Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (5) : 427-438    https://doi.org/10.1007/s11515-015-1373-z
RESEARCH ARTICLE
Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury
Xin Xin Yu,Vimala Bondada,Colin Rogers,Carolyn A. Meyer,Chen Guang Yu()
Spinal Cord and Brain Injury Research Center, Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536-0509, USA
 Download: PDF(1394 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Neuronal damage, glial inflammation, and astrogliosis/astroglial scar formation are major secondary injury mechanisms that are significant contributors to functional deficits after spinal cord injury (SCI). The objectives of the study were to evaluate the distinct roles of ERK2 vs. ERK1/2 and ERK1/2-calpain 1−NF-κB signal transduction in the tissue damage and astrogliosis/astroglial scar formation following SCI in rats. RNAi approaches, pharmacological intervention (U0126), Western blot analysis, immunofluorescence analysis, and histological assessment were used to target ERK1/2-calpain 1-NF-κB signal transduction pathway for neuroprotection. Histological staining analysis demonstrated that selectively reducing pERK2 using ERK2 siRNA, but not inhibition of pERK1/2 with U0126, significantly reduced lesion volume and improved total tissue sparing, white matter sparing, and gray matter sparing in spinal cord two weeks after contusive SCI. An ERK1/2-calpain 1-NF-κB signal transduction pathway was involved in the astroglial scar formation after SCI. Blockade of ERK1/2 by U0126 decreased calpain 1 expression 4 h following SCI. Selective calpain 1 reduction by lentiviral shRNA attenuated astroglial NF-κB activity and astroglial scar formation after SCI in rats. Taken together, these results demonstrate the involvement of individual ERK2 and calpain 1 signaling pathways in tissue damage and astrogliosis/astroglial scar formation in animal models of SCI. Therefore, targeting individual ERK and its downstream signal transduction of calpain 1-NF-κB may provide greater potential as novel therapeutics for minimizing tissue damage and astroglial scar formation following SCI.

Keywords calpain 1      ERK1/2      RNAi      neurodegeneration      astrogliosis      spinal cord injury     
Corresponding Author(s): Chen Guang Yu   
Just Accepted Date: 16 September 2015   Online First Date: 13 October 2015    Issue Date: 30 October 2015
 Cite this article:   
Colin Rogers,Carolyn A. Meyer,Chen Guang Yu, et al. Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury[J]. Front. Biol., 2015, 10(5): 427-438.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1373-z
https://academic.hep.com.cn/fib/EN/Y2015/V10/I5/427
Fig.1  Effect of U0126 on ERK1/2 phosphorylation in rat spinal cord after contusive SCI. U0126 ip injection (10 mg/kg, gray bar) or iv injection (2 mg/kg, empty bar) 90 min prior to SCI resulted in inhibition of ERK1/2 phosphorylation in the spinal cord 4 h post-injury using Western blotting with antibodies specific for phospho-ERK1/2 (top panel) or total ERK1/2 (bottom panel). Data are presented as the mean±S.E.M. and analyzed with repeated measures ANOVA followed by Bonferroni post-hoc analysis. Differences were considered statistically significant at p<0.05. *p<0.05, compared to vehicle-treated animals, n = 4/group.
Fig.2  Effect of U0126 on calpain 1 expression in spinal cord after contusive SCI in rats. U0126 ip injection (10 mg/kg, gray bar) or iv injection (2 mg/kg, empty bar) 90 min prior to SCI resulted in reduction in calpain 1 expression in the spinal cord 4 h post-injury using Western blot blotting with antibody specific for calpain 1. Data are presented as the mean±S.E.M. and analyzed with repeated measures ANOVA followed by Bonferroni post-hoc analysis. Differences were considered statistically significant at p<0.05. *p<0.05, compared to vehicle-treated animals, n = 4/group.
Fig.3  Effects of U0126 on tissue sparing 1 week following moderate contusive SCI in rats. U0126 IV administration, but not IP administration, starting at 90 min pre-injury, then once daily for 7 days post-SCI (180 kdyn) resulted in a modest non-significant increase in total tissue sparing and white matter sparing 1 week post-injury compared to vehicle-treated animals. Data are presented as the mean±S.E.M. and analyzed with repeated measures ANOVA followed by Bonferroni post-hoc analysis. Differences were considered statistically significant at p<0.05, n = 4/group.
Fig.4  Effect of ERK2 siRNA on expression of ERK2 and pERK1/2 in the spinal cord 2 days after contusive SCI (A, B, C &D). Postinjury ERK2 siRNA intrathecal treatment knocked down the levels of ERK2 protein (A top panel and B) and both ERK2 and ERK1 phosphorylation (A bottom pane, C & D) 2 days following contusive SCI using Western blotting with antibody specific for ERK2 or pERK1/2. These ERK2 siRNAs do not alter pERK1 levels using Western blot with antibody against pERK1 (A bottom panel and D). Data were presented as mean±S.E.M. and analyzed by t-test, *p<0.05, n = 4/group. ERK2 siRNA was mixed with jetPEI and administered by intrathecal infusion 30 min postinjury via minipump for 2 days (1.0 µg/day) after contusive spinal cord injury (IH impactor, 180 kdyn setting) in female Long Evans rats.
Fig.5  Effects ofERK2 siRNA intrathecal treatment on tissue damage 2 weeks after contusive SCI. Histological assessment showed that postinjury administration of ERK2 siRNA/jetPEI via minipump (1.0 µg/d for 7 days) resulted in a significant increase in total tissue sparing (A), tissue sparing at 1 to 4 mm rostral and 1 to 2 mm caudal to the injury epicenter (D), total white matter sparing (B), and white matter sparing at 1 to 4 mm rostral and 1 mm caudal to the injury epicenter (E) following contusion injury to the spinal cord, compared with control siRNA treated group. (F): Photomicrographs of representative transverse spinal cord section 2 weeks following severe contusion SCI at the epicenter and in 1-mm increments rostral and caudal to the lesion epicenter. The sections were stained with eriochrone cyanine for myelin. Scale bar: 500 µm. Contusive SCI was produced using the Infinite Horizons impactor, 180 kdyn setting, at T10. No significant differences in parameters were found between treatment and controls. Data are presented as mean±S.E.M. and analyzed by t-test (A, B, and C) or repeated measures ANOVA & Bonferroni post-hoc test (D & E). *p<0.05, n = 7/group.
Fig.6  Effects of lentiviral-calpain 1 shRNA on astroglial NF-κB activation and astrogliosis/astroglial scar formation 6 weeks after contusion SCI in rats. The spinal tissues at 2 mm rostral and caudal to the lesion epicenter were collected from sham (a), injured spinal cord-treated with LV-calpain 1 shRNA (c) or injured spinal cord-treated with LV-control shRNA (b). The cross-sections were immunofluorescence-stained with antibody against pNF-κBp65 (red) or GFAP (green). The yellow color visualized in the merged images represented colocalization of two proteins. Blue, Hoechst 33342 nuclear stain. Scale bar: 50 µm. Quantification of fluorescence signals for immunofluorescence staining of GFAP (marker for astroglial scar formation) and for triple immunofluorescence staining of nuclear pNFκBp65 plus GFAP in the spinal cord sections was performed. In contrast to the sham-operated group (a), increased expression of GFAP (astrogliosis/astroglial scar formation, A) and astroglial nuclear activity of pNF-κBp65 (B) after SCI with pretreatment of LV-control shRNA were evident by their upregulated nuclear pNF-kBp65 and/or GFAP labeled immunoreactivity at 6 weeks post-injury (b). LV-calpain 1 shRNA intraspinal pretreatment (c, gray bar in A and B) significantly decreased astrocyte proliferation (A) and nuclear pNF-κBp65 activity in astrocytes (B) 6 weeks postinjury, compared to LV-control shRNA-pretreated group (b, dark bar in A and B). SCI condition is described in Material and Method Section. Four designated areas (I: dorsal central area, II: dorsal horn area, III: ventral horn area, and IV: lateral area) in each section were imaged and the total fluorescent signal (histogram) from all four areas were calculated. Data are presented as mean±S.E.M. and analyzed with repeated measures ANOVA followed by Bonferroni post-hoc analysis, #p<0.05, ##p<0.01, compared to SCI+ LV control shRNA and **p<0.01, compared to sham, n = 6/group. Differences were considered statistically significant at p<0.05.
Fig.7  Photomicrographs for representatives of astroglial scar formation/astrogliosis in transverse rat spinal cord sections 42 days following contusive SCI. The cross-sections were immunofluorescence-stained with antibody against GFAP. Blue, Hoechst 33342 nuclear stain. Scale bar: 50 µm. SCI condition is described in Material and Method Section. Four designated areas (I: dorsal central area, II: dorsal horn area, III: ventral horn area, and IV: lateral area) in each section were imaged and the total fluorescent signal (histogram) from all four areas were calculated.
1 Agrawal  A, Dillon  S, Denning  T L, Pulendran  B (2006). ERK1−/− mice exhibit Th1 cell polarization and increased susceptibility to experimental autoimmune encephalomyelitis. J Immunol, 176(10): 5788–5796
https://doi.org/10.4049/jimmunol.176.10.5788 pmid: 16670284
2 Aigner  A (2006). Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J Biotechnol, 124(1): 12–25
https://doi.org/10.1016/j.jbiotec.2005.12.003 pmid: 16413079
3 Borgens  R B, Liu-Snyder  P (2012). Understanding secondary injury. Q Rev Biol, 87(2): 89–127
https://doi.org/10.1086/665457 pmid: 22696939
4 Brambilla  R, Hurtado  A, Persaud  T, Esham  K, Pearse  D D, Oudega  M, Bethea  J R (2009). Transgenic inhibition of astroglial NF-kappa B leads to increased axonal sparing and sprouting following spinal cord injury. J Neurochem, 110(2): 765–778
https://doi.org/10.1111/j.1471-4159.2009.06190.x pmid: 19522780
5 Bramlett  H M, Dietrich  W D (2007). Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Prog Brain Res, 161: 125–141
https://doi.org/10.1016/S0079-6123(06)61009-1 pmid: 17618974
6 Cargnello  M, Roux  P P (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev, 75(1): 50–83
https://doi.org/10.1128/MMBR.00031-10 pmid: 21372320
7 Colak  A, Kaya  M, Karaoğlan  A, Sağmanligil  A, Akdemir  O, Sahan  E, Celik  O (2009). Calpain inhibitor AK 295 inhibits calpain-induced apoptosis and improves neurologic function after traumatic spinal cord injury in rats. Neurocirugia (Astur), 20(3): 245–254
https://doi.org/10.1016/S1130-1473(09)70163-0 pmid: 19575128
8 Doshi  S, Lynch  D R (2009). Calpain and the glutamatergic synapse. Front Biosci (Schol Ed), 1(1): 466–476
https://doi.org/10.2741/s38 pmid: 19482714
9 Drake  C R, Aissaoui  A, Argyros  O, Serginson  J M, Monnery  B D, Thanou  M, Steinke  J H, Miller  A D (2010). Bioresponsive small molecule polyamines as noncytotoxic alternative to polyethylenimine. Mol Pharm, 7(6): 2040–2055
https://doi.org/10.1021/mp9002249 pmid: 20929266
10 Geddes  J W, Saatman  K E (2010). Targeting individual calpain isoforms for neuroprotection. Exp Neurol, 226(1): 6–7
https://doi.org/10.1016/j.expneurol.2010.07.025 pmid: 20682310
11 Hetman  M, Gozdz  A (2004). Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. Eur J Biochem, 271(11): 2050–2055
https://doi.org/10.1111/j.1432-1033.2004.04133.x pmid: 15153093
12 Ishikawa  T, Suzuki  H, Ishikawa  K, Yasuda  S, Matsui  T, Yamamoto  M, Kakeda  T, Yamamoto  S, Owada  Y, Yaksh  T L (2014). Spinal cord ischemia/injury. Curr Pharm Des, 20(36): 5738–5743
https://doi.org/10.2174/1381612820666140204113252 pmid: 24502574
13 Karimi-Abdolrezaee  S, Billakanti  R (2012). Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol Neurobiol, 46(2): 251–264
https://doi.org/10.1007/s12035-012-8287-4 pmid: 22684804
14 Kim  J Y, Park  K J, Kim  G H, Jeong  E A, Lee  D Y, Lee  S S, Kim  D J, Roh  G S, Song  J, Ki  S H, Kim  W H (2013). In vivo activating transcription factor 3 silencing ameliorates the AMPK compensatory effects for ER stress-mediated β-cell dysfunction during the progression of type-2 diabetes. Cell Signal, 25(12): 2348–2361
https://doi.org/10.1016/j.cellsig.2013.07.028 pmid: 23916985
15 Kuchay  S M, Chishti  A H (2007). Calpain-mediated regulation of platelet signaling pathways. Curr Opin Hematol, 14(3): 249–254
https://doi.org/10.1097/MOH.0b013e3280ef68f8 pmid: 17414215
16 Kwon  B K, Sekhon  L H, Fehlings  M G (2010). Emerging repair, regeneration, and translational research advances for spinal cord injury. Spine, 35(21 Suppl): S263–S270
https://doi.org/10.1097/BRS.0b013e3181f3286d pmid: 20881470
17 Li  L, Wu  Y, Wang  C, Zhang  W (2012). Inhibition of PAX2 gene expression by siRNA (polyethylenimine) in experimental model of obstructive nephropathy. Ren Fail, 34(10): 1288–1296
https://doi.org/10.3109/0886022X.2012.723662 pmid: 23078635
18 Liu  J, Liu  M C, Wang  K K (2008). Calpain in the CNS: from synaptic function to neurotoxicity. Sci Signal, 1(14): re1
https://doi.org/10.1126/stke.114re1 pmid: 18398107
19 Liu  L, Zhang  R, Liu  K, Zhou  H, Tang  Y, Su  J, Yu  X, Yang  X, Tang  M, Dong  Q (2009). Tissue kallikrein alleviates glutamate-induced neurotoxicity by activating ERK1. J Neurosci Res, 87(16): 3576–3590
https://doi.org/10.1002/jnr.22151 pmid: 19598250
20 Lu  P Y, Woodle  M C (2008). Delivering small interfering RNA for novel therapeutics. Methods Mol Biol, 437: 93–107
https://doi.org/10.1007/978-1-59745-210-6_3 pmid: 18369963
21 Luo   M  C,  Zhang   D  Q,  Ma   S  W,  Huang   Y  Y,  Shuster  S  J,  Porreca  F,  Lai  J  (2005).  An  efficient  intrathecal  delivery  of  small interfering RNA to the spinal cord and peripheral neurons. Mol Pain, 1(1): 29
https://doi.org/10.1186/1744-8069-1-29 pmid: 16191203
22 Nakazawa  T, Shimura  M, Ryu  M, Nishida  K, Pagès  G, Pouysségur  J, Endo  S (2008). ERK1 plays a critical protective role against N-methyl-D-aspartate-induced retinal injury. J Neurosci Res, 86(1): 136–144
https://doi.org/10.1002/jnr.21472 pmid: 17722069
23 Rabchevsky  A G, Fugaccia  I, Sullivan  P G, Blades  D A, Scheff  S W (2002). Efficacy of methylprednisolone therapy for the injured rat spinal cord. J Neurosci Res, 68(1): 7–18
https://doi.org/10.1002/jnr.10187 pmid: 11933044
24 Ray  S K, Hogan  E L, Banik  N L (2003). Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Brain Res Rev, 42(2): 169–185
https://doi.org/10.1016/S0165-0173(03)00152-8 pmid: 12738057
25 Saatman  K E, Creed  J, Raghupathi  R (2010). Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics, 7(1): 31–42
https://doi.org/10.1016/j.nurt.2009.11.002 pmid: 20129495
26 Schumacher  P A, Siman  R G, Fehlings  M G (2000). Pretreatment with calpain inhibitor CEP-4143 inhibits calpain I activation and cytoskeletal degradation, improves neurological function, and enhances axonal survival after traumatic spinal cord injury. J Neurochem, 74(4): 1646–1655
https://doi.org/10.1046/j.1471-4159.2000.0741646.x pmid: 10737623
27 Springer  J E, Azbill  R D, Kennedy  S E, George  J, Geddes  J W (1997). Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem, 69(4): 1592–1600
https://doi.org/10.1046/j.1471-4159.1997.69041592.x pmid: 9326288
28 Sribnick  E A, Samantaray  S, Das  A, Smith  J, Matzelle  D D, Ray  S K, Banik  N L (2010). Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats. J Neurosci Res, 88(8): 1738–1750
pmid: 20091771
29 Tian  D S, Yu  Z Y, Xie  M J, Bu  B T, Witte  O W, Wang  W (2006). Suppression of astroglial scar formation and enhanced axonal regeneration associated with functional recovery in a spinal cord injury rat model by the cell cycle inhibitor olomoucine. J Neurosci Res, 84(5): 1053–1063
https://doi.org/10.1002/jnr.20999 pmid: 16862564
30 Wall  E A, Zavzavadjian  J R, Chang  M S, Randhawa  B, Zhu  X, Hsueh  R C, Liu  J, Driver  A, Bao  X R, Sternweis  P C, Simon  M I, Fraser  I D (2009). Suppression of LPS-induced TNF-alpha production in macrophages by cAMP is mediated by PKA-AKAP95-p105. Sci Signal, 2(75): ra28
https://doi.org/10.1126/scisignal.2000202 pmid: 19531803
31 Wittrup  A, Lieberman  J (2015). Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet, 16(9): 543–552
https://doi.org/10.1038/nrg3978 pmid: 26281785
32 Wu  J, Pajoohesh-Ganji  A, Stoica  B A, Dinizo  M, Guanciale  K, Faden  A I (2012). Delayed expression of cell cycle proteins contributes to astroglial scar formation and chronic inflammation after rat spinal cord contusion. J Neuroinflammation, 9(1): 169
https://doi.org/10.1186/1742-2094-9-169 pmid: 22784881
33 Yiu  G, He  Z (2006). Glial inhibition of CNS axon regeneration. Nat Rev Neurosci, 7(8): 617–627
https://doi.org/10.1038/nrn1956 pmid: 16858390
34 Yu  C G (2012). Distinct roles for ERK1 and ERK2 in pathophysiology of CNS. Front Biol, 7 (3): 267–276
35 Yu  C G, Geddes  J W (2007). Sustained calpain inhibition improves locomotor function and tissue sparing following contusive spinal cord injury. Neurochem Res, 32(12): 2046–2053
https://doi.org/10.1007/s11064-007-9347-4 pmid: 17476592
36 Yu  C G, Li  Y, Raza  K, Yu  X X, Ghoshal  S, Geddes  J W (2013). Calpain 1 knockdown improves tissue sparing and functional outcomes after spinal cord injury in rats. J Neurotrauma, 30(6): 427–433
https://doi.org/10.1089/neu.2012.2561 pmid: 23102374
37 Yu  C G, Singh  R, Crowdus  C, Raza  K, Kincer  J, Geddes  J W (2014). Fenbendazole improves pathological and functional recovery following  traumatic  spinal  cord  injury.  Neuroscience,  256: 163–169
https://doi.org/10.1016/j.neuroscience.2013.10.039 pmid: 24183965
38 Yu  C G, Yezierski  R P (2005). Activation of the ERK1/2 signaling cascade by excitotoxic spinal cord injury. Brain Res Mol Brain Res, 138(2): 244–255
https://doi.org/10.1016/j.molbrainres.2005.04.013 pmid: 15922485
39 Yu  C G, Yezierski  R P, Joshi  A, Raza  K, Li  Y, Geddes  J W (2010). Involvement of ERK2 in traumatic spinal cord injury. J Neurochem, 113(1): 131–142
https://doi.org/10.1111/j.1471-4159.2010.06579.x pmid: 20067580
40 Yuan  Y M, He  C (2013). The glial scar in spinal cord injury and repair. Neurosci Bull, 29(4): 421–435
https://doi.org/10.1007/s12264-013-1358-3 pmid: 23861090
41 Zhang  S X, Underwood  M, Landfield  A, Huang  F F, Gison  S, Geddes  J W (2000). Cytoskeletal disruption following contusion injury to the rat spinal cord. J Neuropathol Exp Neurol, 59(4): 287–296
pmid: 10759184
42 Zhao  P, Waxman  S G, Hains  B C (2007). Extracellular signal-regulated kinase-regulated microglia-neuron signaling by prostaglandin E2 contributes to pain after spinal cord injury. J Neurosci, 27(9): 2357–2368
https://doi.org/10.1523/JNEUROSCI.0138-07.2007 pmid: 17329433
43 Zhuang  S, Schnellmann  R G (2006). A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther, 319(3): 991–997
https://doi.org/10.1124/jpet.106.107367 pmid: 16801453
[1] Jamie K. WONG,Hongyan ZOU. Reshaping the chromatin landscape after spinal cord injury[J]. Front. Biol., 2014, 9(5): 356-366.
[2] Jong-In PARK. Growth arrest signaling of the Raf/MEK/ERK pathway in cancer[J]. Front. Biol., 2014, 9(2): 95-103.
[3] Yiping LI,Chandler L. WALKER,Yi Ping ZHANG,Christopher B. SHIELDS,Xiao-Ming XU. Surgical decompression in acute spinal cord injury: A review of clinical evidence, animal model studies, and potential future directions of investigation[J]. Front. Biol., 2014, 9(2): 127-136.
[4] Chandler L. WALKER, Nai-Kui LIU, Xiao-Ming XU. PTEN/PI3K and MAPK signaling in protection and pathology following CNS injuries[J]. Front Biol, 2013, 8(4): 421-433.
[5] Mahandranauth A. CHETRAM, Cimona V. HINTON. ROS-mediated regulation of CXCR4 in cancer[J]. Front Biol, 2013, 8(3): 273-278.
[6] Abiodun AJAYI, Xin YU, Anna-Lena STR?M. The role of NADPH oxidase (NOX) enzymes in neurodegenerative disease[J]. Front Biol, 2013, 8(2): 175-188.
[7] Jeffrey P. CANTLE, Xiao-Hong LU, Xiaofeng GU, X. William YANG. Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease[J]. Front Biol, 2012, 7(5): 459-476.
[8] Chen Guang YU. Distinct roles for ERK1 and ERK2 in pathophysiology of CNS[J]. Front Biol, 2012, 7(3): 267-276.
[9] Kimberly M. CHRISTIAN, Hongjun SONG, Guo-li MING. Application of reprogrammed patient cells to investigate the etiology of neurological and psychiatric disorders[J]. Front Biol, 2012, 7(3): 179-188.
[10] Hedong LI, Wei SHI. Neural progenitor diversity and their therapeutic potential for spinal cord repair[J]. Front Biol, 2010, 5(5): 386-395.
[11] Huang HUANG, Na WEI, Yingfei XIONG, Feng YANG, Huaqiang FANG, Wenjun XIE, Zhuan ZHOU, Heping CHENG, Zicai LIANG, Quan DU. Exogenous nucleic acids aggregate in non-P-body cytoplasmic granules when transfected into cultured cells[J]. Front Biol, 2010, 5(3): 272-281.
[12] YUE Hua, YANG Falong, TANG Cheng, LI Dingfei, FU Anjing, MA Li. shRNA-triggered RNAi inhibits expression of NDV NP gene in chicken embryo fibroblast[J]. Front. Biol., 2008, 3(4): 433-438.
[13] LI Jianlong, WANG Zhengzhi, WANG Xiaomin. Predicting siRNA activity based on back-propagation neural network[J]. Front. Biol., 2008, 3(2): 154-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed