Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2016, Vol. 11 Issue (6) : 413-426    https://doi.org/10.1007/s11515-016-1433-z
REVIEW
Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1
Pang-Kuo Lo,Benjamin Wolfson,Qun Zhou()
Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
 Download: PDF(451 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: The majority of mammalian genomes have been found to be transcribed into non-coding RNAs. One category of non-coding RNAs is classified as long non-coding RNAs (lncRNAs) based on their transcript sizes larger than 200 nucleotides. Growing evidence has shown that lncRNAs are not junk transcripts and play regulatory roles in multiple aspects of biological processes. Dysregulation of lncRNA expression has also been linked to diseases, in particular cancer. Therefore, studies of lncRNAs have attracted significant interest in the field of medical research. Nuclear enriched abundant transcript 1 (NEAT1), a nuclear lncRNA, has recently emerged as a key regulator involved in various cellular processes, physiological responses, developmental processes, and disease development and progression.

OBJECTIVE: This review will summarize and discuss the most recent findings with regard to the roles of NEAT1 in the function of the nuclear paraspeckle, cellular pathways, and physiological responses and processes. Particularly, the most recently reported studies regarding the pathological roles of deregulated NEAT1 in cancer are highlighted in this review.

METHODS: We performed a systematic literature search using the Pubmed search engine. Studies published over the past 8 years (between January 2009 and August 2016) were the sources of literature review. The following keywords were used: “Nuclear enriched abundant transcript 1,” “NEAT1,” and “paraspeckles.”

RESULTS: The Pubmed search identified 34 articles related to the topic of the review. Among the identified literature, 13 articles report findings related to cellular functions of NEAT1 and eight articles are the investigations of physiological functions of NEAT1. The remaining 13 articles are studies of the roles of NEAT1 in cancers.

CONCLUSION: Recent advances in NEAT1 studies reveal the multifunctional roles of NEAT1 in various biological processes, which are beyond its role in nuclear paraspeckles. Recent studies also indicate that dysregulation of NEAT1 function contributes to the development and progression of various cancers. More investigations will be needed to address the detailed mechanisms regarding how NEAT1 executes its cellular and physiological functions and how NEAT1 dysregulation results in tumorigenesis, and to explore the potential of NEAT1 as a target in cancer diagnosis, prognosis and therapy.

Keywords long non-coding RNAs (lncRNAs)      nuclear enriched abundant transcript 1 (NEAT1)      paraspeckles      microRNAs (miRNAs)      epigenetic regulation      cancer     
Corresponding Author(s): Qun Zhou   
Just Accepted Date: 14 November 2016   Online First Date: 08 December 2016    Issue Date: 26 December 2016
 Cite this article:   
Pang-Kuo Lo,Benjamin Wolfson,Qun Zhou. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1[J]. Front. Biol., 2016, 11(6): 413-426.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-016-1433-z
https://academic.hep.com.cn/fib/EN/Y2016/V11/I6/413
Fig.1  The hypothetical model for paraspeckle formation in the cell nucleus. The human NEAT1 gene is transcribed into two lncRNA isoform transcripts, NEAT1_1 and NEAT1_2. Only the NEAT1_1 transcript is polyadenylated. The assembly of paraspeckles mainly involves the two steps of component recruitment. In the first recruitment, two abundant paraspeckle proteins, p54nrb and PSF, bind to the internal region of the NEAT1_2 transcript. The first recruitment triggers the second recruitment of PSPC1, NEAT1_1 and other paraspeckle proteins (PSPs) to form paraspeckles.
Fig.2  The regulation and function of NEAT1 in the cell. NEAT1 expression is upregulated by hypoxia and DNA damage stress via activation of upstream transcription factors HIF-2 and p53, respectively. microRNAs (listed in Table 1) are involved in positively and negatively regulating NEAT1 expression. BRCA1 is also found to negatively regulate NEAT1 expression. NEAT1 is overexpressed during tumorigenesis of various types of tissue through dysregulation of the aforementioned signaling pathways, microRNA expression and other unknown mechanisms. NEAT1 executes its functions through acting as an architectural RNA for paraspeckle assembly and as a sponge RNA for inhibiting microRNAs, and through interacting with chromatin for epigenetic regulation of gene expression.
Regulatory mechanism microRNA microRNA target Interaction mechanism Dysregulation in cancer Reference
As a sponge for microRNAs miR-98-5p CTR1 NEAT1 inhibits miR-98-5p to induce CTR1 expression, resulting in increased chemosensitivity. NSCLC (Lung cancer) Jiang et al., 2016
miR-107 CDK6 NEAT1 inhibits miR-107 to induce CDK6 expression, which promotes cell growth. LSCC (Head and neck cancer) Wang et al., 2016
miR-204 ZEB1 NEAT1 inhibits miR-204 to induce ZEB1 expression, leading to EMT activation. NPC (Head and neck cancer) Lu, et al., 2016
miR-449b-5p c-Met NEAT1 inhibits miR-449b-5p to induce c-Met expression. Brain cancer Zhen et al., 2016
Epigenetic regulation of microRNAs miR-129-5p WNT4 NEAT1 silences miR-129-5p expression via increasing DNA methylation of miR-129 gene. Breast cancer Lo et al., 2016
Regulated by microRNAs miR-124-3p NEAT1 miR-124-3p inhibits NEAT1 expression. Ovarian cancer Chai et al., 2016
miR-140 NEAT1 miR-140 stabilizes NEAT1 and increase its expression. This regulation is required for adipogenesis Gernapudi et al., 2016
miR-449a NEAT1 miR-449a suppresses NEAT1 expression. Lung cancer You et al., 2014
miR-548ar-3p NEAT1 miR-548ar-3p decreases NEAT1 expression. Breast cancer Ke et al., 2016
Tab.1  The regulatory interactions between the lncRNA NEAT1 and microRNAs
1 Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A, Kalev P, Boeckx B, Wijnhoven P W, Radaelli E, Vermi W, Leucci E, Lapouge G, Beck B, van den Oord J, Nakagawa S, Hirose T, Sablina A A, Lambrechts D, Aerts S, Blanpain C, Marine J C (2016). p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med, 22(8): 861–868
https://doi.org/10.1038/nm.4135 pmid: 27376578
2 Arredouani M S, Lu B, Bhasin M, Eljanne M, Yue W, Mosquera J M, Bubley G J, Li V, Rubin M A, Libermann T A, Sanda M G (2009). Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer. Clin Cancer Res, 15(18): 5794–5802
https://doi.org/10.1158/1078-0432.CCR-09-0911 pmid: 19737960
3 Athanasiadis A, Rich A, Maas S (2004). Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol, 2(12): e391
https://doi.org/10.1371/journal.pbio.0020391 pmid: 15534692
4 Birney E, Stamatoyannopoulos J A, Dutta A, Guigó R, Gingeras T R, Margulies E H, Weng Z, Snyder M, Dermitzakis E T, Thurman R E, Kuehn M S, Taylor C M, Neph S, Koch C M, Asthana S, Malhotra A, Adzhubei I, Greenbaum J A, Andrews R M, Flicek P, Boyle P J, Cao H, Carter N P, Clelland G K, Davis S, Day N, Dhami P, Dillon S C, Dorschner M O, Fiegler H, Giresi P G, Goldy J, Hawrylycz M, Haydock A, Humbert R, James K D, Johnson B E, Johnson E M, Frum T T, Rosenzweig E R, Karnani N, Lee K, Lefebvre G C, Navas P A, Neri F, Parker S C, Sabo P J, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins F S, Dekker J, Lieb J D, Tullius T D, Crawford G E, Sunyaev S, Noble W S, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker I L, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch H A, Sekinger E A, Lagarde J, Abril J F, Shahab A, Flamm C, Fried C, Hackermüller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen J S, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson M C, Thomas D J, Weirauch M T, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan K G, Sung W K, Ooi H S, Chiu K P, Foissac S, Alioto T, Brent M, Pachter L, Tress M L, Valencia A, Choo S W, Choo C Y, Ucla C, Manzano C, Wyss C, Cheung E, Clark T G, Brown J B, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen C N, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick J S, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers R M, Rogers J, Stadler P F, Lowe T M, Wei C L, Ruan Y, Struhl K, Gerstein M, Antonarakis S E, Fu Y, Green E D, Karaöz U, Siepel A, Taylor J, Liefer L A, Wetterstrand K A, Good P J, Feingold E A, Guyer M S, Cooper G M, Asimenos G, Dewey C N, Hou M, Nikolaev S, Montoya-Burgos J I, Löytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang N R, Holmes I, Mullikin J C, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent W J, Stone E A, Batzoglou S, Goldman N, Hardison R C, Haussler D, Miller W, Sidow A, Trinklein N D, Zhang Z D, Barrera L, Stuart R, King D C, Ameur A, Enroth S, Bieda M C, Kim J, Bhinge A A, Jiang N, Liu J, Yao F, Vega V B, Lee C W, Ng P, Shahab A, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley M J, Inman D, Singer M A, Richmond T A, Munn K J, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler J C, Couttet P, Bruce A W, Dovey O M, Ellis P D, Langford C F, Nix D A, Euskirchen G, Hartman S, Urban A E, Kraus P, Van Calcar S, Heintzman N, Kim T H, Wang K, Qu C, Hon G, Luna R, Glass C K, Rosenfeld M G, Aldred S F, Cooper S J, Halees A, Lin J M, Shulha H P, Zhang X, Xu M, Haidar J N, Yu Y, Ruan Y, Iyer V R, Green R D, Wadelius C, Farnham P J, Ren B, Harte R A, Hinrichs A S, Trumbower H, Clawson H, Hillman-Jackson J, Zweig A S, Smith K, Thakkapallayil A, Barber G, Kuhn R M, Karolchik D, Armengol L, Bird C P, de Bakker P I, Kern A D, Lopez-Bigas N, Martin J D, Stranger B E, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrímsdóttir I B, Huppert J, Zody M C, Abecasis G R, Estivill X, Bouffard G G, Guan X, Hansen N F, Idol J R, Maduro V V, Maskeri B, McDowell J C, Park M, Thomas P J, Young A C, Blakesley R W, Muzny D M, Sodergren E, Wheeler D A, Worley K C, Jiang H, Weinstock G M, Gibbs R A, Graves T, Fulton R, Mardis E R, Wilson R K, Clamp M, Cuff J, Gnerre S, Jaffe D B, Chang J L, Lindblad-Toh K, Lander E S, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong P J, and the ENCODE Project Consortium, the NISC Comparative Sequencing Program, the Baylor College of Medicine Human Genome Sequencing Center, the Washington University Genome Sequencing Center, the Broad Institute, the Children’s Hospital Oakland Research Institute (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447(7146): 799–816
https://doi.org/10.1038/nature05874 pmid: 17571346
5 Bond C S, Fox A H (2009). Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol, 186(5): 637–644
https://doi.org/10.1083/jcb.200906113 pmid: 19720872
6 Buckley N E, Mullan P B (2012). BRCA1--conductor of the breast stem cell orchestra: the role of BRCA1 in mammary gland development and identification of cell of origin of BRCA1 mutant breast cancer. Stem Cell Rev, 8(3): 982–993
https://doi.org/10.1007/s12015-012-9354-y pmid: 22426855
7 Cardinale S, Cisterna B, Bonetti P, Aringhieri C, Biggiogera M, Barabino S M (2007). Subnuclear localization and dynamics of the Pre-mRNA 3′ end processing factor mammalian cleavage factor I 68-kDa subunit. Mol Biol Cell, 18(4): 1282–1292
https://doi.org/10.1091/mbc.E06-09-0846 pmid: 17267687
8 Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk A M, Chiu K P, Choudhary V, Christoffels A, Clutterbuck D R, Crowe M L, Dalla E, Dalrymple B P, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher C F, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras T R, Gojobori T, Green R E, Gustincich S, Harbers M, Hayashi Y, Hensch T K, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan S P, Kruger A, Kummerfeld S K, Kurochkin IV, Lareau L F, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid J F, Ring B Z, Ringwald M, Rost B, Ruan Y, Salzberg S L, Sandelin A, Schneider C, Schönbach C, Sekiguchi K, Semple C A, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan S L, Tang S, Taylor MS, Tegner J, Teichmann S A, Ueda H R , van Nimwegen E, Verardo R, Wei C L, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond S M, Teasdale R D, Liu E T, Brusic V, Quackenbush J, Wahlestedt C, Mattick J S, Hume D A, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y; FANTOM Consortium.; RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group) (2005). The transcriptional landscape of the mammalian genome. Science, 309(5740): 1559–1563
9 Chai Y, Liu J, Zhang Z, Liu L (2016). HuR-regulated lncRNA NEAT1 stability in tumorigenesis and progression of ovarian cancer. Cancer Med, 5(7): 1588–1598
https://doi.org/10.1002/cam4.710 pmid: 27075229
10 Chakravarty D, Sboner A, Nair S S, Giannopoulou E, Li R, Hennig S, Mosquera J M, Pauwels J, Park K, Kossai M, MacDonald T Y, Fontugne J, Erho N, Vergara I A, Ghadessi M, Davicioni E, Jenkins R B, Palanisamy N, Chen Z, Nakagawa S, Hirose T, Bander N H, Beltran H, Fox A H, Elemento O, Rubin M A (2014). The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun, 5: 5383
https://doi.org/10.1038/ncomms6383 pmid: 25415230
11 Chen L L, Carmichael G G (2009). Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell, 35(4): 467–478
https://doi.org/10.1016/j.molcel.2009.06.027 pmid: 19716791
12 Chen L L, Carmichael G G (2010). Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol, 22(3): 357–364
https://doi.org/10.1016/j.ceb.2010.03.003 pmid: 20356723
13 Chen L L, DeCerbo J N, Carmichael G G (2008). Alu element-mediated gene silencing. EMBO J, 27(12): 1694–1705
https://doi.org/10.1038/emboj.2008.94 pmid: 18497743
14 Chen X, Kong J, Ma Z, Gao S, Feng X (2015). Up regulation of the long non-coding RNA NEAT1 promotes esophageal squamous cell carcinoma cell progression and correlates with poor prognosis. Am J Cancer Res, 5(9): 2808–2815
https://doi.org/10.1158/1538-7445.AM2015-2808 pmid: 26609486
15 Choudhry H, Albukhari A, Morotti M, Haider S, Moralli D, Smythies J, Schödel J, Green C M, Camps C, Buffa F, Ratcliffe P, Ragoussis J, Harris A L, Mole D R (2015). Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene, 34(34): 4546
https://doi.org/10.1038/onc.2014.431 pmid: 26289678
16 Chujo T, Yamazaki T, Hirose T (2016). Architectural RNAs (arcRNAs): A class of long noncoding RNAs that function as the scaffold of nuclear bodies. Biochim Biophys Acta, 1859(1): 139–146
https://doi.org/10.1016/j.bbagrm.2015.05.007 pmid: 26021608
17 Clemson C M, Hutchinson J N, Sara S A, Ensminger A W, Fox A H, Chess A, Lawrence J B (2009). An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell, 33(6): 717–726
https://doi.org/10.1016/j.molcel.2009.01.026 pmid: 19217333
18 Cooper D R, Carter G, Li P, Patel R, Watson J E, Patel N A (2014). Long Non-Coding RNA NEAT1 Associates with SRp40 to Temporally Regulate PPARg2 Splicing during Adipogenesis in 3T3-L1 Cells. Genes (Basel), 5(4): 1050–1063
https://doi.org/10.3390/genes5041050 pmid: 25437750
19 Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles D G, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown J B, Lipovich L, Gonzalez J M, Thomas M, Davis C A, Shiekhattar R, Gingeras T R, Hubbard T J, Notredame C, Harrow J, Guigó R (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res, 22(9): 1775–1789
https://doi.org/10.1101/gr.132159.111 pmid: 22955988
20 Doria M, Neri F, Gallo A, Farace M G, Michienzi A (2009). Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection. Nucleic Acids Res, 37(17): 5848–5858
https://doi.org/10.1093/nar/gkp604 pmid: 19651874
21 Eidem T M, Kugel J F, Goodrich J A (2016). Noncoding RNAs: regulators of the mammalian transcription machinery. J Mol Biol, 428(12): 2652–2659
https://doi.org/10.1016/j.jmb.2016.02.019 pmid: 26920110
22 Foulkes W D (2004). BRCA1 functions as a breast stem cell regulator. J Med Genet, 41(1): 1–5
https://doi.org/10.1136/jmg.2003.013805 pmid: 14729816
23 Fox A H, Bond C S, Lamond A I (2005). P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner. Mol Biol Cell, 16(11): 5304–5315
https://doi.org/10.1091/mbc.E05-06-0587 pmid: 16148043
24 Fox A H, Lam Y W, Leung A K, Lyon C E, Andersen J, Mann M, Lamond A I (2002). Paraspeckles: a novel nuclear domain. Curr Biol, 12(1): 13–25
https://doi.org/10.1016/S0960-9822(01)00632-7 pmid: 11790299
25 Fu J W, Kong Y, Sun X (2016). Long noncoding RNA NEAT1 is an unfavorable prognostic factor and regulates migration and invasion in gastric cancer. J Cancer Res Clin Oncol, 142(7): 1571–1579
https://doi.org/10.1007/s00432-016-2152-1 pmid: 27095450
26 Gernapudi R, Wolfson B, Zhang Y, Yao Y, Yang P, Asahara H, Zhou Q (2015). MicroRNA 140 promotes expression of long noncoding RNA NEAT1 in adipogenesis. Mol Cell Biol, 36(1): 30–38
pmid: 26459763
27 Guo S, Chen W, Luo Y, Ren F, Zhong T, Rong M, Dang Y, Feng Z, Chen G (2015). Clinical implication of long non-coding RNA NEAT1 expression in hepatocellular carcinoma patients. Int J Clin Exp Pathol, 8(5): 5395–5402
pmid: 26191242
28 Guru S C, Agarwal S K, Manickam P, Olufemi S E, Crabtree J S, Weisemann J M, Kester M B, Kim Y S, Wang Y, Emmert-Buck M R, Liotta L A, Spiegel A M, Boguski M S, Roe B A, Collins F S, Marx S J, Burns L, Chandrasekharappa S C (1997). A transcript map for the 2.8-Mb region containing the multiple endocrine neoplasia type 1 locus. Genome Res, 7(7): 725–735
pmid: 9253601
29 He C, Jiang B, Ma J, Li Q (2016). Aberrant NEAT1 expression is associated with clinical outcome in high grade glioma patients. APMIS, 124(3): 169–174
https://doi.org/10.1111/apm.12480 pmid: 26582084
30 Hirose T, Virnicchi G, Tanigawa A, Naganuma T, Li R, Kimura H, Yokoi T, Nakagawa S, Bénard M, Fox A H, Pierron G (2014). NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell, 25(1): 169–183
https://doi.org/10.1091/mbc.E13-09-0558 pmid: 24173718
31 Hutchinson J N, Ensminger A W, Clemson C M, Lynch C R, Lawrence J B, Chess A (2007). A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics, 8(1): 39
https://doi.org/10.1186/1471-2164-8-39 pmid: 17270048
32 Imamura K, Imamachi N, Akizuki G, Kumakura M, Kawaguchi A, Nagata K, Kato A, Kawaguchi Y, Sato H, Yoneda M, Kai C, Yada T, Suzuki Y, Yamada T, Ozawa T, Kaneki K, Inoue T, Kobayashi M, Kodama T, Wada Y, Sekimizu K, Akimitsu N (2014). Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell, 53(3): 393–406
https://doi.org/10.1016/j.molcel.2014.01.009 pmid: 24507715
33 International Human Genome Sequencing Consortium (2004). Finishing the euchromatic sequence of the human genome. Nature, 431(7011): 931–945
34 Iyer M K, Niknafs Y S, Malik R, Singhal U, Sahu A, Hosono Y, Barrette T R, Prensner J R, Evans J R, Zhao S, Poliakov A, Cao X, Dhanasekaran S M, Wu Y M, Robinson D R, Beer D G, Feng F Y, Iyer H K, Chinnaiyan A M (2015). The landscape of long noncoding RNAs in the human transcriptome. Nat Genet, 47(3): 199–208
https://doi.org/10.1038/ng.3192 pmid: 25599403
35 Jiang P, Wu X, Wang X, Huang W, Feng Q (2016). NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget, 7(28): 43337–43351
pmid: 27270317
36 Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007). RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316(5830): 1484–1488
37 Ke H, Zhao L, Feng X, Xu H, Zou L, Yang Q, Su X, Peng L, Jiao B (2016). NEAT1 is required for survival of breast cancer cells through FUS and miR-548. Gene Regul Syst Bio, 10(Suppl 1): 11–17
pmid: 27147820
38 Kellis M, Wold B, Snyder M P, Bernstein B E, Kundaje A, Marinov G K, Ward L D, Birney E, Crawford G E, Dekker J, Dunham I, Elnitski L L, Farnham P J, Feingold E A, Gerstein M, Giddings M C, Gilbert D M, Gingeras T R, Green E D, Guigo R, Hubbard T, Kent J, Lieb J D, Myers R M, Pazin M J, Ren B, Stamatoyannopoulos J A, Weng Z, White K P, Hardison R C (2014). Defining functional DNA elements in the human genome. Proc Natl Acad Sci USA, 111(17): 6131–6138
https://doi.org/10.1073/pnas.1318948111 pmid: 24753594
39 Kim D D, Kim T T, Walsh T, Kobayashi Y, Matise T C, Buyske S, Gabriel A (2004). Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res, 14(9): 1719–1725
https://doi.org/10.1101/gr.2855504 pmid: 15342557
40 Levanon E Y, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, Fligelman Z Y, Shoshan A, Pollock S R, Sztybel D, Olshansky M, Rechavi G, Jantsch M F (2004). Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol, 22(8): 1001–1005
https://doi.org/10.1038/nbt996 pmid: 15258596
41 Lo P K, Zhang Y, Wolfson B, Gernapudi R, Yao Y, Duru N, Zhou Q (2016). Dysregulation of the BRCA1/long non-coding RNA NEAT1 signaling axis contributes to breast tumorigenesis. Oncotarget, (In press)
pmid: 27556296
42 Lu Y, Li T, Wei G, Liu L, Chen Q, Xu L, Zhang K, Zeng D, Liao R (2016). The long non-coding RNA NEAT1 regulates epithelial to mesenchymal transition and radioresistance in through miR-204/ZEB1 axis in nasopharyngeal carcinoma. Tumour Biol, 37(9): 11733–11741
https://doi.org/10.1007/s13277-015-4773-4 pmid: 27020592
43 Ma Y, Liu L, Yan F, Wei W, Deng J, Sun J (2016). Enhanced expression of long non-coding RNA NEAT1 is associated with the progression of gastric adenocarcinomas. World J Surg Oncol, 14(1): 41
https://doi.org/10.1186/s12957-016-0799-3 pmid: 26911892
44 Mao Y S, Zhang B, Spector D L (2011). Biogenesis and function of nuclear bodies. Trends Genet, 27(8): 295–306
https://doi.org/10.1016/j.tig.2011.05.006 pmid: 21680045
45 Mercer TR, Dinger ME, Mattick J S (2009). Long non-coding RNAs: insights into functions. Nature reviews, 10(3): 155–159
46 Naganuma T, Nakagawa S, Tanigawa A, Sasaki Y F, Goshima N, Hirose T (2012). Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J, 31(20): 4020–4034
https://doi.org/10.1038/emboj.2012.251 pmid: 22960638
47 Nakagawa S, Naganuma T, Shioi G, Hirose T (2011). Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol, 193(1): 31–39
https://doi.org/10.1083/jcb.201011110 pmid: 21444682
48 Nakagawa S, Shimada M, Yanaka K, Mito M, Arai T, Takahashi E, Fujita Y, Fujimori T, Standaert L, Marine J C, Hirose T (2014). The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development, 141(23): 4618–4627
https://doi.org/10.1242/dev.110544 pmid: 25359727
49 Nasr R, Guillemin M C, Ferhi O, Soilihi H, Peres L, Berthier C, Rousselot P, Robledo-Sarmiento M, Lallemand-Breitenbach V, Gourmel B, Vitoux D, Pandolfi P P, Rochette-Egly C, Zhu J, de Thé H (2008). Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med, 14(12): 1333–1342
https://doi.org/10.1038/nm.1891 pmid: 19029980
50 Peng Y, Yu S, Li H, Xiang H, Peng J, Jiang S (2014). MicroRNAs: emerging roles in adipogenesis and obesity. Cell Signal, 26(9): 1888–1896
https://doi.org/10.1016/j.cellsig.2014.05.006 pmid: 24844591
51 Platani M, Lamond A I (2004). Nuclear organisation and subnuclear bodies. Prog Mol Subcell Biol, 35: 1–22
https://doi.org/10.1007/978-3-540-74266-1_1 pmid: 15113077
52 Poomsawat S, Sanguansin S, Punyasingh J, Vejchapipat P, Punyarit P (2016). Expression of cdk6 in head and neck squamous cell carcinoma. Clin Oral Investig, 20(1): 57–63
https://doi.org/10.1007/s00784-015-1482-8 pmid: 25929813
53 Prasanth K V, Prasanth S G, Xuan Z, Hearn S, Freier S M, Bennett C F, Zhang M Q, Spector D L (2005). Regulating gene expression through RNA nuclear retention. Cell, 123(2): 249–263
https://doi.org/10.1016/j.cell.2005.08.033 pmid: 16239143
54 Prasanth K V, Spector D L (2007). Eukaryotic regulatory RNAs: an answer to the ‘genome complexity’ conundrum. Genes Dev, 21(1): 11–42
https://doi.org/10.1101/gad.1484207 pmid: 17210785
55 Ricke W A, McPherson S J, Bianco J J, Cunha G R, Wang Y, Risbridger G P (2008). Prostatic hormonal carcinogenesis is mediated by in situ estrogen production and estrogen receptor alpha signaling. FASEB J, 22(5): 1512–1520
https://doi.org/10.1096/fj.07-9526com pmid: 18055862
56 Sasaki Y T, Ideue T, Sano M, Mituyama T, Hirose T (2009). MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci USA, 106(8): 2525–2530
https://doi.org/10.1073/pnas.0807899106 pmid: 19188602
57 Schmitt A M, Chang H Y (2016). Long Noncoding RNAs in Cancer Pathways. Cancer Cell, 29(4): 452–463
https://doi.org/10.1016/j.ccell.2016.03.010 pmid: 27070700
58 Semenza G L (2010). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 29(5): 625–634
https://doi.org/10.1038/onc.2009.441 pmid: 19946328
59 Setlur S R, Mertz K D, Hoshida Y, Demichelis F, Lupien M, Perner S, Sboner A, Pawitan Y, Andrén O, Johnson L A, Tang J, Adami H O, Calza S, Chinnaiyan A M, Rhodes D, Tomlins S, Fall K, Mucci L A, Kantoff P W, Stampfer M J, Andersson S O, Varenhorst E, Johansson J E, Brown M, Golub T R, Rubin M A (2008). Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. J Natl Cancer Inst, 100(11): 815–825
https://doi.org/10.1093/jnci/djn150 pmid: 18505969
60 Simon M D, Wang C I, Kharchenko P V, West J A, Chapman B A, Alekseyenko A A, Borowsky M L, Kuroda M I, Kingston R E (2011). The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci USA, 108(51): 20497–20502
https://doi.org/10.1073/pnas.1113536108 pmid: 22143764
61 Souquere S, Beauclair G, Harper F, Fox A, Pierron G (2010). Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol Biol Cell, 21(22): 4020–4027
https://doi.org/10.1091/mbc.E10-08-0690 pmid: 20881053
62 Standaert L, Adriaens C, Radaelli E, Van Keymeulen A, Blanpain C, Hirose T, Nakagawa S, Marine JC (2014). The long noncoding RNA Neat1 is required for mammary gland development and lactation. RNA (New York, NY, 20(12): 1844–1849
63 Sunwoo H, Dinger M E, Wilusz J E, Amaral P P, Mattick J S, Spector D L (2009). MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res, 19(3): 347–359
https://doi.org/10.1101/gr.087775.108 pmid: 19106332
64 Wang K C, Chang H Y (2011). Molecular mechanisms of long noncoding RNAs. Mol Cell, 43(6): 904–914
https://doi.org/10.1016/j.molcel.2011.08.018 pmid: 21925379
65 Wang P, Wu T, Zhou H, Jin Q, He G, Yu H, Xuan L, Wang X, Tian L, Sun Y, Liu M, Qu L (2016). Long noncoding RNA NEAT1 promotes laryngeal squamous cell cancer through regulating miR-107/CDK6 pathway. J Exp Clin Cancer Res, 35(1): 22
https://doi.org/10.1186/s13046-016-0297-z pmid: 26822763
66 Waterston R H, Lindblad-Toh K, Birney E, Rogers J, Abril J F, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis S E, Attwood J, Baertsch R, Bailey J, BarlowK, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent M R, Brown D G, Brown S D, Bult C, Burton J, Butler J, Campbell R D, Carninci P, Cawley S, Chiaromonte F, Chinwalla A T, Church D M, Clamp M, Clee C, Collins F S, Cook L L, Copley R R, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty K D, Deri J, Dermitzakis E T, Dewey C, Dickens N J, Diekhans M, Dodge S, Dubchak I, Dunn D M, Eddy S R, Elnitski L, Emes R D, Eswara P, Eyras E, Felsenfeld A, Fewell G A, Flicek P, Foley K, Frankel W N, Fulton L A, Fulton R S, Furey T S, Gage D, Gibbs R A, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves T A, Green E D, Gregory S, Guigó R, Guyer M, Hardison R C, Haussler D, Hayashizaki Y, Hillier L W, Hinrichs A, Hlavina W, HolzerT, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe D B, Johnson L S, Jones M, Jones T A, Joy A, Kamal M, Karlsson E K, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent W J, Kirby A, KolbeD L, Korf I, Kucherlapati R S, Kulbokas E J, Kulp D, Landers T, Leger J P, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott D R, Mardis E R, Matthews L, Mauceli E, Mayer J H, McCarthy M, McCombie W R, McLaren S, McLay K, McPherson J D, Meldrim J, Meredith B, Mesirov J P, Miller W, Miner T L, Mongin E, Montgomery K T, Morgan M, Mott R, Mullikin J C, Muzny D M, Nash W E, Nelson J O, Nhan M N, Nicol R, Ning Z, Nusbaum C, O’Connor M J, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin K H, Peterson J, Pevzner P, Plumb R, Pohl C S, Poliakov A, Ponce T C, Ponting C P, Potter S, Quail M, ReymondA, Roe B A, Roskin K M, Rubin E M, Rust A G, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz M S, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer J B, Slater G, Smit A, Smith D R, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson J P, Von Niederhausern A C, Wade C M, Wall M, Weber R J, Weiss R B, Wendl M C, West A P, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, WilliamsS, Wilson R K, Winter E, Worley K C, Wyman D, Yang S, Yang S P, Zdobnov E M, Zody M C, Lander E S, and the Mouse Genome Sequencing Consortium (2002). Initial sequencing and comparative analysis of the mouse genome. Nature, 420(6915): 520–562
https://doi.org/10.1038/nature01262 pmid: 12466850
67 West J A, Davis C P, Sunwoo H, Simon M D, Sadreyev R I, Wang P I, Tolstorukov M Y, Kingston R E (2014). The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell, 55(5): 791–802
https://doi.org/10.1016/j.molcel.2014.07.012 pmid: 25155612
68 Yamazaki T, Hirose T (2015). The building process of the functional paraspeckle with long non-coding RNAs. Front Biosci (Elite Ed), 7(1): 1–41
https://doi.org/10.2741/e715 pmid: 25553361
69 You J, Zhang Y, Liu B, Li Y, Fang N, Zu L, Li X, Zhou Q (2014). MicroRNA-449a inhibits cell growth in lung cancer and regulates long noncoding RNA nuclear enriched abundant transcript 1. Indian J Cancer, 51(7 Suppl 3): e77–e81
https://doi.org/10.4103/0019-509X.154055 pmid: 25818739
70 Zeng C, Xu Y, Xu L, Yu X, Cheng J, Yang L, Chen S, Li Y (2014). Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer, 14(1): 693
https://doi.org/10.1186/1471-2407-14-693 pmid: 25245097
71 Zhang Q, Chen C Y, Yedavalli V S, Jeang K T (2013). NEAT1 long noncoding RNA and paraspeckle bodies modulate HIV-1 posttranscriptional expression. MBio, 4(1): e00596–e12
https://doi.org/10.1128/mBio.00596-12 pmid: 23362321
72 Zhang Z, Carmichael G G (2001). The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell, 106(4): 465–475
https://doi.org/10.1016/S0092-8674(01)00466-4 pmid: 11525732
73 Zhen L, Yun-Hui L, Hong-Yu D, Jun M, Yi-Long Y (2016). Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis. Tumour Biol, 37(1): 673–683
https://doi.org/10.1007/s13277-015-3843-y pmid: 26242266
74 Zhu J, Gianni M, Kopf E, Honore N, Chelbi-Alix M, Koken M, Quignon F, Rochette-Egly C, de The H (1999). Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc Natl Acad Sci U S A, 96(26): 14807–14812
75 Zolotukhin A S, Michalowski D, Bear J, Smulevitch S V, Traish A M, Peng R, Patton J, Shatsky I N, Felber B K (2003). PSF acts through the human immunodeficiency virus type 1 mRNA instability elements to regulate virus expression. Mol Cell Biol, 23(18): 6618–6630
https://doi.org/10.1128/MCB.23.18.6618-6630.2003 pmid: 12944487
[1] Vivek Vishnu Anasa, Palaniyandi Ravanan, Priti Talwar. Multifaceted roles of ASB proteins and its pathological significance[J]. Front. Biol., 2018, 13(5): 376-388.
[2] Dingcheng Gao, Vivek Mittal, Yi Ban, Ana Rita Lourenco, Shira Yomtoubian, Sharrell Lee. Metastatic tumor cells – genotypes and phenotypes[J]. Front. Biol., 2018, 13(4): 277-286.
[3] Soumya Nair, Sandra Suresh, Arya Kaniyassery, Panchami Jaya, Jayanthi Abraham. A review on melatonin action as therapeutic agent in cancer[J]. Front. Biol., 2018, 13(3): 180-189.
[4] Muhammad Naveed, Mohammad Raees, Irfan Liaqat, Mohammad Kashif. Clastogenic ROS and biophotonics in precancerous diagnosis[J]. Front. Biol., 2018, 13(2): 103-122.
[5] D. Brooke Widner, D. Clark Files, Kathryn E. Weaver, Yusuke Shiozawa. Preclinical and clinical studies on cancer-associated cachexia[J]. Front. Biol., 2018, 13(1): 11-18.
[6] Razia Rahman, Lokesh Kumar Gahlot, Yasha Hasija. miRACA: A database for miRNAs associated with cancers and age related disorders (ARD)[J]. Front. Biol., 2018, 13(1): 36-50.
[7] Amir Abdoli. High salt and fat intake, inflammation, and risk of cancer[J]. Front. Biol., 2017, 12(6): 387-391.
[8] Sahar Al Seesi,Alok Das Mohapatra,Arpita Pawashe,Ion I. Mandoiu,Fei Duan. Finding neoepitopes in mouse models of personalized cancer immunotherapy[J]. Front. Biol., 2016, 11(5): 366-375.
[9] Gahana Advani,Anderly C. Chueh,Ya Chee Lim,Amardeep Dhillon,Heung-Chin Cheng. Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression[J]. Front. Biol., 2015, 10(3): 195-202.
[10] Caiguo ZHANG. The correlation between iron homeostasis and telomere maintenance[J]. Front. Biol., 2014, 9(5): 347-355.
[11] Qingguo ZHAO,Fei LIU. Mesenchymal stem cells in progression and treatment of cancers[J]. Front. Biol., 2014, 9(3): 186-194.
[12] Baoxiang GUAN,Ashraful HOQUE,Xiaochun XU. Amiloride and guggulsterone suppression of esophageal cancer cell growth in vitro and in nude mouse xenografts[J]. Front. Biol., 2014, 9(1): 75-81.
[13] Noor GAMMOH,Simon WILKINSON. Autophagy in cancer biology and therapy[J]. Front. Biol., 2014, 9(1): 35-50.
[14] Merlin LOPUS, Rao SETHUMADHAVAN, P. CHANDRASEKARAN, K. SREEVISHNUPRIYA, A.W. VARSHA, V. SHANTHI, K. RAMANATHAN, R. RAJASEKARAN. A computational approach to explore the functional missense mutations in the spindle check point protein Mad1[J]. Front Biol, 2013, 8(6): 618-625.
[15] Olga KSIONDA, Andre LIMNANDER, Jeroen P. ROOSE. RasGRP Ras guanine nucleotide exchange factors in cancer[J]. Front Biol, 2013, 8(5): 508-532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed