Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2018, Vol. 13 Issue (4) : 277-286    https://doi.org/10.1007/s11515-018-1513-3
REVIEW
Metastatic tumor cells – genotypes and phenotypes
Dingcheng Gao(), Vivek Mittal, Yi Ban, Ana Rita Lourenco, Shira Yomtoubian, Sharrell Lee
Department of Cardiothoracic Surgery, Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY10065, USA
 Download: PDF(238 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Metastasis is the primary cause of mortality in cancer patients. Therefore, elucidating the genetics and epigenetics of metastatic tumor cells and the mechanisms by which tumor cells acquire metastatic properties constitute significant challenges in cancer research.

OBJECTIVE: To summarize the current understandings of the specific genotype and phenotype of the metastatic tumor cells.

METHOD and RESULT: In-depth genetic analysis of tumor cells, especially with advances in the next-generation sequencing, have revealed insights of the genotypes of metastatic tumor cells. Also, studies have shown that the cancer stem cell (CSC) and epithelial to mesenchymal transition (EMT) phenotypes are associated with the metastatic cascade.

CONCLUSION: In this review, we will discuss recent advances in the field by focusing on the genomic instability and phenotypic dynamics of metastatic tumor cells.

Keywords metastasis      epithelial to mesenchymal transition (EMT)      cancer stem cell      circulating tumor cells      cellular plasticity      phenotype dynamics     
Corresponding Author(s): Dingcheng Gao   
Online First Date: 20 August 2018    Issue Date: 10 September 2018
 Cite this article:   
Dingcheng Gao,Vivek Mittal,Yi Ban, et al. Metastatic tumor cells – genotypes and phenotypes[J]. Front. Biol., 2018, 13(4): 277-286.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-018-1513-3
https://academic.hep.com.cn/fib/EN/Y2018/V13/I4/277
Fig.1  The genotypic and phenotypic properties that define the metastatic tumor cells. The specific features of metastatic tumor cells could be defined on genomic and phenotypic levels. Both germline and somatic alterations including SNVs, CNAs, chromosome rearrangement and epigenetic modulations would lead to changes in the transcriptome of metastatic tumor cells. These genomic changes would not only serve as evolution markers in metastasis, but also manifest functions of cell proliferation, migration, invasion, anti-apoptosis and stemness that would be closely related to the CSC and EMT phenotypes.
Fig.2  The genotypic instability and phenotype dynamics of the metastatic tumor cells. A, Metastases could be derived from multiple subclones of the primary tumor cells. Genomic studies reveal a complicated phylogenetic relationship between the primary tumor and metastasis. Similar driving mutations and genetic alterations are shared between them, while additional passenger mutations are also detected in the metastases due to the genomic instability feature. B, The phenotype features of metastatic tumor cells could be transient, reversible between mesenchymal/stem like (Mes/CSC) and epithelial/non-stem like (Epi/non-CSC), and highly affected by microenvironment factors. It might not be the genotype or phenotype itself, but the genomic instability and phenotypic plasticity that determines the eventual survival of metastatic tumor cells.
1 Aceto N, Bardia A, Miyamoto D T, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H(2014). Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 158:1110–1122
2 Al-Hajj M, Wicha M S, Benito-Hernandez A, Morrison S J, Clarke M F (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 100:3983–3988
3 Boral D, Vishnoi M, Liu H N, Yin W, Sprouse M L, Scamardo A, Hong D S, Tan T Z, Thiery J P, Chang J C (2017). Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat Commun, 8:196
4 Bos PD, Zhang X H F, Nadal C, Shu W, Gomis R R, Nguyen D X, Minn A J, Van de Vijver M, Gerald W, Foekens J A, Massagué J( 2009). Genes that mediate breast cancer metastasis to the brain. Nature, 459:1005–1009
5 Brabletz T 2012. To differentiate or not–routes towards metastasis. In: Nat Rev Cancer. England. p. 425–436.
6 Brastianos P K, Carter S L, Santagata S, Cahill D P, Taylor-Weiner A, Jones R T, Van Allen E M, Lawrence M S, Horowitz P M, Cibulskis K (2015). Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discov, 5:1164–1177
7 Cabrera M C, Hollingsworth R E, Hurt E M (2015). Cancer stem cell plasticity and tumor hierarchy. World J Stem Cells, 7:27–36
8 Campbell P J, Yachida S, Mudie L J, Stephens P J, Pleasance E D, Stebbings L A, Morsberger L A, Latimer C, McLaren S, Lin M L (2010). The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 467:1109–1113
9 Carmody L, Germain A, Morgan B, VerPlank L, Fernandez C, Forbeck E, Ting A, Feng Y, Perez J, Dandapani S (2010). Identification of a Selective Small-Molecule Inhibitor of Breast Cancer Stem Cells- Probe 1. In: Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD): National Center for Biotechnology Information (US).
10 Chaffer C L, Marjanovic N D, Lee T, Bell G, Kleer C G, Reinhardt F, D'Alessio A C, Young R A, Weinberg R A (2013). Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell, 154:61–74
11 Chen D, Wu M, Li Y, Chang I, Yuan Q, Ekimyan-Salvo M, Deng P, Yu B, Yu Y, Dong J (2017). Targeting BMI1(+) Cancer Stem Cells Overcomes Chemoresistance and Inhibits Metastases in Squamous Cell Carcinoma. Cell Stem Cell, 20:621–634
12 Chiou SH, Risca VI, Wang GX, Yang D, Gruner BM, Kathiria AS, Ma RK, Vaka D, Chu P, Kozak M (2017). BLIMP1 Induces Transient Metastatic Heterogeneity in Pancreatic Cancer. Cancer Discov, 7:1184–1199
13 Chuang C H, Greenside P G, Rogers Z N, Brady J J, Yang D, Ma R K, Caswell D R, Chiou S H, Winters A F, Gruner B M (2017). Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis. Nat Med, 23:291–300
14 Chui M H (2013). Insights into cancer metastasis from a clinicopathologic perspective: Epithelial-Mesenchymal Transition is not a necessary step. Int J Cancer, 132:1487–1495
15 Davis F M, Stewart T A, Thompson E W, Monteith G R (2014). Targeting EMT in cancer: opportunities for pharmacological intervention. Trends Pharmacol Sci, 35: 479–488
16 de Sousa e Melo F, Kurtova A V, Harnoss J M, Kljavin N, Hoeck J D, Hung J, Anderson J E, Storm E E, Modrusan Z, Koeppen H (2017). A distinct role for Lgr5(+) stem cells in primary and metastatic colon cancer. Nature, 543:676–680
17 Dragu D L, Necula L G, Bleotu C, Diaconu C C, Chivu-Economescu M (2015). Therapies targeting cancer stem cells: Current trends and future challenges. World J Stem Cells, 7:1185–1201
18 DuPage M, Dooley A L, Jacks T (2009). Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc, 4(7): 1064–1072
https://doi.org/10.1038/nprot.2009.95 pmid: 19561589
19 Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J (2015). Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. Nov 26;527:472–476. Epub 2015/11/13.
20 Fishbein L, Leshchiner I, Walter V, Danilova L, Robertson A G, Johnson A R, Lichtenberg T M, Murray B A, Ghayee H K, Else T(2017). Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell, 31:181–193
21 Fraser M, Sabelnykova V Y, Yamaguchi T N, Heisler L E, Livingstone J, Huang V, Shiah Y J, Yousif F, Lin X, Masella A P(2017). Genomic hallmarks of localized, non-indolent prostate cancer. Nature, 541: 359–364
22 George J T, Jolly M K, Xu S, Somarelli J A, Levine H (2017). Survival Outcomes in Cancer Patients Predicted by a Partial EMT Gene Expression Scoring Metric. Cancer Res, 77: 6415–6428
23 Giannelli G, Villa E, Lahn M (2014). Transforming growth factor-beta as a therapeutic target in hepatocellular carcinoma. Cancer Res, 74:1890–1894
24 Goossens N, Hoshida Y, Aguirre-Ghiso J A(2015). Origin and interpretation of cancer transcriptome profiling: the essential role of the stroma in determining prognosis and drug resistance. EMBO Mol Med, 7:1385–1387
25 Grigore A D, Jolly M K, Jia D, Farach-Carson M C, Levine H (2016). Tumor Budding: The Name is EMT. Partial EMT. J Clin Med, 29:5
26 Gupta P B, Chaffer C L, Weinberg R A (2009). Cancer stem cells: mirage or reality? Nat Med, 15:1010–1012
27 Gupta P B, Onder T T, Jiang G, Tao K, Kuperwasser C, Weinberg R A, Lander E S (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 138:645–659
28 Hecht I, Natan S, Zaritsky A, Levine H, Tsarfaty I, Ben-Jacob E(2015). The motility-proliferation-metabolism interplay during metastatic invasion. Sci Rep, 5:13538
29 Hoadley K A, Siegel M B, Kanchi K L, Miller C A, Ding L, Zhao W, He X, Parker J S, Wendl M C, Fulton R S(2016). Tumor Evolution in Two Patients with Basal-like Breast Cancer: A Retrospective Genomics Study of Multiple Metastases. PLoS Med, e1002174
30 Jaggupilli A, Elkord E (2012). Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol, 2012: 708036
https://doi.org/10.1155/2012/708036 pmid: 22693526
31 Kalluri R, Weinberg R A (2009). The basics of epithelial-mesenchymal transition. J Clin Invest, 119:1420–1428
32 Kang Y, Siegel P M, Shu W, Drobnjak M, Kakonen S M, Cordon-Cardo C, Guise T A, Massague J (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3:537–549
33 Ku S Y, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich Z W, Goodrich M M, Labbe D P, Gomez E C, Wang J, Long H W, Xu B, Brown M, Loda M, Sawyers C L, Ellis L, Goodrich D W (2017). Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science, 355:78–83
34 Labib M, Mohamadi R M, Poudineh M, Ahmed S U, Ivanov I, Huang C L, Moosavi M, Sargent E H, Kelley S O (2018). Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping. Nat Chem, 10:489–495
35 Lambert A W, Pattabiraman D R, Weinberg R A (2017). Emerging Biological Principles of Metastasis. Cell, 168:670–691
36 Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri M A, Dick J E (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367:645–648
37 Lawson D A, Bhakta N R, Kessenbrock K, Prummel K D, Yu Y, Takai K, Zhou A, Eyob H, Balakrishnan S, Wang C Y, Yaswen P, Goga A, Werb Z (2015). Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature, 526:131–135
38 Lim J, Thiery J P 2012. Epithelial-mesenchymal transitions: insights from development. In: Development. England. p. 3471–3486.
39 Liu H, Patel M R, Prescher J A, Patsialou A, Qian D, Lin J, Wen S, Chang Y F, Bachmann M H, Shimono Y, Dalerba P, Adorno M, Lobo N, Bueno J, Dirbas F M, Goswami S, Somlo G, Condeelis J, Contag C H, Gambhir S S, Clarke M F (2010). Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A, 107:18115–18120
40 Liu Y, Cao X (2016). Characteristics and Significance of the Pre-metastatic Niche. Cancer Cell, 30:668–681
41 Luzzi K J, MacDonald I C, Schmidt E E, Kerkvliet N, Morris V L, Chambers A F, Groom A C (1998). Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol. 153:865–873
42 Magnani L, Frige G, Gadaleta R M, Corleone G, Fabris S, Kempe H, Verschure P J, Barozzi I, Vircillo V, Hong S P, Perone Y, Saini M, Trumpp A, Viale G, Neri A, Ali S, Colleoni M A, Pruneri G, Minucci S (2017). Acquired CYP19A1 amplification is an early specific mechanism of aromatase inhibitor resistance in ERalpha metastatic breast cancer. Nat Genet,49:444–450
43 Makohon-Moore A, Iacobuzio-Donahue C A (2016). Pancreatic cancer biology and genetics from an evolutionary perspective. Nat Rev Cancer,16:553–565
44 Makohon-Moore A P, Zhang M, Reiter J G, Bozic I, Allen B, Kundu D, Chatterjee K, Wong F, Jiao Y, Kohutek Z A, Hong J, Attiyeh M, Javier B, Wood L D, Hruban R H, Nowak M A, Papadopoulos N, Kinzler K W, Vogelstein B, Iacobuzio-Donahue C A (2017). Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat Genet, 49:358–366
45 Mani S A, Guo W, Liao M J, Eaton E N, Ayyanan A, Zhou A Y, Brooks M, Reinhard F, Zhang C C, Shipitsin M, Campbell L L, Polyak K, Brisken C, Yang J, Weinberg R A (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133:704–715
46 Martinez-Cardus A, Moran S, Musulen E, Moutinho C, Manzano J L, Martinez-Balibrea E, Tierno M, Elez E, Landolfi S, Lorden P, Arribas C, Müller F, Bock C, Tabernero J, Esteller M (2016). Epigenetic homogeneity within colorectal tumors predicts shorter relapse-free and overall survival times for patients with locoregional cancer. Gastroenterology, 151:961–972
47 McCauley HA, Chevrier V, Birnbaum D, Guasch G (2017). De-repression of the RAC activator ELMO1 in cancer stem cells drives progression of TGFbeta-deficient squamous cell carcinoma from transition zones. Elife, 21:6
48 McDonald O G, Li X, Saunders T, Tryggvadottir R, Mentch S J, Warmoes M O, Word A E, Carrer A, Salz T H, Natsume S, Stauffer K M, Makohon-Moore A, Zhong Y, Wu H, Wellen K E, Locasale J W, Iacobuzio-Donahue C A, Feinberg A P (2017). Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat Genet, 49:367–376
49 Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massagué J ( 2005). Genes that mediate breast cancer metastasis to lung. Nature, 436:518–524.
50 Nagare R P, Sneha S, Priya S K, Ganesan T S (2017). Cancer Stem Cells- Are Surface Markers Alone Sufficient? Curr Stem Cell Res Ther, 12(1): 37–44
https://doi.org/10.2174/1574888X11666160607211436 pmid: 27280437
51 Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie W R, Hicks J, Wigler M (2011). Tumour evolution inferred by single-cell sequencing. Nature, 472:90–94
52 Navin N E (2015). The first five years of single-cell cancer genomics and beyond. Genome Res, 25:1499–1507
53 Nguyen D X, Massague J (2007). Genetic determinants of cancer metastasis. Nat Rev Genet, 8:341–352
54 Olsen S N, Wronski A, Castano Z, Dake B, Malone C, De Raedt T, Enos M, DeRose YS, Zhou W, Guerra S, Loda M, Welm A, Partridge A H, McAllister S S, Kuperwasser C, Cichowski K (2017). Loss of RasGAP tumor suppressors underlies the aggressive nature of luminal b breast cancers. Cancer Discov, 7:202–217
55 Patel A P, Tirosh I, Trombetta J J, Shalek A K, Gillespie S M, Wakimoto H, Cahill D P, Nahed B V, Curry W T, Martuza R L, Louis D N, Rozenblatt-Rosen O, Suvà M L, Regev A, Bernstein B E (2014). Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 344:1396–1401
56 Patel S A, Vanharanta S (2016). Epigenetic determinants of metastasis. Mol Oncol, 11(1): 79–96
57 Peitzsch C, Tyutyunnykova A, Pantel K, Dubrovska A (2017). Cancer stem cells: The root of tumor recurrence and metastases. Semin Cancer Biol, 44(Feb): 10–24
https://doi.org/10.1016/j.semcancer.2017.02.011 pmid: 28257956
58 Pon J R, Marra M A (2015). Driver and passenger mutations in cancer. Annu Rev Pathol, 10(1): 25–50
https://doi.org/10.1146/annurev-pathol-012414-040312 pmid: 25340638
59 Poudineh M, Aldridge P M, Ahmed S, Green B J, Kermanshah L, Nguyen V, Tu C, Mohamadi R M, Nam R K, Hansen A (2017). Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat Nanotechnol, 12:274–281
60 Puram S V, Tirosh I, Parikh A S, Patel A P, Yizhak K, Gillespie S, Rodman C, Luo C L, Mroz E A, Emerick K S (2017). Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell, 171:1611–1624
61 Rinaldi L, Avgustinova A, Martin M, Datta D, Solanas G, Prats N, Benitah S A (2017). Loss of Dnmt3a and Dnmt3b does not affect epidermal homeostasis but promotes squamous transformation through PPAR-gamma. Elife, 20:6
62 Robinson D R, Wu Y M, Lonigro R J, Vats P, Cobain E, Everett J, Cao X, Rabban E, Kumar-Sinha C, Raymond V (2017). Integrative clinical genomics of metastatic cancer. Nature, 548: 297–303
63 Rodon J, Carducci M A, Sepulveda-Sanchez J M, Azaro A, Calvo E, Seoane J, Brana I, Sicart E, Gueorguieva I, Cleverly A L(2015). First-in-human dose study of the novel transforming growth factor-beta receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin Cancer Res, 21:553–560
64 Roe J S, Hwang C I, Somerville T D D, Milazzo J P, Lee E J, Da Silva B, Maiorino L, Tiriac H, Young C M, Miyabayashi K (2017). Enhancer reprogramming promotes pancreatic cancer metastasis. Cell, 170:875–888
65 Shackleton M, Quintana E, Fearon E R, Morrison S J (2009). Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell, 138:822–829
66 Sheffield N C, Pierron G, Klughammer J, Datlinger P, Schonegger A, Schuster M, Hadler J, Surdez D, Guillemot D, Lapouble E (2017). DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma. Nat Med, 23:386–395
67 Sinkala E, Sollier-Christen E, Renier C, Rosas-Canyelles E, Che J, Heirich K, Duncombe T A, Vlassakis J, Yamauchi K A, Huang H ( 2017) . Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat Commun, 8:14622
68 Tan TZ, Miow Q H, Miki Y, Noda T, Mori S, Huang R Y, Thiery J P (2014). Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med, 6:1279–1293
69 Thiery J P, Acloque H, Huang R Y, Nieto M A (2009). Epithelial-mesenchymal transitions in development and disease. In: Cell. United States. p. 871–890.
70 Tran H D, Luitel K, Kim M, Zhang K, Longmore G D, Tran D D (2014). Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res, 74:6330–6340
71 Tsai J H, Donaher J L, Murphy D A, Chau S, Yang J (2012). Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell, 22:725–736
72 Valastyan S, Weinberg R A (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147:275–292
73 Wishart D S (2015). Is Cancer a Genetic Disease or a Metabolic Disease? In: EBioMedicine. p. 478–479.
74 Yates L R, Knappskog S, Wedge D, Farmery J H R, Gonzalez S, Martincorena I, Alexandrov L B, Van Loo P, Haugland H K, Lilleng P K, ( 2017). Genomic Evolution of Breast Cancer Metastasis and Relapse. Cancer Cell, 32:169–184.e167
75 Ye X, Brabletz T, Kang Y, Longmore G D, Nieto M A, Stanger B Z, Yang J, Weinberg R A (2017). Upholding a role for EMT in breast cancer metastasis. Nature, 547:E1–e3
76 Ye X, Tam W L, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E, Weinberg R A (2015). Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature, 525: 256–260. Epub 2015/09/04.
77 Yeung KT, Yang J. 2017. Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol, 11:28–39
78 Yu M, Bardia A, Wittner B S, Stott S L, Smas M E, Ting D T, Isakoff S J, Ciciliano J C, Wells M N, Shah A M (2013). Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science, 339:580–584
79 Zehir A, Benayed R, Shah R H, Syed A, Middha S, Kim H R, Srinivasan P, Gao J, Chakravarty D, Devlin SM (2017). Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med, 23:703–713
80 Zheng X, Carstens J L, Kim J, Scheible M, Kaye J, Sugimoto H, Wu C C, LeBleu V S, Kalluri R (2015). Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature, 527:525–530
81 Zhu S, Zhang X, Weichert-Leahey N, Dong Z, Zhang C, Lopez G, Tao T, He S, Wood A C, Oldridge D (2017). LMO1 Synergizes with MYCN to Promote Neuroblastoma Initiation and Metastasis. Cancer Cell, 32:310–323.e315
[1] Yanan Sun,Jie Yang,Zhenyi Ma. Functions of the adaptor protein p66Shc in solid tumors[J]. Front. Biol., 2015, 10(6): 487-494.
[2] Mahandranauth A. CHETRAM, Cimona V. HINTON. ROS-mediated regulation of CXCR4 in cancer[J]. Front Biol, 2013, 8(3): 273-278.
[3] Yinghui HUANG, Xiaoxue QIU, Ji-Long CHEN. Identification of cancer stem cells: from leukemia to solid cancers[J]. Front Biol, 2010, 5(5): 407-416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed