|
|
ROS-mediated regulation of CXCR4 in cancer |
Mahandranauth A. CHETRAM, Cimona V. HINTON( ) |
Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA |
|
|
Abstract Oxidative stress and the accumulation of reactive oxygen specie (ROS) play a role in cancer cells developing an advanced, phenotypic signature that associates with metastasis and progression. Increased ROS concentrations are involved in promoting cancer development and metastasis by inducing expression of oncogenes, suppressing activity of anti-survival molecules and by activating various cell survival and proliferation signaling pathways. Oxidative stress is higher in the epithelium of cancer patients than patients without the disease, and antioxidant trials are currently being explored as a therapeutic option. However, studies have shown that ROS increases expression of CXCR4 in cancer and immune cells. CXCR4 expression in tumors strongly correlates to metastasis and poor prognosis. Herein, we discuss an emerging relationship between ROS and CXCR4 in cancer cells.
|
Keywords
reactive oxygen species
CXCR4
HIF1α
metastasis
PI3K/AKT
ERK1/2
|
Corresponding Author(s):
HINTON Cimona V.,Email:chinton@cau.edu
|
Issue Date: 01 June 2013
|
|
1 |
Ammendola R, Mesuraca M, Russo T, Cimino F (1994). The DNA-binding efficiency of Sp1 is affected by redox changes. Eur J Biochem , 225(1): 483-489 doi: 10.1111/j.1432-1033.1994.t01-1-00483.x pmid:7925470
|
2 |
Balabanian K, Lagane B, Infantino S, Chow K Y, Harriague J, Moepps B, Arenzana-Seisdedos F, Thelen M, Bachelerie F (2005). The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem , 280(42): 35760-35766 doi: 10.1074/jbc.M508234200 pmid:16107333
|
3 |
Busillo J M, Benovic J L (2007). Regulation of CXCR4 signaling. Biochim Biophys Acta , 1768(4): 952-963 doi: 10.1016/j.bbamem.2006.11.002 pmid:17169327
|
4 |
Chetram M A, Odero-Marah V, Hinton C V (2011). Loss of PTEN permits CXCR4-mediated tumorigenesis through ERK1/2 in prostate cancer cells. Mol Cancer Res , 9(1): 90-102 doi: 10.1158/1541-7786.MCR-10-0235 pmid:21076047
|
5 |
Cho Y H, Shen J, Gammon M D, Zhang Y J, Wang Q, Gonzalez K, Xu X, Bradshaw P T, Teitelbaum S L, Garbowski G, Hibshoosh H, Neugut A I, Chen J, Santella R M (2012). Prognostic significance of gene-specific promoter hypermethylation in breast cancer patients. Breast Cancer Res Treat , 131(1): 197-205 doi: 10.1007/s10549-011-1712-y pmid:21837480
|
6 |
Circu M L, Aw T Y (2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med , 48(6): 749-762 doi: 10.1016/j.freeradbiomed.2009.12.022 pmid:20045723
|
7 |
Cook J A, Gius D, Wink D A, Krishna M C, Russo A, Mitchell J B (2004). Oxidative stress, redox, and the tumor microenvironment. Semin Radiat Oncol , 14(3): 259-266 doi: 10.1016/j.semradonc.2004.04.001 pmid:15254869
|
8 |
Cruz-Orengo L, Holman D W, Dorsey D, Zhou L, Zhang P, Wright M, McCandless E E, Patel J R, Luker G D, Littman D R, Russell J H, Klein R S (2011). CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J Exp Med , 208(2): 327-339 doi: 10.1084/jem.20102010 pmid:21300915
|
9 |
Dar A, Schajnovitz A, Lapid K, Kalinkovich A, Itkin T, Ludin A, Kao WM, Battista M, Tesio M, Kollet O (2011). Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia , 25(8):1286-1296
|
10 |
Davies K J (1993). Protein modification by oxidants and the role of proteolytic enzymes. Biochem Soc Trans , 21(2): 346-353 pmid:8359494
|
11 |
Esposito F, Cuccovillo F, Morra F, Russo T, Cimino F (1995). DNA binding activity of the glucocorticoid receptor is sensitive to redox changes in intact cells. Biochim Biophys Acta , 1260(3): 308-314 pmid:7873605
|
12 |
Fraga C G, Shigenaga M K, Park J W, Degan P, Ames B N (1990). Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA , 87(12): 4533-4537 doi: 10.1073/pnas.87.12.4533 pmid:2352934
|
13 |
Galaris D, Skiada V, Barbouti A (2008). Redox signaling and cancer: the role of “labile” iron. Cancer Lett , 266(1): 21-29 doi: 10.1016/j.canlet.2008.02.038 pmid:18374479
|
14 |
Gerard C, Rollins B J (2001). Chemokines and disease. Nat Immunol , 2(2): 108-115 doi: 10.1038/84209 pmid:11175802
|
15 |
Gupta A, Rosenberger S F, Bowden G T (1999). Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis , 20(11): 2063-2073 doi: 10.1093/carcin/20.11.2063 pmid:10545407
|
16 |
Gupta S K, Lysko P G, Pillarisetti K, Ohlstein E, Stadel J M (1998). Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. J Biol Chem , 273(7): 4282-4287 doi: 10.1074/jbc.273.7.4282 pmid:9461627
|
17 |
Guyton K Z, Liu Y, Gorospe M, Xu Q, Holbrook N J (1996). Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem , 271(8): 4138-4142 pmid:8626753
|
18 |
Ha H L, Yu D Y (2010). HBx-induced reactive oxygen species activates hepatocellular carcinogenesis via dysregulation of PTEN/Akt pathway. World J Gastroenterol , 16(39): 4932-4937 doi: 10.3748/wjg.v16.i39.4932 pmid:20954279
|
19 |
Hambali Z, Ahmad Z, Arab S, Khazaai H (2011). Oxidative stress and its association with cardiovascular disease in chronic renal failure patients. Indian J Nephrol , 21(1): 21-25 doi: 10.4103/0971-4065.75218 pmid:21655165
|
20 |
Hinton C V, Avraham S, Avraham H K (2010). Role of the CXCR4/CXCL12 signaling axis in breast cancer metastasis to the brain. Clin Exp Metastasis , 27(2): 97-105 doi: 10.1007/s10585-008-9210-2 pmid:18814042
|
21 |
Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf D J, Zhang J, Ratajczak J, Ratajczak M Z (2004). CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol , 35(3): 233-245 doi: 10.1023/B:HIJO.0000032355.66152.b8 pmid:15339043
|
22 |
Kumar B, Koul S, Khandrika L, Meacham R B, Koul H K (2008). Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res , 68(6): 1777-1785 doi: 10.1158/0008-5472.CAN-07-5259 pmid:18339858
|
23 |
Landriscina M, Maddalena F, Laudiero G, Esposito F (2009). Adaptation to oxidative stress, chemoresistance, and cell survival. Antioxid Redox Signal , 11(11): 2701-2716 doi: 10.1089/ars.2009.2692 pmid:19778285
|
24 |
Lau E K, Allen S, Hsu A R, Handel T M (2004). Chemokine-receptor interactions: GPCRs, glycosaminoglycans and viral chemokine binding proteins. Adv Protein Chem , 68: 351-391 doi: 10.1016/S0065-3233(04)68010-7 pmid:15500866
|
25 |
Lee R L, Westendorf J, Gold M R (2007). Differential role of reactive oxygen species in the activation of mitogen-activated protein kinases and Akt by key receptors on B-lymphocytes: CD40, the B cell antigen receptor, and CXCR4. J Cell Commun Signal , 1(1): 33-43 doi: 10.1007/s12079-007-0006-y pmid:18481208
|
26 |
Lee S R, Yang K S, Kwon J, Lee C, Jeong W, Rhee S G (2002). Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem , 277(23): 20336-20342 doi: 10.1074/jbc.M111899200 pmid:11916965
|
27 |
Li S, Deng Y, Feng J, Ye W (2009). Oxidative preconditioning promotes bone marrow mesenchymal stem cells migration and prevents apoptosis. Cell Biol Int , 33(3): 411-418 doi: 10.1016/j.cellbi.2009.01.012 pmid:19356708
|
28 |
Lin W, Wu G, Li S, Weinberg E M, Kumthip K, Peng L F, Méndez-Navarro J, Chen W C, Jilg N, Zhao H, Goto K, Zhang L, Brockman M A, Schuppan D, Chung R T (2011). HIV and HCV cooperatively promote hepatic fibrogenesis via induction of reactive oxygen species and NFkappaB. J Biol Chem , 286(4): 2665-2674 doi: 10.1074/jbc.M110.168286 pmid:21098019
|
29 |
Lindahl T (1993). Instability and decay of the primary structure of DNA. Nature , 362(6422): 709-715 doi: 10.1038/362709a0 pmid:8469282
|
30 |
Liou G Y, Storz P (2010). Reactive oxygen species in cancer. Free Radic Res , 44(5): 479-496 doi: 10.3109/10715761003667554 pmid:20370557
|
31 |
Liu L Z, Hu X W, Xia C, He J, Zhou Q, Shi X, Fang J, Jiang B H (2006). Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med , 41(10): 1521-1533 doi: 10.1016/j.freeradbiomed.2006.08.003 pmid:17045920
|
32 |
Liu J, Zhang Y, Zhao J, Yang Z, Li D, Katirai F, Huang B (2011). Mast cell: insight into remodeling a tumor microenvironment. Cancer Metastasis Rev , 30(2):177-184
|
33 |
Loetscher P, Moser B, Baggiolini M (2000). Chemokines and their receptors in lymphocyte traffic and HIV infection. Adv Immunol , 74: 127-180 doi: 10.1016/S0065-2776(08)60910-4 pmid:10605606
|
34 |
Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan M E, McClanahan T, Murphy E, Yuan W, Wagner S N, Barrera J L, Mohar A, Verástegui E, Zlotnik A (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature , 410(6824): 50-56 doi: 10.1038/35065016 pmid:11242036
|
35 |
Nelson W G, De Marzo A M, DeWeese T L, Isaacs W B (2004). The role of inflammation in the pathogenesis of prostate cancer. J Urol , 172(5): 6-12
|
36 |
Ozben T (2007). Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci , 96(9): 2181-2196 doi: 10.1002/jps.20874 pmid:17593552
|
37 |
Pan J S, Hong M Z, Ren J L (2009). Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol , 15(14): 1702-1707 doi: 10.3748/wjg.15.1702 pmid:19360913
|
38 |
Pani G, Galeotti T, Chiarugi P (2010). Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev , 29(2): 351-378 doi: 10.1007/s10555-010-9225-4 pmid:20386957
|
39 |
Rains J L, Jain S K (2011). Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med , 50(5): 567-575 doi: 10.1016/j.freeradbiomed.2010.12.006 pmid:21163346
|
40 |
Saini V, Staren D M, Ziarek J J, Nashaat Z N, Campbell E M, Volkman B F, Marchese A, Majetschak M (2011). The CXC chemokine receptor 4 ligands ubiquitin and stromal-cell derived factor-1{alpha} function through distinct receptor interactions. J Biol Chem , 286(38): 33466-33477
|
41 |
Salmeen A, Andersen J N, Myers M P, Meng T C, Hinks J A, Tonks N K, Barford D (2003). Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature , 423(6941): 769-773 doi: 10.1038/nature01680 pmid:12802338
|
42 |
Simon H U, Haj-Yehia A, Levi-Schaffer F (2000). Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis , 5(5): 415-418 doi: 10.1023/A:1009616228304 pmid:11256882
|
43 |
Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley E J, Krek W (2003). Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature , 425(6955): 307-311 doi: 10.1038/nature01874 pmid:13679920
|
44 |
Storz P (2005). Reactive oxygen species in tumor progression. Front Biosci , 10(1-3): 1881-1896 doi: 10.2741/1667 pmid:15769673
|
45 |
Taichman R S, Cooper C, Keller E T, Pienta K J, Taichman N S, McCauley L K (2002). Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res , 62(6): 1832-1837 pmid:11912162
|
46 |
Talks K L, Turley H, Gatter K C, Maxwell P H, Pugh C W, Ratcliffe P J, Harris A L (2000). The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol , 157(2): 411-421 doi: 10.1016/S0002-9440(10)64554-3 pmid:10934146
|
47 |
Tanabe S, Heesen M, Yoshizawa I, Berman M A, Luo Y, Bleul C C, Springer T A, Okuda K, Gerard N, Dorf M E (1997). Functional expression of the CXC-chemokine receptor-4/fusin on mouse microglial cells and astrocytes. J Immunol , 159(2): 905-911 pmid:9218610
|
48 |
Tchou J C, Lin X, Freije D, Isaacs W B, Brooks J D, Rashid A, De Marzo A M, Kanai Y, Hirohashi S, Nelson W G (2000). GSTP1 CpG island DNA hypermethylation in hepatocellular carcinomas. Int J Oncol , 16(4): 663-676 pmid:10717233
|
49 |
Tomic J, Lichty B, Spaner D E (2011). Aberrant interferon-signaling is associated with aggressive chronic lymphocytic leukemia. Blood , 117(9): 2668-2680 doi: 10.1182/blood-2010-05-285999 pmid:21205928
|
50 |
Turrens J F (2003). Mitochondrial formation of reactive oxygen species. J Physiol , 552(2): 335-344 doi: 10.1113/jphysiol.2003.049478 pmid:14561818
|
51 |
Wagner B A, Buettner G R, Burns C P (1994). Free radical-mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bis-allylic hydrogen content. Biochemistry , 33(15): 4449-4453 doi: 10.1021/bi00181a003 pmid:8161499
|
52 |
Wang G L, Jiang B H, Rue E A, Semenza G L (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA , 92(12): 5510-5514 doi: 10.1073/pnas.92.12.5510 pmid:7539918
|
53 |
Wang J, Wang J, Dai J, Jung Y, Wei C L, Wang Y, Havens A M, Hogg P J, Keller E T, Pienta K J, Nor J E, Wang C Y, Taichman R S (2007). A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Res , 67(1): 149-159 doi: 10.1158/0008-5472.CAN-06-2971 pmid:17210694
|
54 |
Wu W S, Tsai R K, Chang C H, Wang S, Wu J R, Chang Y X (2006). Reactive oxygen species mediated sustained activation of protein kinase C alpha and extracellular signal-regulated kinase for migration of human hepatoma cell Hepg2. Mol Cancer Res , 4(10): 747-758 doi: 10.1158/1541-7786.MCR-06-0096 pmid:17050668
|
55 |
Zhong H, Semenza G L, Simons J W, De Marzo A M (2004). Up-regulation of hypoxia-inducible factor 1alpha is an early event in prostate carcinogenesis. Cancer Detect Prev , 28(2): 88-93 doi: 10.1016/j.cdp.2003.12.009 pmid:15068831
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|