Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (3) : 267-276    https://doi.org/10.1007/s11515-012-1220-4
REVIEW
Distinct roles for ERK1 and ERK2 in pathophysiology of CNS
Chen Guang YU()
Spinal Cord and Brain Injury Research Center and Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
 Download: PDF(319 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mitogen-activated protein kinases ERK1 and ERK2 have been implicated in various pathophysiological events of the CNS, but their specific roles in cell processes under physiologic and pathological conditions remain to be determined. ERK1/2 was originally identified as a kinase activity that mediates neuronal survival and neuroprotection, but it was subsequently found that ERK1/2 also plays a critical role in neurodegeneration. This dichotomy makes it difficult to target ERK1/2 for neuroprotection. Accumulating evidence suggests that ERK1 and ERK2 may play distinct functions in a variety of cell fate decisions. In this review, I summarize recent evidence for distinct roles for individual ERK isoforms in pathophysiology of the CNS.

Keywords ERK isoform      cell death      cell proliferation      neurodegeneration      neuroprotection     
Corresponding Author(s): YU Chen Guang,Email:cyu4@uky.edu   
Issue Date: 01 June 2012
 Cite this article:   
Chen Guang YU. Distinct roles for ERK1 and ERK2 in pathophysiology of CNS[J]. Front Biol, 2012, 7(3): 267-276.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1220-4
https://academic.hep.com.cn/fib/EN/Y2012/V7/I3/267
Fig.1  A diagram summarizing recent evidence for distinct functions for individual ERK isoforms in pathophysiology of the CNS.
1 Adams J P, Roberson E D, English J D, Selcher J C, Sweatt J D (2000) . MAPK regulation of gene expression in the central nervous system. Acta Neurobiol Exp (Wars) , 60: 377–394
2 Agrawal A, Dillon S, Denning T L, Pulendran B (2006). ERK1/ mice exhibit Th1 cell polarization and increased susceptibility to experimental autoimmune encephalomyelitis. J Immunol , 176:5788–5796
3 Alter B J, Zhao C, Karim F, Landreth G E, Gereau R W (2010). Genetic targeting of ERK1 suggests a predominant role for ERK2 in murine pain models. J Neurosci , 30: 11537–11547
4 Ankeny D P, Guan Z, Popovich P G (2009). B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice. J Clin Invest , 119: 2990–2999
5 Bardoni R, Ghirri A, Zonta M, Betelli C, Vitale G, Ruggieri V, Sandrini M, Carmignoto G (2010). Glutamate-mediated astrocyte-to-neuron signalling in the rat dorsal horn. The Journal of physiology , 588: 831–846
6 Brambilla R, Hurtado A, Persaud T, Esham K, Pearse D D, Oudega M, Bethea J R (2009). Transgenic inhibition of astroglial NF-kappa B leads to increased axonal sparing and sprouting following spinal cord injury. J Neurochem , 110: 765–778
7 Byrnes K R, Stoica B A, Fricke S, Di Giovanni S, Faden A I (2007). Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain , 130: 2977–2992
8 Cargnello M, Roux P P (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev , 75: 50–83
9 Carrier N, Kabbaj M (2012). Extracellular signal-regulated kinase 2 signaling in the hippocampal dentate gyrus mediates the antidepressant effects of testosterone. Biol Psychiatry, Available online 20 January 2012
10 Chen Z, Gibson T B, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb M H (2001). MAP kinases. Chem Rev , 101: 2449–2476
11 Cheung EC, Slack R S (2004). Emerging role for ERK as a key regulator of neuronal apoptosis. Sci STKE , 2004: PE45
12 Chu C T, Levinthal D J, Kulich S M, Chalovich E M, DeFranco D B (2004). Oxidative neuronal injury. The dark side of ERK1/2. Eur J Biochem , 271: 2060–2066
13 Colucci-D'Amato L, Perrone-Capano C, di Porzio U (2003). Chronic activation of ERK and neurodegenerative diseases. Bioessays , 25: 1085–1095
14 D'Souza W N, Chang C F, Fischer A M, Li M, Hedrick S M (2008). The Erk2 MAPK regulates CD8 T cell proliferation and survival. J Immunol , 181: 7617–7629
15 Domercq M, Alberdi E, Sanchez-Gomez M V, Ariz U, Perez-Samartin A, Matute C (2011). Dual-specific phosphatase-6 (Dusp6) and ERK mediate AMPA receptor-induced oligodendrocyte death. J Biol Chem , 286: 11825–11836
16 Fleming J C, Norenberg M D, Ramsay D A, Dekaban G A, Marcillo A E, Saenz A D, Pasquale-Styles M, Dietrich W D, Weaver L C (2006). The cellular inflammatory response in human spinal cords after injury. Brain , 129: 3249–3269
17 Fyffe-Maricich S L, Karlo J C, Landreth G E, Miller R H (2011). The ERK2 mitogen-activated protein kinase regulates the timing of oligodendrocyte differentiation. J Neurosci , 31: 843–850
18 Genovese T, Esposito E, Mazzon E, Muia C, Di Paola R, Meli R, Bramanti P, Cuzzocrea S (2008). Evidence for the role of mitogen-activated protein kinase signaling pathways in the development of spinal cord injury. J Pharmacol Exp Ther , 325: 100–114
19 Goplen N, Karim Z, Guo L, Zhuang Y, Huang H, Gorska MM, Gelfand E, Pages G, Pouyssegur J, Alam R (2012). ERK1 is important for Th2 differentiation and development of experimental asthma. FASEB J, Available online 18 Jan 2012
20 Grueter B A, Gosnell H B, Olsen C M, Schramm-Sapyta N L, Nekrasova T, Landreth G E, Winder D G (2006). Extracellular-signal regulated kinase 1-dependent metabotropic glutamate receptor 5-induced long-term depression in the bed nucleus of the stria terminalis is disrupted by cocaine administration. J Neurosci , 26: 3210–3219
21 Hallett P J, Standaert D G (2004). Rationale for and use of NMDA receptor antagonists in Parkinson's disease. Pharmacol Ther , 102: 155–174
22 Hetman M, Gozdz A (2004). Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. Eur J Biochem , 271: 2050–2055
23 Hulsebosch C E, Hains B C, Crown E D, Carlton S M (2009). Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev , 60: 202–213
24 Hynd M R, Scott H L, Dodd P R (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem Int , 45: 583–595
25 Imamura O, Pages G, Pouyssegur J, Endo S, Takishima K (2010). ERK1 and ERK2 are required for radial glial maintenance and cortical lamination. Genes Cells , 15: 1072–1088
26 Imamura O, Satoh Y, Endo S, Takishima K (2008). Analysis of extracellular signal-regulated kinase 2 function in neural stem/progenitor cells via nervous system-specific gene disruption. Stem Cells , 26: 3247–3256
27 Indrigo M, Papale A, Orellana D, Brambilla R (2010). Lentiviral vectors to study the differential function of ERK1 and ERK2 MAP kinases. Methods Mol Biol , 661: 205–220
28 Ji R R, Gereau R Wt, Malcangio M, Strichartz G R (2009). MAP kinase and pain. Brain Res Rev , 60: 135–148 .
29 Ji RR, Woolf C J (2001). Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis , 8: 1–10
30 Kaminska B (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochimica et biophysica acta , 1754: 253–262
31 Kaminska B, Gozdz A, Zawadzka M, Ellert-Miklaszewska A, Lipko M (2009). MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat Rec (Hoboken) , 292: 1902–1913
32 Kawasaki Y, Zhang L, Cheng J K, Ji R R (2008). Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci , 28: 5189–5194
33 Keane R W, Davis A R, Dietrich W D (2006). Inflammatory and apoptotic signaling after spinal cord injury. J Neurotrauma , 23: 335–344
34 Kolch W (2000). Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J , 351(Pt 2):289–305
35 Krens S F, Corredor-Adamez M, He S, Snaar-Jagalska B E, Spaink H P (2008a). ERK1 and ERK2 MAPK are key regulators of distinct gene sets in zebrafish embryogenesis. BMC Genomics , 9: 196
36 Krens S F, He S, Lamers G E, Meijer A H, Bakkers J, Schmidt T, Spaink H P, Snaar-Jagalska B E (2008b). Distinct functions for ERK1 and ERK2 in cell migration processes during zebrafish gastrulation. Dev Biol , 319: 370–383
37 Liu L, Zhang R, Liu K, Zhou H, Tang Y, Su J, Yu X, Yang X, Tang M, Dong Q (2009). Tissue kallikrein alleviates glutamate-induced neurotoxicity by activating ERK1. J Neurosci Res , 87: 3576–3590
38 Lloyd AC (2006). Distinct functions for ERKs? J Biol , 5: 13
39 Lu Z, Xu S (2006). ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Lif , 58: 621–631
40 Marchi M, D'Antoni A, Formentini I, Parra R, Brambilla R, Ratto G M, Costa M (2008). The N-terminal domain of ERK1 accounts for the functional differences with ERK2. PLoS One , 3: e3873
41 Matsumoto S, Miyagishi M, Akashi H, Nagai R, Taira K (2005). Analysis of double-stranded RNA-induced apoptosis pathways using interferon-response noninducible small interfering RNA expression vector library. J Biol Chem , 280: 25687–25696
42 Matute C (2011). Glutamate and ATP signalling in white matter pathology. J Anat , 219: 53–64
43 Matute C, Alberdi E, Domercq M, Sanchez-Gomez M V, Perez-Samartin A, Rodriguez-Antiguedad A, Perez-Cerda F (2007). Excitotoxic damage to white matter. J Anat , 210: 693–702
44 Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W, Welzl H, Wolfer DP, Pages G, Valverde O, Marowsky A, Porrazzo A, Orban PC, Maldonado R, Ehrengruber MU, Cestari V, Lipp H P, Chapman P F, Pouyssegur J, Brambilla R (2002). Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron , 34: 807–820
45 Mebratu Y, Tesfaigzi Y (2009). How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle , 8:1168–1175
46 Meloche S, Pouyssegur J (2007). The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene , 26: 3227–3239
47 Nakazawa T, Shimura M, Ryu M, Nishida K, Pages G, Pouyssegur J, Endo S (2008). ERK1 plays a critical protective role against N-methyl-D-aspartate-induced retinal injury. J Neurosci Res , 86: 136–144
48 Narita M, Ioka M, Suzuki M, Suzuki T (2002). Effect of repeated administration of morphine on the activity of extracellular signal regulated kinase in the mouse brain. Neuroscience letters , 324: 97–100
49 Nekrasova T, Shive C, Gao Y, Kawamura K, Guardia R, Landreth G, Forsthuber T G (2005). ERK1-deficient mice show normal T cell effector function and are highly susceptible to experimental autoimmune encephalomyelitis. J Immunol , 175: 2374–2380
50 Otani N, Nawashiro H, Fukui S, Ooigawa H, Ohsumi A, Toyooka T, Shima K (2007). Role of the activated extracellular signal-regulated kinase pathway on histological and behavioral outcome after traumatic brain injury in rats. J Clin Neurosci , 14: 42–48
51 Pajoohesh-Ganji A, Byrnes KR (2011). Novel neuroinflammatory targets in the chronically injured spinal cord. Neurotherapeutics , 8: 195–205
52 Park E, Velumian A A, Fehlings M G (2004). The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma , 21: 754–774
53 Pezet S, Cunningham J, Patel J, Grist J, Gavazzi I, Lever I J, Malcangio M (2002). BDNF modulates sensory neuron synaptic activity by a facilitation of GABA transmission in the dorsal horn. Molecular and cellular neurosciences , 21: 51–62
54 Pizza V, Agresta A, D'Acunto C W, Festa M, Capasso A (2011). Neuroinflamm-aging and neurodegenerative diseases: an overview. CNS Neurol Disord Drug Targets , 10: 621–634
55 Roux PP, Blenis J (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev , 68: 320–344
56 Samuels I S, Karlo J C, Faruzzi A N, Pickering K, Herrup K, Sweatt JD, Saitta S C, Landreth G E (2008). Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci , 28: 6983–6995
57 Sanjo H, Hikida M, Aiba Y, Mori Y, Hatano N, Ogata M, Kurosaki T (2007). Extracellular signal-regulated protein kinase 2 is required for efficient generation of B cells bearing antigen-specific immunoglobulin G. Molecular and Cellular Biology , 27: 1236–1246
58 Satoh Y, Endo S, Ikeda T, Yamada K, Ito M, Kuroki M, Hiramoto T, Imamura O, Kobayashi Y, Watanabe Y, Itohara S, Takishima K (2007). Extracellular signal-regulated kinase 2 (ERK2) knockdown mice show deficits in long-term memory; ERK2 has a specific function in learning and memory. J Neurosci , 27: 10765–10776
59 Satoh Y, Endo S, Nakata T, Kobayashi Y, Yamada K, Ikeda T, Takeuchi A, Hiramoto T, Watanabe Y, Kazama T (2011a). ERK2 contributes to the control of social behaviors in mice. J Neurosci , 31: 11953– 11967
60 Satoh Y, Kobayashi Y, Takeuchi A, Pages G, Pouyssegur J, Kazama T (2011b). Deletion of ERK1 and ERK2 in the CNS causes cortical abnormalities and neonatal lethality: Erk1 deficiency enhances the impairment of neurogenesis in Erk2-deficient mice. J Neurosci , 31: 1149–1155
61 Seger R, Krebs E G (1995). The MAPK signaling cascade. FASEB J , 9: 726–735
62 Selcher J C, Nekrasova T, Paylor R, Landreth G E, Sweatt J D (2001). Mice lacking the ERK1 isoform of MAP kinase are unimpaired in emotional learning. Learn Mem , 8: 11–19
63 Siuciak J A, Altar C A, Wiegand S J, Lindsay R M (1994). Antinociceptive effect of brain-derived neurotrophic factor and neurotrophin-3. Brain Research , 633: 326–330
64 Song X S, Cao J L, Xu Y B, He J H, Zhang L C, Zeng Y M (2005). Activation of ERK/CREB pathway in spinal cord contributes to chronic constrictive injury-induced neuropathic pain in rats. Acta Pharmacologica Sinica , 26: 789–798
65 Stanciu M, Wang Y, Kentor R, Burke N, Watkins S, Kress G, Reynolds I, Klann E, Angiolieri M R, Johnson J W, DeFranco D B (2000). Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem , 275: 12200–12206
66 Stariha R L, Kim S U (2001). Mitogen-activated protein kinase signalling in oligodendrocytes: a comparison of primary cultures and CG-4. Int J Dev Neurosci , 19: 427–437
67 Subramaniam S, Unsicker K (.2006). Extracellular signal-regulated kinase as an inducer of non-apoptotic neuronal death. Neuroscience , 138: 1055–1065
68 Subramaniam S, Unsicker K (2010). ERK and cell death: ERK1/2 in neuronal death. FEBS J , 277: 22–29
69 Suter M R, Wen Y R, Decosterd I, Ji R R (2007). Do glial cells control pain? Neuron Glia biology , 3: 255–268
70 Tronson N C, Schrick C, Fischer A, Sananbenesi F, Pages G, Pouyssegur J, Radulovic J (2008). Regulatory mechanisms of fear extinction and depression-like behavior. Neuropsychopharmacology , 33: 1570–1583
71 Tzschentke T M (2002). Glutamatergic mechanisms in different disease states: overview and therapeutical implications — an introduction. Amino Acids , 3: 147–152
72 Vantaggiato C, Formentini I, Bondanza A, Bonini C, Naldini L, Brambilla R (2006). ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. J Biol , 5: 14
73 Wang Y, Qin Z H (2010). Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis , 15: 1382–1402
74 Xu Q, Garraway S M, Weyerbacher A R, Shin S J, Inturrisi C E (2008). Activation of the neuronal extracellular signal-regulated kinase 2 in the spinal cord dorsal horn is required for complete Freund's adjuvant-induced pain hypersensitivity. J Neurosci , 28: 14087–14096
75 Yao Y, Li W, Wu J, Germann U A, Su M S, Kuida K, Boucher D M (2003). Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proc Natl Acad Sci USA , 100: 12759–12764
76 Yoon S, Seger R (2006). The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors , 24: 21–44
77 Yu C G, Yezierski R P (2005). Activation of the ERK1/2 signaling cascade by excitotoxic spinal cord injury. Brain Res Mol Brain Res , 138: 244–255
78 Yu C G, Yezierski R P, Joshi A, Raza K, Li Y, Geddes J W (2010). Involvement of ERK2 in traumatic spinal cord injury. J Neurochem , 113: 131–142
79 Zhao P, Waxman S G, Hains B C (2007). Extracellular signal-regulated kinase-regulated microglia-neuron signaling by prostaglandin E2 contributes to pain after spinal cord injury. J Neurosci , 27: 2357–2368
80 Zhou X, Li D, Resnick M B, Behar J, Wands J, Cao W (2011). Signaling in H2O2-induced increase in cell proliferation in Barrett's esophageal adenocarcinoma cells. J Pharmacol Exp Ther , 339: 218–227
81 Zhuang S, Schnellmann R G (2006). A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther , 319: 991–997
82 Zhuang Z Y, Gerner P, Woolf C J, Ji R R (2005). ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain , 114: 149–159
[1] Bharti Chaudhary, Sonam Agarwal, Renu Bist. Invulnerability of bromelain against oxidative degeneration and cholinergic deficits imposed by dichlorvos in mice brains[J]. Front. Biol., 2018, 13(1): 56-62.
[2] Mohammad Jodeiri Farshbaf. Succinate dehydrogenase in Parkinson’s disease[J]. Front. Biol., 2017, 12(3): 175-182.
[3] Kimberly D. Girling,Yu Tian Wang. Neuroprotective strategies for NMDAR-mediated excitotoxicity in Huntington’s Disease[J]. Front. Biol., 2016, 11(6): 439-458.
[4] Xin Xin Yu,Vimala Bondada,Colin Rogers,Carolyn A. Meyer,Chen Guang Yu. Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury[J]. Front. Biol., 2015, 10(5): 427-438.
[5] Claudia A. BERTUCCIO,Daniel C. DEVOR. Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases[J]. Front. Biol., 2015, 10(1): 52-60.
[6] Chandler L. WALKER, Nai-Kui LIU, Xiao-Ming XU. PTEN/PI3K and MAPK signaling in protection and pathology following CNS injuries[J]. Front Biol, 2013, 8(4): 421-433.
[7] Abiodun AJAYI, Xin YU, Anna-Lena STR?M. The role of NADPH oxidase (NOX) enzymes in neurodegenerative disease[J]. Front Biol, 2013, 8(2): 175-188.
[8] Jeffrey P. CANTLE, Xiao-Hong LU, Xiaofeng GU, X. William YANG. Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease[J]. Front Biol, 2012, 7(5): 459-476.
[9] Kimberly M. CHRISTIAN, Hongjun SONG, Guo-li MING. Application of reprogrammed patient cells to investigate the etiology of neurological and psychiatric disorders[J]. Front Biol, 2012, 7(3): 179-188.
[10] Tong LUO, Wei-Hua WU, Bo-Shiun CHEN. NMDA receptor signaling: death or survival?[J]. Front Biol, 2011, 6(6): 468-476.
[11] Jiani CAO, Zhifeng XIAO, Bing CHEN, Yuan GAO, Chunying SHI, Jinhuan WANG, Jianwu DAI. Differential effects of recombinant fusion proteins TAT-OCT4 and TAT-NANOG on adult human fibroblasts[J]. Front Biol, 2010, 5(5): 424-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed