroendocrine/circadian melatonin signal. Endocrine, 27(2): 179–188
https://doi.org/10.1385/ENDO:27:2:179 pmid: 16217131
20 Blask D E, Dauchy R T, Sauer L A, Krause J A (2004). Melatonin uptake and growth prevention in rat hepatoma 7288CTC in response to dietary melatonin: melatonin receptor-mediated inhibition of tumour linoleic acid metabolism to the growth signaling molecule 13-hydroxyoctadecadienoic acid and the potential role of phytomelatonin. Laboratory of Chrono-Neuroendocrine Oncology, Bassett Research Institute, Cooperstown, NY, USA. Carcinogenesi, 25(6): 951–960
https://doi.org/10.1093/carcin/bgh090 pmid: 14754876
21 Blask D E, Lemus-Wilson A M, Wilson S T (1992). Breast cancer: a model system for studying the neuroendocrine role of pineal melatonin in oncology. Biochem Soc Trans, 20(2): 309–311
https://doi.org/10.1042/bst0200309 pmid: 1397617
22 Blask D E, Sauer L A, Dauchy R T (2002). Melatonin as a chronobiotic/anticancer agent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer therapy. Curr Top Med Chem, 2(2): 113–132
https://doi.org/10.2174/1568026023394407 pmid: 11899096
23 Brzezinski A (1997). Melatonin in humans. N Engl J Med, 336(3): 186–195
https://doi.org/10.1056/NEJM199701163360306 pmid: 8988899
24 Cardinali D P, Pagano E S, Scacchi Bernasconi P A, Reynoso R, Scacchi P (2013). Melatonin and mitochondrial dysfunction in the central nervous system. Horm Behav, 63(2): 322–330
https://doi.org/10.1016/j.yhbeh.2012.02.020 pmid: 22391273
25 Cini G, Coronnello M, Mini E, Neri B (1998). Melatonin’s growth-inhibitory effect on hepatoma AH 130 in the rat. Cancer Lett, 125(1-2): 51–59
https://doi.org/10.1016/S0304-3835(97)00480-1 pmid: 9566696
26 Claustrat B, Brun J, Chazot G (2005). The basic physiology and pathophysiology of melatonin. Sleep Med Rev, 9(1): 11–24
https://doi.org/10.1016/j.smrv.2004.08.001 pmid: 15649735
27 Cohen M, Lippman M, Chabner B (1978). Role of pineal gland in aetiology and treatment of breast cancer. Lancet, 2(8094): 814–816
https://doi.org/10.1016/S0140-6736(78)92591-6 pmid: 81365
28 Cos S, Fernández F, Sánchez-Barceló E J (1996). Melatonin inhibits DNA synthesis in MCF-7 human breast cancer cells in vitro. Life Sci, 58(26): 2447–2453
https://doi.org/10.1016/0024-3205(96)00249-4 pmid: 8691990
29 Cos S, Fernández R, Güézmes A, Sánchez-Barceló E J (1998). Influence of melatonin on invasive and metastatic properties of MCF-7 human breast cancer cells. Cancer Res, 58(19): 4383–4390
pmid: 9766668
30 Cos S, González A, Martínez-Campa C, Mediavilla M D, Alonso-González C, Sánchez-Barceló E J (2006). Estrogen-signaling pathway: a link between breast cancer and melatonin oncostatic actions. Cancer Detect Prev, 30(2): 118–128
https://doi.org/10.1016/j.cdp.2006.03.002 pmid: 16647824
31 Cos S, Mediavilla M D, Fernández R, González-Lamuño D, Sánchez-Barceló E J (2002). Does melatonin induce apoptosis in MCF-7 human breast cancer cells in vitro? J Pineal Res, 32(2): 90–96
https://doi.org/10.1034/j.1600-079x.2002.1821.x pmid: 12071473
32 Crespo D, Fernández-Viadero C, Verduga R, Ovejero V, Cos S (1994). Interaction between melatonin and estradiol on morphological and morphometric features of MCF-7 human breast cancer cells. J Pineal Res, 16(4): 215–222
https://doi.org/10.1111/j.1600-079X.1994.tb00105.x pmid: 7807378
33 Dietz B M, Kang Y H, Liu G, Eggler A L, Yao P, Chadwick L R, Pauli G F, Farnsworth N R, Mesecar A D, van Breemen R B, Bolton J L (2005). Xanthohumol isolated from Humulus lupulus Inhibits menadione-induced DNA damage through induction of quinone reductase. Chem Res Toxicol, 18(8): 1296–1305
https://doi.org/10.1021/tx050058x pmid: 16097803
34 Dimitrov S, Lange T, Tieken S, Fehm H L, Born J (2004). Sleep associated regulation of T helper 1/T helper 2 cytokine balance in humans. Brain Behav Immun, 18(4): 341–348
https://doi.org/10.1016/j.bbi.2003.08.004 pmid: 15157951
35 Dubocovich M L, Delagrange P, Krause D N, Sugden D, Cardinali D P, Olcese J (2010). International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev, 62(3): 343–380
https://doi.org/10.1124/pr.110.002832 pmid: 20605968
36 Eagles J M (2004). Seasonal affective disorder: a vestigial evolutionary advantage? Med Hypotheses, 63(5): 767–772
https://doi.org/10.1016/j.mehy.2004.07.002 pmid: 15488644
37 Fonzi S, Solinas G P, Costelli P, Parodi C, Murialdo G, Bo P, Albergati A, Montalbett i L, Savoldi F, Polleri A (1994). Melatonin and cortisol circadian secretion during ethanol withdrawal in chronic alcoholics. Chronobiologia, 21(1-2): 109–112
pmid: 7924629
38 Gilad E, Laufer M, Matzkin H, Zisapel N (1999). Melatonin receptors in PC3 human prostate tumor cells. J Pineal Res, 26(4): 211–220
https://doi.org/10.1111/j.1600-079X.1999.tb00586.x pmid: 10340723
39 Gregg D J (2004). Seasonal affective disorder (SAD). Retrieved from
40 Guerrero J M and Reiter R J (2002). Melatonin-Immune System Relationships. Bentham Science Publishers. Current Topics in Medicinal Chemistry, 2(2): 167–179(13).
41 Hardeland R (2005). Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine, 27(2): 119–130
https://doi.org/10.1385/ENDO:27:2:119 pmid: 16217125
42 Hill S M, Blask D E (1988). Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Res, 48(21): 6121–6126
pmid: 3167858
43 Illnerová H, Buresová M, Presl J (1993). Melatonin rhythm in human milk. J Clin Endocrinol Metab, 77(3): 838–841
pmid: 8370707
44 Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K (2000). Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet, 356(9244): 1795–1799
https://doi.org/10.1016/S0140-6736(00)03231-1 pmid: 11117911
45 Jakóbisiak M, Lasek W, Gołab J (2003). Natural mechanisms protecting against cancer. Immunol Lett, 90(2-3): 103–122
https://doi.org/10.1016/j.imlet.2003.08.005 pmid: 14687712
46 Jung-Hynes B, Huang W, Reiter R J, Ahmad N (2010). Melatonin resynchronizes dysregulated circadian rhythm circuitry in human prostate cancer cells. J Pineal Res, 49(1): 60–68
pmid: 20524973
47 Jung-Hynes B, Reiter R J, Ahmad N (2010). Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer. J Pineal Res, 48(1): 9–19
https://doi.org/10.1111/j.1600-079X.2009.00729.x pmid: 20025641
48 Kanishi Y, Kobayashi Y, Noda S, Ishizuka B, Saito K (2000). Differential growth inhibitory effect of melatonin on two endometrial cancer cell lines. J Pineal Res, 28(4): 227–233
https://doi.org/10.1034/j.1600-079X.2000.280405.x pmid: 10831158
49 Karbownik M, Lewinski A, Reiter R J (2001). Anticarcinogenic actions of melatonin which involve antioxidative processes: comparison with other antioxidants. Int J Biochem Cell Biol, 33(8): 735–753
https://doi.org/10.1016/S1357-2725(01)00059-0 pmid: 11404179
50 Karbownik M, Reiter R J (2002). Melatonin protects against oxidative stress caused by d-aminolevulinic acid: implications for cancer reduction. Cancer Invest, 20(2): 276–286
https://doi.org/10.1081/CNV-120001154 pmid: 11901547
51 Klaunig J E, Xu Y, Isenberg J S, Bachowski S, Kolaja K L, Jiang J, Stevenson D E, Walborg E FJr (1998). The role of oxidative stress in chemical carcinogenesis. Environ Health Perspect, 106(Suppl 1): 289–295
https://doi.org/10.1289/ehp.98106s1289 pmid: 9539021
52 Kriya L D, Arleigh J R, Gianluca T, Wendell W K, Lawrence K D (2007). Seasonal and diurnal melatonin production in exercising sled dogs. Comparative Biochem and Physio- Part A: Molecular & Integrative Physio., (Article in Press)
53 Krueger J M, Fang J, Hansen M K, Zhang J, Obál FJr (1998). Humoral regulation of sleep. News Physiol Sci, 13: 189–194
pmid: 11390787
54 Lee C O (2006). Complementary and alternative medicines patients are talking about: melatonin. Clin J Oncol Nurs, 10(1): 105–107
https://doi.org/10.1188/06.CJON.105-107 pmid: 16482735
55 Lee K, Cho M, Miaskowski C, Dodd M (2004). Impaired sleep and rhythms in persons with cancer. Sleep Med Rev, 8(3): 199–212
https://doi.org/10.1016/j.smrv.2003.10.001 pmid: 15144962
56 Lichtenstein P, Holm N V, Verkasalo P K, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000). Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med, 343(2): 78–85
https://doi.org/10.1056/NEJM200007133430201 pmid: 10891514
57 Lyon R C, McComb J A, Schreurs J, Goldstein D B (1981). A relationship between alcohol intoxication and the disordering of brain membranes by a series of short-chain alcohols. J Pharmacol Exp Ther, 218(3): 669–675
pmid: 7264950
58 Maronde E, Stehle J H (2007). The mammalian pineal gland: known facts, unknown facets. Trends Endocrinol Metab, 18(4): 142–149
https://doi.org/10.1016/j.tem.2007.03.001 pmid: 17374488
59 Maurizi C P (1990). The therapeutic potential for tryptophan and melatonin: possible roles in depression, sleep, Alzheimer’s disease and abnormal aging. Med Hypotheses, 31(3): 233–242
https://doi.org/10.1016/0306-9877(90)90097-X pmid: 2345536
60 Mediavilla M D, Cos S, Sánchez-Barceló E J (1999). Melatonin increases p53 and p21WAF1 expression in MCF-7 human breast cancer cells in vitro. Life Sci, 65(4): 415–420
https://doi.org/10.1016/S0024-3205(99)00262-3 pmid: 10421427
61 Mills E, Wu P, Seely D, Guyatt G (2005). Melatonin in the treatment of cancer: a systematic review of randomized controlled trials and meta-analysis. J Pineal Res, 39(4): 360–366
https://doi.org/10.1111/j.1600-079X.2005.00258.x pmid: 16207291
62 Mocchegiani E, Perissin L, Santarelli L, Tibaldi A, Zorzet S, Rapozzi V, Giacconi R, Bulian D, Giraldi T (1999). Melatonin administration in tumor-bearing mice (intact and pinealectomized) in relation to stress, zinc, thymulin and IL-2. Int J Immunopharmacol, 21(1): 27–46
https://doi.org/10.1016/S0192-0561(98)00067-8 pmid: 10411280
63 Molis T M, Spriggs L L, Hill S M (1994). Modulation of estrogen receptor mRNA expression by melatonin in MCF-7 human breast cancer cells. Mol Endocrinol, 8(12): 1681–1690
pmid: 7708056
64 Musatov S A, Anisimov V N, André V, Vigreux C, Godard T, Sichel F (1999). Effects of melatonin on N-nitroso-N-methylurea-induced carcinogenesis in rats and mutagenesis in vitro (Ames test and COMET assay). Cancer Lett, 138(1-2): 37–44
https://doi.org/10.1016/S0304-3835(98)00365-6 pmid: 10378771
65 Nosjean O, Nicolas J P, Klupsch F, Delagrange P, Canet E, Boutin J A (2001). Comparative pharmacological studies of melatonin receptors: MT1, MT2 and MT3/QR2. Tissue distribution of MT3/QR2. Biochem Pharmacol, 61(11): 1369–1379
https://doi.org/10.1016/S0006-2952(01)00615-3 pmid: 11331072
66 Pacchierotti C, Iapichino S, Bossini L, Pieraccini F, Castrogiovanni P (2001). Melatonin in psychiatric disorders: a review on the melatonin involvement in psychiatry. Front Neuroendocrinol, 22(1): 18–32
https://doi.org/10.1006/frne.2000.0202 pmid: 11141317
67 Pandi-Perumal S R, Trakht I, Srinivasan V, Spence D W, Maestroni G J M, Zisapel N, Cardinali D P (2008). Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol, 85(3): 335–353
https://doi.org/10.1016/j.pneurobio.2008.04.001 pmid: 18571301
68 Panzer A, Lottering M L, Bianchi P, Glencross D K, Stark J H, Seegers J C (1998). Melatonin has no effect on the growth, morphology or cell cycle of human breast cancer (MCF-7), cervical cancer (HeLa), osteosarcoma (MG-63) or lymphoblastoid (TK6) cells. Cancer Lett, 122(1-2): 17–23
https://doi.org/10.1016/S0304-3835(97)00360-1 pmid: 9464486
69 Patel S R, Ayas N T, Malhotra M R, White D P, Schernhammer E S, Speizer F E, Stampfer M J, Hu F B (2004). A prospective study of sleep duration and mortality risk in women. Sleep, 27(3): 440–444
https://doi.org/10.1093/sleep/27.3.440 pmid: 15164896
70 Petranka J, Baldwin W, Biermann J, Jayadev S, Barrett J C, Murphy E (1999). The oncostatic action of melatonin in an ovarian carcinoma cell line. J Pineal Res, 26(3): 129–136
https://doi.org/10.1111/j.1600-079X.1999.tb00574.x pmid: 10231725
71 Peuhkuri K, Sihvola N, Korpela R (2012). Dietary factors and fluctuating levels of melatonin. Food Nutr Res, 56(1): 17252
https://doi.org/10.3402/fnr.v56i0.17252 pmid: 22826693
72 Qi W, Reiter R J, Tan D X, Manchester L C, Calvo J R (2001). Melatonin prevents d-aminolevulinic acid-induced oxidative DNA damage in the presence of Fe2+. Mol Cell Biochem, 218(1-2): 87–92
https://doi.org/10.1023/A:1007225809674 pmid: 11330842
73 Ram P T, Yuan L, Dai J, Kiefer T, Klotz D M, Spriggs L L, Hill S M (2000). Differential responsiveness of MCF-7 human breast cancer cell line stocks to the pineal hormone, melatonin. J Pineal Res, 28(4): 210–218
https://doi.org/10.1034/j.1600-079X.2000.280403.x pmid: 10831156
74 Reiter R J (1980). The pineal and its hormones in the control of reproduction in mammals. Endocr Rev, 1(2): 109–131
https://doi.org/10.1210/edrv-1-2-109 pmid: 6263600
75 Riabykh T P, Nikolaeva T G, Bodrova N B (2000). [Effects of biorhythm regulator melatonin on DNA synthesis in short-term cultures of human malignant tumors]. Vestn Ross Akad Med Nauk, (8): 30–33
pmid: 11022419
76 Schernhammer E S, Berrino F, Krogh V, Secreto G, Micheli A, Venturelli E, Sieri S, Sempos C T, Cavalleri A, Schünemann H J, Strano S, Muti P (2008). Urinary 6-sulfatoxymelatonin levels and risk of breast cancer in postmenopausal women. J Natl Cancer Inst, 100(12): 898–905
https://doi.org/10.1093/jnci/djn171 pmid: 18544743
77 Schernhammer E S, Hankinson S E (2003). Light at night: a novel risk factor for cancer in shift workers. Clin Occup Environ Med, 3(2): 263–278
https://doi.org/10.1016/S1526-0046(03)00038-4
78 Shiu S Y, Li L, Xu J N, Pang C S, Wong J T, Pang S F (1999). Melatonin-induced inhibition of proliferation and G1/S cell cycle transition delay of human choriocarcinoma JAr cells: possible involvement of MT2 (MEL1B) receptor. J Pineal Res, 27(3): 183–192
https://doi.org/10.1111/j.1600-079X.1999.tb00614.x pmid: 10535768
79 Spiegel D, Giese-Davis J (2003). Depression and cancer: mechanisms and disease progression. Biol Psychiatry, 54(3): 269–282
https://doi.org/10.1016/S0006-3223(03)00566-3 pmid: 12893103
80 Stevens R G, Rea M.0S (2001). Light in the built-in environment: potential role of circadian disruption in endocrine disruption and breast cancer. CCC, 12: 279–87.
81 Sturgeon S R, Luisi N, Balasubramanian R, Reeves K W (2012). Sleep duration and endometrial cancer risk. Cancer Causes Control, 23(4): 547–553
https://doi.org/10.1007/s10552-012-9912-2 pmid: 22362059
82 Sze S F, Ng T B, Liu W K (1993). Antiproliferative effect of pineal indoles on cultured tumor cell lines. J Pineal Res, 14(1): 27–33
https://doi.org/10.1111/j.1600-079X.1993.tb00481.x pmid: 8483104
83 Tamarkin L, Cohen M, Roselle D, Reichert C, Lippman M, Chabner B (1981). Melatonin inhibition and pinealectomy enhancement of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in the rat. Cancer Res, 41(11 Pt 1): 4432–4436
pmid: 6796259
84 Tan D X, Manchester L C, Hardeland R, Lopez-Burillo S, Mayo J C, Sainz R M, Reiter R J (2003). Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res, 34(1): 75–78
https://doi.org/10.1034/j.1600-079X.2003.02111.x pmid: 12485375
85 Tan D X, Manchester L C, Terron M P, Flores L J, Reiter R J (2007). One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res, 42(1): 28–42
https://doi.org/10.1111/j.1600-079X.2006.00407.x pmid: 17198536
86 Touitou Y, Fèvre M, Lagoguey M, Carayon A, Bogdan A, Reinberg A, Beck H, Cesselin F, Touitou C (1981). Age- and mental health-related circadian rhythms of plasma levels of melatonin, prolactin, luteinizing hormone and follicle-stimulating hormone in man. J Endocrinol, 91(3): 467–475
https://doi.org/10.1677/joe.0.0910467 pmid: 6799603
87 Travis R C, Allen D S, Fentiman I S, Key T J (2004). Melatonin and breast cancer: a prospective study. J Natl Cancer Inst, 96(6): 475–482
https://doi.org/10.1093/jnci/djh077 pmid: 15026473
88 Üstundag A, Duydu Y (2007). The influence of melatonin and N-acetylcysteine in d-aminolevulinic acid and lead induced genotoxicity in lymphocytes in vitro. Biol Trace Elem Res, 117(1-3): 53–64
https://doi.org/10.1007/BF02698083 pmid: 17873392
89 Valtonen M, Kangas A P, Voutilainen M, Eriksson L (2003). Diurnal rhythm of melatonin in young calves and intake of melatonin in milk. Anim Sci, 77(1): 149–154
90 van der Goot A T, Nollen E A (2013). Tryptophan metabolism: entering the field of aging and age-related pathologies. Trends Mol Med, 19(6): 336–344
https://doi.org/10.1016/j.molmed.2013.02.007 pmid: 23562344
91 Vijayalaxmi , Thomas C R J, Reiter R J, Herman T S(2002). Melatonin: from basic research to cancer treatment clinics. J Clin Oncol, 20: 2575–2601.
92 Waldhauser F, Waldhauser M (1988). Melatonin and ageing. A Miles, D.R.S Philbrick, C Thompson (Eds.), Melatonin—Clinical Perspectives, Oxford University Press, Oxford. pp. 174–189
93 Walecka-Kapica E, Klupińska G, Chojnacki J, Tomaszewska-Warda K, Błońska A, Chojnacki C (2014). The effect of melatonin supplementation on the quality of sleep and weight status in postmenopausal women. Przegl Menopauz, 13(6): 334–338
https://doi.org/10.5114/pm.2014.47986 pmid: 26327875
94 Wu A H, Wang R, Koh W P, Stanczyk F Z, Lee H P, Yu M C (2008). Sleep duration, melatonin and breast cancer among Chinese women in Singapore. Carcinogenesis, 29(6): 1244–1248
https://doi.org/10.1093/carcin/bgn100 pmid: 18448486
95 Wurtman R J, Axelrod J, Barchas J D (1964). Age and Enzyme Activity in the Human Pineal. J Clin Endocrinol Metab, 24(3): 299–301
https://doi.org/10.1210/jcem-24-3-299 pmid: 14134071
96 Ying S W, Niles L P, Crocker C (1993). Human malignant melanoma cells express high-affinity receptors for melatonin: antiproliferative effects of melatonin and 6-chloromelatonin. Eur J Pharmacol, 246(2): 89–96
https://doi.org/10.1016/0922-4106(93)90084-M pmid: 8397097
97 Yuan L, Collins A R, Dai J, Dubocovich M L, Hill S M (2002). MT(1) melatonin receptor overexpression enhances the growth suppressive effect of melatonin in human breast cancer cells. Mol Cell Endocrinol, 192(1-2): 147–156
https://doi.org/10.1016/S0303-7207(02)00029-1 pmid: 12088876
98 Zawilska J B, Lorenc A, Berezińska M, Vivien-Roels B, Pévet P, Skene D J (2006). Diurnal and circadian rhythms in melatonin synthesis in the turkey pineal gland and retina. Gen Comp Endocrinol, 145(2): 162–168
https://doi.org/10.1016/j.ygcen.2005.08.008 pmid: 16226264
99 Zee P C, Attarian H, Videnovic A (2013). Circadian rhythm abnormalities. Continuum (Minneap Minn), 19(1 Sleep Disorders): 132–147
pmid: 23385698
[1] Zhuo Wu,Jingquan Li,Ping Ma,Baizhan Li,Yang Xu. Long-term dermal exposure to diisononyl phthalate exacerbates atopic dermatitis through oxidative stress in an FITC-induced mouse model[J]. Front. Biol., 2015, 10(6): 537-545.
[2] Weiguo DONG, Fang HUANG, Hongwen HE. Melatonin and mitochondria in aging[J]. Front Biol, 2010, 5(6): 532-539.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed