Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (5) : 347-355    https://doi.org/10.1007/s11515-014-1327-x
REVIEW
The correlation between iron homeostasis and telomere maintenance
Caiguo ZHANG()
Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
 Download: PDF(405 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Eukaryotic organisms require iron to sustain genome stability, cell proliferation and development. Chromosomes contain telomeres to ensure complete replications and avoid fusions. Numerous evidences reveal that iron can act directly or indirectly on telomere maintenance. In human, disruption of systemic or cellular iron homeostasis is reportedly to cause serious health problems such as iron overload (hereditary hemochromatosis), iron deficiency anemia, carcinogenesis and acceleration of aging process. These processes commonly associate with abnormal telomere length. Additionally, cells containing mutations in iron-containing proteins such as DNA polymerases (Polα, δ, and ?), regulator of telomere length 1 (RTEL1) and the small subunit of ribonucleotide reductases (RNRs) have abnormal telomere length. This review briefly summarizes current understandings on iron homeostasis and telomere maintenance in cancer and aging process, followed by discussing their direct and indirect correlation, and the possible regulatory mechanisms.

Keywords iron homeostasis      telomere      telomere maintenance      cancer      aging     
Corresponding Author(s): Caiguo ZHANG   
Just Accepted Date: 11 August 2014   Online First Date: 02 September 2014    Issue Date: 11 October 2014
 Cite this article:   
Caiguo ZHANG. The correlation between iron homeostasis and telomere maintenance[J]. Front. Biol., 2014, 9(5): 347-355.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1327-x
https://academic.hep.com.cn/fib/EN/Y2014/V9/I5/347
Fig.1  The relationships of iron, telomeres, cancer and aging. Iron overload or iron deficiency can cause carcinogenesis. Most human cancer cells possess short telomeres, upregulated telomerase activity and catalytic protein component (hTERT). Iron levels generally increase with age. However, the correlation between telomeres and aging are currently controversial. Commonly, the telomere length is gradually shortened as aging, but some studies also indicate there is no strong association between them. Moreover, abnormal telomere length also has been reported in mutants depleted iron-containing proteins and in iron disorder patients. Aging associates with many events at cellular and physiological levels that influence carcinogenesis and cancer growth.
Fig.2  The possible mechanisms that iron involves in telomere maintenance. Firstly, disruption of iron homeostasis results in the activation of DNA damage checkpoint pathway, which further affects the coordination of telomere binding proteins with telomeres, and consequently leads to abnormal telomere length. Secondly, impaired iron homeostasis results in dysfunction of RNRs or their interaction proteins, which lead to the reduction of dNTP pools, eventually causing shortened telomere length. Moreover, iron homeostasis may also directly regulate telomerase activity and the stability of telomere binding proteins.
1 Adams Martin A, Dionne I, Wellinger R J, Holm C (2000). The function of DNA polymerase alpha at telomeric G tails is important for telomere homeostasis. Mol Cell Biol, 20(3): 786–796
https://doi.org/10.1128/MCB.20.3.786-796.2000 pmid: 10629035
2 Addinall S G, Holstein E M, Lawless C, Yu M, Chapman K, Banks A P, Ngo H P, Maringele L, Taschuk M, Young A, Ciesiolka A, Lister A L, Wipat A, Wilkinson D J, Lydall D (2011). Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects. PLoS Genet, 7(4): e1001362
https://doi.org/10.1371/journal.pgen.1001362 pmid: 21490951
3 Andrews N C, Schmidt P J (2007). Iron homeostasis. Annu Rev Physiol, 69(1): 69–85
https://doi.org/10.1146/annurev.physiol.69.031905.164337 pmid: 17014365
4 Askree S H, Yehuda T, Smolikov S, Gurevich R, Hawk J, Coker C, Krauskopf A, Kupiec M, McEachern M J (2004). A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci USA, 101(23): 8658–8663
https://doi.org/10.1073/pnas.0401263101 pmid: 15161972
5 Aubert G, Lansdorp P M (2008). Telomeres and aging. Physiol Rev, 88(2): 557–579
https://doi.org/10.1152/physrev.00026.2007 pmid: 18391173
6 Beaumont C (2010). Multiple regulatory mechanisms act in concert to control ferroportin expression and heme iron recycling by macrophages. Haematologica, 95(8): 1233–1236
https://doi.org/10.3324/haematol.2010.025585 pmid: 20675742
7 Bischoff C, Petersen H C, Graakjaer J, Andersen-Ranberg K, Vaupel J W, Bohr V A, K?lvraa S, Christensen K (2006). No association between telomere length and survival among the elderly and oldest old. Epidemiology, 17(2): 190–194
https://doi.org/10.1097/01.ede.0000199436.55248.10 pmid: 16477260
8 Brookes M J, Hughes S, Turner F E, Reynolds G, Sharma N, Ismail T, Berx G, McKie A T, Hotchin N, Anderson G J, Iqbal T, Tselepis C (2006). Modulation of iron transport proteins in human colorectal carcinogenesis. Gut, 55(10): 1449–1460
https://doi.org/10.1136/gut.2006.094060 pmid: 16641131
9 Brown K E, Meleah Mathahs M, Broadhurst K A, Coleman M C, Ridnour L A, Schmidt W N, Spitz D R (2007). Increased hepatic telomerase activity in a rat model of iron overload: a role for altered thiol redox state? Free Radic Biol Med, 42(2): 228–235
https://doi.org/10.1016/j.freeradbiomed.2006.10.039 pmid: 17189828
10 Calado R, Young N (2012). Telomeres in disease. F1000 Med Rep, 4: 8
pmid: 22500192
11 Carson J L, Adamson, J W (2010). Iron deficiency and heart disease: ironclad evidence? Hematology, 2010(1): 348–350
12 Chung M, Chan J A, Moorthy D, Hadar N, Ratichek S J, Concannon T W, Lau J (2013). In Biomarkers for Assessing and Managing Iron Deficiency Anemia in Late-Stage Chronic Kidney Disease: Future Research Needs: Identification of Future Research Needs From. Comparative Effectiveness Review No 83 (Rockville (MD)). www.effectivehealthcare.ahrq.gov/reports/final.cfm
13 Cong Y S, Wright W E, Shay J W (2002). Human telomerase and its regulation. Microbiol Mol Biol Rev, 66(3): 407–425
https://doi.org/10.1128/MMBR.66.3.407-425.2002 pmid: 12208997
14 Cosme-Blanco W, Shen M F, Lazar A J, Pathak S, Lozano G, Multani A S, Chang S (2007). Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep, 8(5): 497–503
https://doi.org/10.1038/sj.embor.7400937 pmid: 17396137
15 de Lange T (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev, 19(18): 2100–2110
https://doi.org/10.1101/gad.1346005 pmid: 16166375
16 de Lange T (2009). How telomeres solve the end-protection problem. Science, 326(5955): 948–952
https://doi.org/10.1126/science.1170633 pmid: 19965504
17 de Lange T (2010). Telomere biology and DNA repair: enemies with benefits. FEBS Lett, 584(17): 3673–3674
https://doi.org/10.1016/j.febslet.2010.07.030 pmid: 20655310
18 Denchi E L, de Lange T (2007). Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature, 448(7157): 1068–1071
https://doi.org/10.1038/nature06065 pmid: 17687332
19 Deng Z, Atanasiu C, Burg J S, Broccoli D, Lieberman P M (2003). Telomere repeat binding factors TRF1, TRF2, and hRAP1 modulate replication of Epstein-Barr virus OriP. J Virol, 77(22): 11992–12001
https://doi.org/10.1128/JVI.77.22.11992-12001.2003 pmid: 14581536
20 Deng Z, Lezina L, Chen C J, Shtivelband S, So W, Lieberman P M (2002). Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol Cell, 9(3): 493–503
https://doi.org/10.1016/S1097-2765(02)00476-8 pmid: 11931758
21 Denic S, Agarwal M M (2007). Nutritional iron deficiency: an evolutionary perspective. Nutrition, 23(7-8): 603–614
https://doi.org/10.1016/j.nut.2007.05.002 pmid: 17583479
22 Diotti R, Loayza D (2011). Shelterin complex and associated factors at human telomeres. Nucleus, 2(2): 119–135
https://doi.org/10.4161/nucl.2.2.15135 pmid: 21738835
23 Dlouhy A C, Outten C E (2013). The iron metallome in eukaryotic organisms. Metal Ions in Life Sciences12: 241–278
24 Donate L E, Blasco M A (2011). Telomeres in cancer and ageing. Philos Trans R Soc Lond B Biol Sci, 366(1561): 76–84
https://doi.org/10.1098/rstb.2010.0291 pmid: 21115533
25 Fikus M U, Mieczkowski P A, Koprowski P, Rytka J, Sledziewska-Gójska E, Ciésla Z (2000). The product of the DNA damage-inducible gene of Saccharomyces cerevisiae, DIN7, specifically functions in mitochondria. Genetics, 154(1): 73–81
pmid: 10628970
26 Fuster J J, Andrés V (2006). Telomere biology and cardiovascular disease. Circ Res, 99(11): 1167–1180
https://doi.org/10.1161/01.RES.0000251281.00845.18 pmid: 17122447
27 Fyhrquist F, Saijonmaa O, Strandberg T (2013). The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol, 10(5): 274–283
https://doi.org/10.1038/nrcardio.2013.30 pmid: 23478256
28 Ganz T (2011). Hepcidin and iron regulation, 10 years later. Blood, 117(17): 4425–4433
https://doi.org/10.1182/blood-2011-01-258467 pmid: 21346250
29 Ghio A J, Stonehuerner J G, Richards J H, Crissman K M, Roggli V L, Piantadosi C A, Carraway M S (2008). Iron homeostasis and oxidative stress in idiopathic pulmonary alveolar proteinosis: a case-control study. Respir Res, 9(1): 10
https://doi.org/10.1186/1465-9921-9-10 pmid: 18215276
30 Green N S, Mayeux R (2006). The long and short of it: telomeres and the brain. Lancet Neurol, 5(12): 999–1000
https://doi.org/10.1016/S1474-4422(06)70610-X pmid: 17110277
31 Gupta A, Sharma S, Reichenbach P, Marjavaara L, Nilsson A K, Lingner J, Chabes A, Rothstein R, Chang M (2013). Telomere length homeostasis responds to changes in intracellular dNTP pools. Genetics, 193(4): 1095–1105
https://doi.org/10.1534/genetics.112.149120 pmid: 23335335
32 Hanson E H, Imperatore G, Burke W (2001). HFE gene and hereditary hemochromatosis: a HuGE review. Human Genome Epidemiology. Am J Epidemiol, 154(3): 193–206
https://doi.org/10.1093/aje/154.3.193 pmid: 11479183
33 Hatcher H C, Singh R N, Torti F M, Torti S V (2009). Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med Chem, 1: 1643–1670
34 Heath J L, Weiss J M, Lavau C P, Wechsler D S (2013). Iron deprivation in cancer—potential therapeutic implications. Nutrients, 5(8): 2836–2859
https://doi.org/10.3390/nu5082836 pmid: 23887041
35 Herbig U, Jobling W A, Chen B P, Chen D J, Sedivy J M (2004). Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell, 14(4): 501–513
https://doi.org/10.1016/S1097-2765(04)00256-4 pmid: 15149599
36 Houben J M, Giltay E J, Rius-Ottenheim N, Hageman G J, Kromhout D (2011). Telomere length and mortality in elderly men: the Zutphen Elderly Study. J Gerontol A Biol Sci Med Sci, 66(1): 38–44
https://doi.org/10.1093/gerona/glq164 pmid: 20889650
37 Huang M, Elledge S J (1997). Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol Cell Biol, 17(10): 6105–6113
pmid: 9315670
38 Jain S, Sugawara N, Lydeard J, Vaze M, Tanguy Le Gac N, Haber J E (2009). A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes Dev, 23(3): 291–303
https://doi.org/10.1101/gad.1751209 pmid: 19204116
39 Jakupciak J P, Wang W, Barker P E, Srivastava S, Atha D H (2004). Analytical validation of telomerase activity for cancer early detection: TRAP/PCR-CE and hTERT mRNA quantification assay for high-throughput screening of tumor cells. J Mol Diagn, 6(3): 157–165
https://doi.org/10.1016/S1525-1578(10)60506-5 pmid: 15269291
40 Jian, J, Pelle E, Huang X (2009). Iron and menopause: does increased iron affect the health of postmenopausal women? Antioxidants Redox Signal, 11: 2939–2943
41 Kaplan J, McVey Ward D, Crisp R J, Philpott C C (2006). Iron-dependent metabolic remodeling in S. cerevisiae. Biochim Biophys Acta, 1763(7): 646–651
https://doi.org/10.1016/j.bbamcr.2006.03.008 pmid: 16697062
42 Kaur D, Andersen J K (2002). Ironing out Parkinson’s disease: is therapeutic treatment with iron chelators a real possibility? Aging Cell, 1(1): 17–21
https://doi.org/10.1046/j.1474-9728.2002.00001.x pmid: 12882349
43 Kawasaki Y, Sugino A (2001). Yeast replicative DNA polymerases and their role at the replication fork. Mol Cells, 12(3): 277–285
pmid: 11804324
44 Killilea D W, Wong S L, Cahaya H S, Atamna H, Ames B N (2004). Iron accumulation during cellular senescence. Ann N Y Acad Sci, 1019(1): 365–367
https://doi.org/10.1196/annals.1297.063 pmid: 15247045
45 Kim Sh S H, Kaminker P, Campisi J (2002). Telomeres, aging and cancer: in search of a happy ending. Oncogene, 21(4): 503–511
https://doi.org/10.1038/sj.onc.1205077 pmid: 11850775
46 Koziel J E, Fox M J, Steding C E, Sprouse A A, Herbert B S (2011). Medical genetics and epigenetics of telomerase. J Cell Mol Med, 15(3): 457–467
https://doi.org/10.1111/j.1582-4934.2011.01276.x pmid: 21323862
47 Kozlitina J, Garcia C K (2012). Red blood cell size is inversely associated with leukocyte telomere length in a large multi-ethnic population. PLoS ONE, 7(12): e51046
https://doi.org/10.1371/journal.pone.0051046 pmid: 23226558
48 Kremastinos D T, Farmakis D (2011). Iron overload cardiomyopathy in clinical practice. Circulation, 124(20): 2253–2263
https://doi.org/10.1161/CIRCULATIONAHA.111.050773 pmid: 22083147
49 Lamy P J, Durigova A, Jacot W (2014). Iron homeostasis and anemia markers in early breast cancer: Iron and breast cancer. Clin Chim acta, 434: 34–40
50 Lawen A, Lane D J (2013). Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxid Redox Signal, 18: 2473–2507
51 Le Guen T, Jullien L, Touzot F, Schertzer M, Gaillard L, Perderiset M, Carpentier W, Nitschke P, Picard C, Couillault G, Soulier J, Fischer A, Callebaut I, Jabado N, Londono-Vallejo A, de Villartay J P, Revy P (2013). Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability. Hum Mol Genet, 22(16): 3239–3249
https://doi.org/10.1093/hmg/ddt178 pmid: 23591994
52 Li H, Mapolelo D T, Dingra N N, Naik S G, Lees N S, Hoffman B M, Riggs-Gelasco P J, Huynh B H, Johnson M K, Outten C E (2009). The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry, 48(40): 9569–9581
https://doi.org/10.1021/bi901182w pmid: 19715344
53 Lill R (2009). Function and biogenesis of iron-sulphur proteins. Nature, 460(7257): 831–838
https://doi.org/10.1038/nature08301 pmid: 19675643
54 Lis E T, O’Neill B M, Gil-Lamaignere C, Chin J K, Romesberg F E (2008). Identification of pathways controlling DNA damage induced mutation in Saccharomyces cerevisiae. DNA Repair (Amst), 7(5): 801–810
https://doi.org/10.1016/j.dnarep.2008.02.007 pmid: 18400565
55 Liu L, Berletch J B, Green J G, Pate M S, Andrews L G, Tollefsbol T O (2004). Telomerase inhibition by retinoids precedes cytodifferentiation of leukemia cells and may contribute to terminal differentiation. Mol Cancer Ther, 3(8): 1003–1009
pmid: 15299083
56 Ludlow A T, Ludlow L W, Roth S M (2013). Do telomeres adapt to physiological stress? Exploring the effect of exercise on telomere length and telomere-related proteins. Biomed Res Int, 2013: 601368
58 Ma H, Zhou Z, Wei S, Liu Z, Pooley K A, Dunning A M, Svenson U, Roos G, Hosgood H D 3rd, Shen M, Wei Q (2011). Shortened telomere length is associated with increased risk of cancer: a meta-analysis. PLoS ONE, 6(6): e20466
https://doi.org/10.1371/journal.pone.0020466 pmid: 21695195
59 Mainous A G 3rd, Wright R U, Hulihan M M, Twal W O, McLaren C E, Diaz V A, McLaren G D, Argraves W S, Grant A M (2013). Telomere length and elevated iron: the influence of phenotype and HFE genotype. Am J Hematol, 88(6): 492–496
https://doi.org/10.1002/ajh.23438 pmid: 23512844
60 Marques O, da Silva B M, Porto G, Lopes C (2014). Iron homeostasis in breast cancer. Cancer Lett, 347(1): 1–14
https://doi.org/10.1016/j.canlet.2014.01.029 pmid: 24486738
61 Martínez P, Blasco M A (2011). Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer, 11(3): 161–176
https://doi.org/10.1038/nrc3025 pmid: 21346783
62 Miller J L (2013). Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect Med, 3(7). pii: a011866
63 Moslehi J, DePinho R A, Sahin E (2012). Telomeres and mitochondria in the aging heart. Circ Res, 110(9): 1226–1237
https://doi.org/10.1161/CIRCRESAHA.111.246868 pmid: 22539756
64 Mourkioti F, Kustan J, Kraft P, Day J W, Zhao M M, Kost-Alimova M, Protopopov A, DePinho R A, Bernstein D, Meeker A K, Blau H M (2013). Role of telomere dysfunction in cardiac failure in Duchenne muscular dystrophy. Nat Cell Biol, 15(8): 895–904
https://doi.org/10.1038/ncb2790 pmid: 23831727
65 Neumann A A, Watson C M, Noble J R, Pickett H A, Tam P P, Reddel R R (2013). Alternative lengthening of telomeres in normal mammalian somatic cells. Genes Dev, 27(1): 18–23
https://doi.org/10.1101/gad.205062.112 pmid: 23307865
66 Njajou O T, Hsueh W C, Blackburn E H, Newman A B, Wu S H, Li R, Simonsick E M, Harris T M, Cummings S R, Cawthon R M, the Health ABC study (2009). Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study. J Gerontol A Biol Sci Med Sci, 64(8): 860–864
https://doi.org/10.1093/gerona/glp061 pmid: 19435951
67 Nordlund P, Reichard P (2006). Ribonucleotide reductases. Annu Rev Biochem, 75(1): 681–706
https://doi.org/10.1146/annurev.biochem.75.103004.142443 pmid: 16756507
68 Oh H, Wang S C, Prahash A, Sano M, Moravec C S, Taffet G E, Michael L H, Youker K A, Entman M L, Schneider M D (2003). Telomere attrition and Chk2 activation in human heart failure. Proc Natl Acad Sci USA, 100(9): 5378–5383
https://doi.org/10.1073/pnas.0836098100 pmid: 12702777
69 Ohya T, Kawasaki Y, Hiraga S, Kanbara S, Nakajo K, Nakashima N, Suzuki A, Sugino A (2002). The DNA polymerase domain of pol(epsilon) is required for rapid, efficient, and highly accurate chromosomal DNA replication, telomere length maintenance, and normal cell senescence in Saccharomyces cerevisiae. J Biol Chem, 277(31): 28099–28108
https://doi.org/10.1074/jbc.M111573200 pmid: 12015307
70 Oliveira L, Drapier J C (2000). Down-regulation of iron regulatory protein 1 gene expression by nitric oxide. Proc Natl Acad Sci USA, 97(12): 6550–6555
https://doi.org/10.1073/pnas.120571797 pmid: 10823926
71 Orrenius S, Nicotera P, Zhivotovsky B (2011). Cell death mechanisms and their implications in toxicology. Toxicol Sci, 119: 3–19
72 Palm W, de Lange T (2008). How shelterin protects mammalian telomeres. Annu Rev Genet, 42(1): 301–334
https://doi.org/10.1146/annurev.genet.41.110306.130350 pmid: 18680434
73 Pantopoulos K (2004). Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci, 1012(1): 1–13
https://doi.org/10.1196/annals.1306.001 pmid: 15105251
74 Pantopoulos K, Porwal S K, Tartakoff A, Devireddy L (2012). Mechanisms of mammalian iron homeostasis. Biochemistry, 51(29): 5705–5724
https://doi.org/10.1021/bi300752r pmid: 22703180
75 Ponka P (1997). Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood, 89(1): 1–25
pmid: 8978272
76 Pouillot A, Polla A, Polla B S (2013). Iron and iron chelators: a review on potential effects on skin aging. Curr Aging Sci, 6: 225–231
77 Rehkopf D H, Dow W H, Rosero-Bixby L, Lin J, Epel E S, Blackburn E H (2013). Longer leukocyte telomere length in Costa Rica’s Nicoya Peninsula: a population-based study. Exp Gerontol, 48(11): 1266–1273
https://doi.org/10.1016/j.exger.2013.08.005 pmid: 23988653
78 Ritchie K B, Mallory J C, Petes T D (1999). Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Mol Cell Biol, 19(9): 6065–6075
pmid: 10454554
79 Romero A, Ramos E, de Los Ríos C, Egea J, Del Pino J, Reiter R J (2014). A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res, 56(4): 343–370
https://doi.org/10.1111/jpi.12132 pmid: 24628077
80 Rouault T, Klausner R (1997). Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul, 35: 1–19
https://doi.org/10.1016/S0070-2137(97)80001-5 pmid: 9192174
81 Sanvisens N, Ba?ó M C, Huang M, Puig S (2011). Regulation of ribonucleotide reductase in response to iron deficiency. Mol Cell, 44(5): 759–769
https://doi.org/10.1016/j.molcel.2011.09.021 pmid: 22152479
82 Serrano A L, Andrés V (2004). Telomeres and cardiovascular disease: does size matter? Circ Res, 94(5): 575–584
https://doi.org/10.1161/01.RES.0000122141.18795.9C pmid: 15031270
84 Shay J W, Zou Y, Hiyama E, Wright W E (2001). Telomerase and cancer. Hum Mol Genet, 10(7): 677–685
https://doi.org/10.1093/hmg/10.7.677 pmid: 11257099
85 Simonet T, Zaragosi L E, Philippe C, Lebrigand K, Schouteden C, Augereau A, Bauwens S, Ye J, Santagostino M, Giulotto E, Magdinier F, Horard B, Barbry P, Waldmann R, Gilson E (2011). The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats. Cell Res, 21(7): 1028–1038
https://doi.org/10.1038/cr.2011.40 pmid: 21423270
87 Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer M R, Schnapp G, de Lange T (2000). Control of human telomere length by TRF1 and TRF2. Mol Cell Biol, 20(5): 1659–1668
https://doi.org/10.1128/MCB.20.5.1659-1668.2000 pmid: 10669743
88 Soe-Lin S, Apte S S, Andriopoulos B Jr, Andrews M C, Schranzhofer M, Kahawita T, Garcia-Santos D, Ponka P (2009). Nramp1 promotes efficient macrophage recycling of iron following erythrophagocytosis in vivo. Proc Natl Acad Sci USA, 106(14): 5960–5965
https://doi.org/10.1073/pnas.0900808106 pmid: 19321419
89 Sun J, Yang Y, Wan K, Mao N, Yu T Y, Lin Y C, DeZwaan D C, Freeman B C, Lin J J, Lue N F, Lei M (2011). Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase α. Cell Res, 21(2): 258–274
https://doi.org/10.1038/cr.2010.138 pmid: 20877309
90 Takata H, Kanoh Y, Gunge N, Shirahige K, Matsuura A (2004). Reciprocal association of the budding yeast ATM-related proteins Tel1 and Mec1 with telomeres in vivo. Mol Cell, 14(4): 515–522
https://doi.org/10.1016/S1097-2765(04)00262-X pmid: 15149600
91 Takata H, Tanaka Y, Matsuura A (2005). Late S phase-specific recruitment of Mre11 complex triggers hierarchical assembly of telomere replication proteins in Saccharomyces cerevisiae. Mol Cell, 17(4): 573–583
https://doi.org/10.1016/j.molcel.2005.01.014 pmid: 15721260
92 Tang D, Kang R, Zeh H J 3rd, Lotze M T (2011). High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal, 14: 1315–1335
93 Tang Y D, Katz S D (2006). Anemia in chronic heart failure: prevalence, etiology, clinical correlates, and treatment options. Circulation, 113(20): 2454–2461
https://doi.org/10.1161/CIRCULATIONAHA.105.583666 pmid: 16717164
94 Torti S V, Torti F M (2013). Iron and cancer: more ore to be mined. Nat Rev Cancer, 13(5): 342–355
https://doi.org/10.1038/nrc3495 pmid: 23594855
95 Turrens J F (2003). Mitochondrial formation of reactive oxygen species. J Physiol, 552(Pt 2): 335–344
https://doi.org/10.1113/jphysiol.2003.049478 pmid: 14561818
96 Uringa E J, Youds J L, Lisaingo K, Lansdorp P M, Boulton S J (2011). RTEL1: an essential helicase for telomere maintenance and the regulation of homologous recombination. Nucleic Acids Res, 39(5): 1647–1655
https://doi.org/10.1093/nar/gkq1045 pmid: 21097466
97 van der Harst P, van Veldhuisen D J, Samani N J (2008). Expanding the concept of telomere dysfunction in cardiovascular disease. Arterioscler Thromb Vasc Biol, 28(5): 807–808
https://doi.org/10.1161/ATVBAHA.108.164434 pmid: 18421006
98 van Steensel B, de Lange T (1997). Control of telomere length by the human telomeric protein TRF1. Nature, 385(6618): 740–743
https://doi.org/10.1038/385740a0 pmid: 9034193
99 Vespa L, Couvillion M, Spangler E, Shippen D E (2005). ATM and ATR make distinct contributions to chromosome end protection and the maintenance of telomeric DNA in Arabidopsis. Genes Dev, 19(18): 2111–2115
https://doi.org/10.1101/gad.1333805 pmid: 16166376
100 Wang W, Deng Z, Hatcher H, Miller L D, Di X, Tesfay L, Sui G, D’Agostino R B Jr, Torti F M, Torti S V (2014). IRP2 regulates breast tumor growth. Cancer Res, 74(2): 497–507
https://doi.org/10.1158/0008-5472.CAN-13-1224 pmid: 24285726
101 Watson J M, Shippen D E (2007). Telomere rapid deletion regulates telomere length in Arabidopsis thaliana. Mol Cell Biol, 27(5): 1706–1715
https://doi.org/10.1128/MCB.02059-06 pmid: 17189431
102 White M F, Dillingham M S (2012). Iron-sulphur clusters in nucleic acid processing enzymes. Curr Opin Struct Biol, 22(1): 94–100
https://doi.org/10.1016/j.sbi.2011.11.004 pmid: 22169085
103 Wong L S, de Boer R A, Samani N J, van Veldhuisen D J, van der Harst P (2008). Telomere biology in heart failure. Eur J Heart Fail, 10(11): 1049–1056
https://doi.org/10.1016/j.ejheart.2008.08.007 pmid: 18815070
104 Xin Z T, Beauchamp A D, Calado R T, Bradford J W, Regal J A, Shenoy A, Liang Y, Lansdorp P M, Young N S, Ly H (2007). Functional characterization of natural telomerase mutations found in patients with hematologic disorders. Blood, 109(2): 524–532
https://doi.org/10.1182/blood-2006-07-035089 pmid: 16990594
105 Ye H, Rouault T A (2010). Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry, 49(24): 4945–4956
https://doi.org/10.1021/bi1004798 pmid: 20481466
106 Zavlaris M, Angelopoulou K, Vlemmas I, Papaioannou N (2009). Telomerase reverse transcriptase (TERT) expression in canine mammary tissues: a specific marker for malignancy? Anticancer Res, 29(1): 319–325
pmid: 19331168
107 Zhang A S (2010). Control of systemic iron homeostasis by the hemojuvelin-hepcidin axis. Adv Nutr, 1: 38–45
108 Zhang C (2014). Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell, doi: 10.1007/s13238-014-0083-7
109 Zhang Y, Lyver E R, Nakamaru-Ogiso E, Yoon H, Amutha B, Lee D W, Bi E, Ohnishi T, Daldal F, Pain D, Dancis A (2008). Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis. Mol Cell Biol, 28(18): 5569–5582
https://doi.org/10.1128/MCB.00642-08 pmid: 18625724
110 Zhu Z, Wilson A T, Gopalakrishna K, Brown K E, Luxon B A, Schmidt W N (2010). Hepatitis C virus core protein enhances telomerase activity in Huh7 cells. J Med Virol, 82(2): 239–248
https://doi.org/10.1002/jmv.21644 pmid: 20029802
111 Stehling Q, Vashisht A A, Mascarenhas J, Jonsson Z Q, Sharma T, Netz D J, Pierik A J, Wohlschlegel J A, LillR (2012). MMS19 assembles iron-sulfur protein required for DNA metabolism and genomic integrity. Science, 337: 195–199
[1] Vivek Vishnu Anasa, Palaniyandi Ravanan, Priti Talwar. Multifaceted roles of ASB proteins and its pathological significance[J]. Front. Biol., 2018, 13(5): 376-388.
[2] Dingcheng Gao, Vivek Mittal, Yi Ban, Ana Rita Lourenco, Shira Yomtoubian, Sharrell Lee. Metastatic tumor cells – genotypes and phenotypes[J]. Front. Biol., 2018, 13(4): 277-286.
[3] Soumya Nair, Sandra Suresh, Arya Kaniyassery, Panchami Jaya, Jayanthi Abraham. A review on melatonin action as therapeutic agent in cancer[J]. Front. Biol., 2018, 13(3): 180-189.
[4] Muhammad Naveed, Mohammad Raees, Irfan Liaqat, Mohammad Kashif. Clastogenic ROS and biophotonics in precancerous diagnosis[J]. Front. Biol., 2018, 13(2): 103-122.
[5] D. Brooke Widner, D. Clark Files, Kathryn E. Weaver, Yusuke Shiozawa. Preclinical and clinical studies on cancer-associated cachexia[J]. Front. Biol., 2018, 13(1): 11-18.
[6] Razia Rahman, Lokesh Kumar Gahlot, Yasha Hasija. miRACA: A database for miRNAs associated with cancers and age related disorders (ARD)[J]. Front. Biol., 2018, 13(1): 36-50.
[7] Amir Abdoli. High salt and fat intake, inflammation, and risk of cancer[J]. Front. Biol., 2017, 12(6): 387-391.
[8] Shipeng Shao, Lei Chang, Yingping Hou, Yujie Sun. Illuminating the structure and dynamics of chromatin by fluorescence labeling[J]. Front. Biol., 2017, 12(4): 241-257.
[9] Pang-Kuo Lo,Benjamin Wolfson,Qun Zhou. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1[J]. Front. Biol., 2016, 11(6): 413-426.
[10] Sahar Al Seesi,Alok Das Mohapatra,Arpita Pawashe,Ion I. Mandoiu,Fei Duan. Finding neoepitopes in mouse models of personalized cancer immunotherapy[J]. Front. Biol., 2016, 11(5): 366-375.
[11] Richard König,Bruno Benedetti,Peter Rotheneichner,Anna O′ Sullivan,Christina Kreutzer,Maria Belles,Juan Nacher,Thomas M. Weiger,Ludwig Aigner,Sébastien Couillard-Després. Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity?[J]. Front. Biol., 2016, 11(3): 193-213.
[12] Chenglong Yu,Min Zhang,Xianan Qin,Xiaofeng Yang,Hyokeun Park. Real-time imaging of single synaptic vesicles in live neurons[J]. Front. Biol., 2016, 11(2): 109-118.
[13] Vadim V. Davydov,Evgenya R. Grabovetskaya,Amjad Hamdallah. Age-dependent peculiarities modulation of activity of aldehyde scavenger enzymes in mitochondria of rat thigh muscle during stress[J]. Front. Biol., 2016, 11(1): 28-31.
[14] B. Preethi,V. Shanthi,K. Ramanathan. Reckoning the SIX1 mutation’s effects in branchio-oto-renal syndrome — A bioinformatics approach[J]. Front. Biol., 2015, 10(5): 448-457.
[15] Gahana Advani,Anderly C. Chueh,Ya Chee Lim,Amardeep Dhillon,Heung-Chin Cheng. Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression[J]. Front. Biol., 2015, 10(3): 195-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed