Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2016, Vol. 11 Issue (6) : 439-458    https://doi.org/10.1007/s11515-016-1425-z
REVIEW
Neuroprotective strategies for NMDAR-mediated excitotoxicity in Huntington’s Disease
Kimberly D. Girling,Yu Tian Wang()
Djavad Mowafahian Centre for Brain Health & Department of Medicine, University of British Columbia, V6T 1Z3, Canada
 Download: PDF(1078 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Huntington’s Disease (HD) is an autosomal dominant neurodegenerative disease causing severe neurodegeneration of the striatum as well as marked cognitive and motor disabilities. Excitotoxicity, caused by overstimulation of NMDA receptors (NMDARs) has been shown to have a key role in the neuropathogenesis of HD, suggesting that targeting NMDAR-dependent signaling may be an effective clinical approach for HD. However, broad NMDAR antagonists are generally poor therapeutics in clinical practice. It has been suggested that GluN2A-containing, synaptically located NMDARs activate cell survival signaling pathways, while GluN2B-containing, primarily extrasynaptic NMDARs trigger cell death signaling. A better approach to development of effective therapeutics for HD may be to target, specifically, the cell-death specific pathways associated with extrasynaptic GluN2B NMDAR activation, while maintaining or potentiating the cell-survival activity of GluN2A-NMDARs.

OBJECTIVE: This review outlines the role of NMDAR-mediated excitotoxicity in HD and overviews current efforts to develop better therapeutics for HD where NMDAR excitotoxicity is the target.

METHODS: A systematic review process was conducted using the PubMed search engine focusing on research conducted in the past 5-10 years. 235 articles were consulted for the review, with key search terms including “Huntington’s Disease,” “excitotoxicity,” “NMDAR” and “therapeutics.”

RESULTS: A wide range of NMDAR excitotoxicity-based targets for HD were identified and reviewed, including targeting NMDARs directly by blocking GluN2B, extrasynaptic NMDARs and/or potentiating GluN2A, synaptic NMDARs, targeting glutamate release or uptake, or targeting specific downstream cell-death signaling of NMDARs.

CONCLUSION: The current review identifies NMDAR-mediated excitotoxicity as a key player in HD pathogenesis and points to various excitotoxicity-focused targets as potential future preventative therapeutics for HD.

Keywords Huntington’s Disease      NMDA receptor      excitotoxicity      cell death      therapeutics     
Corresponding Author(s): Yu Tian Wang   
Online First Date: 17 November 2016    Issue Date: 26 December 2016
 Cite this article:   
Kimberly D. Girling,Yu Tian Wang. Neuroprotective strategies for NMDAR-mediated excitotoxicity in Huntington’s Disease[J]. Front. Biol., 2016, 11(6): 439-458.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-016-1425-z
https://academic.hep.com.cn/fib/EN/Y2016/V11/I6/439
Fig.1  Dichotomous role of NMDARs in cell survival and cell death. Activation of synaptically located, primarily GluN2A-containing NMDARs is associated with a wide range of cell survival and plasticity-promoting signaling pathways. Activation of these receptors leads to increased CREB phosphorylation in the nucleus, driving transcription of a range of cell survival-promoting genes. GluN2A, synaptic NMDAR activation also activates calcium-dependent calcineurin, shown to be involved in LTP and plasticity. Similarly, synaptic, GluN2A-NMDARs promote signaling of several cell survival molecular pathways including ERK1/2, PI3K and BDNF. Conversely, extrasynaptic, primarily GluN2B-NMDARs are related to cell death signaling. These receptors inhibit many of the synaptic, GluN2A pathways, including CREB shutoff, inhibition of ERK1/2, BDNF and P13K, and signals many molecular pathways involved in cell death, including JNK, and p38 MAPK. Extrasynaptic GluN2B NMDARs also activate cleavage molecules caspase and m-calpain, involved in protein cleavage, apoptosis and cell death.
Fig.2  Schematic diagram of mHTT-dependent dysregulation in NMDAR expression and signaling in HD. Increased release from cortical (or thalamic) afferents stimulates NMDARs on medium spiny neurons in the striatum. Increased release and reduced reuptake from astrocytes leads to increased glutamate at the synapse, causing spillover and stimulating extrasynaptic, GluN2B-containing NMDARs, shown to be associated with cell death signaling. Increased NMDAR stimulation leads to increases in intracellular calcium, which stimulates increase in apoptotic signaling pathways, as well as activation of calcium-dependent molecules, such as caspases and calpains, which cleave mHTT into toxic fragments and stimulate cell death signaling. Calpain activation also leads to increased cleavage of GluN2B NMDARs, facilitating their movement from synaptic to extrasynaptic sites. Ca2+ also activates the calcium dependent molecule calcineurin, which subsequently activates STEP, which dephosphorylates and destabilizes synaptic NMDARs, reducing their expression. STEP also leads to the clathrin vesicle endocytosis of NMDARs, and their recycling to extasynaptic sites (not shown). mHTT influences PSD-95 interaction with NMDARs, interacting less strongly with GluN2A-NMDARs in the synapse, while stabilizing GluN2B-NMDARs extrasynaptically. Increased expression and stabilization of extrasynaptic NMDARs leads to increased sensitivity to NMDA, increased cell death and apoptotic signaling and dephosphorylation of CREB in the nucleus, leading to transcriptional dysregulation.
1 Aamodt S M, Constantine-Paton M (1999). The role of neural activity in synaptic development and its implications for adult brain function. Adv Neurol, 79: 133–144
pmid: 10514810
2 Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd J W, Wang Y T, Salter M W, Tymianski M (2002). Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science, 298(5594): 846–850
pmid: 12399596
3 Abiltrub M, Shattock M ( 2013). Cardiac dysautonomia in Huntington’s disease. J Huntington Dis, 2(3): 251–261
4 Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N (1994). Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol, 347(1): 150–160
pmid: 7798379
5 Albin R L, Young A B, Penney J B, Handelin B, Balfour R, Anderson K D, Markel D S, Tourtellotte W W, Reiner A (1990). Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in presymptomatic Huntington’s disease. N Engl J Med, 322(18): 1293–1298
pmid: 1691447
6 Arai A, Vanderklish P, Kessler M, Lee K, Lynch G (1991). A brief period of hypoxia causes proteolysis of cytoskeletal proteins in hippocampal slices. Brain Res, 555(2): 276–280
pmid: 1933340
7 Arlinghaus L, Mehdi S, Lee K S (1991). Improved posthypoxic recovery with a membrane-permeable calpain inhibitor. Eur J Pharmacol, 209(1-2): 123–125
pmid: 1814757
8 Balázs R, Hack N, Jørgensen O S (1988). Stimulation of the receptor has a trophic effect on differentiating cerebellar granule cells. Neurosci Lett, 87(1–2): 80–86
pmid: PMID:2837687
9 Balázs R, Hack N,Jørgensen O S ( 1990). Interactive effects involving different classes of excitatory amino acid receptors and the survival of cerebellar granule cells in culture. Int J Dev Neurosci,8(4): 347–359
10 Balázs R, Hack N, Jørgensen O S, Cotman C W (1989). N-methyl-D-aspartate promotes the survival of cerebellar granule cells: pharmacological characterization. Neurosci Lett, 101(3): 241–246
pmid: 2549463
11 Balázs R, Jørgensen O S, Hack N (1988). N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience, 27(2): 437–451
pmid: 2905787
12 Bano D, Young K W, Guerin C J, Lefeuvre R, Rothwell N J, Naldini L, Rizzuto R, Carafoli E, Nicotera P (2005). Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell, 120(2): 275–285
pmid: 15680332
13 Beal M F (1998). Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann Neurol, 44(3 Suppl 1): S110–S114
pmid: 9749581
14 Beal M F, Kowall N W, Ellison D W, Mazurek M F, Swartz K J, Martin J B (1986). Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature, 321(6066): 168–171
pmid: 2422561
15 Beighton P, Hayden M R (1981). Huntington’s chorea. S Afr Med J, 59(8): 250
pmid: 6451036
16 Benveniste M, Mayer M L (1991). Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys J, 59(3): 560–573
pmid: 1710938
17 Berliocchi L, Bano D, Nicotera P (2005). Ca2+ signals and death programmes in neurons. Philos Trans R Soc Lond B Biol Sci, 360(1464): 2255–2258
pmid: 16321795
18 Bliss T V P, Collingridge G L (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361(6407): 31–39
pmid: 8421494
19 Brenman J E, Chao D S, Gee S H, McGee A W, Craven S E, Santillano D R, Wu Z, Huang F, Xia H, Peters M F, Froehner S C, Bredt D S (1996). Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell, 84(5): 757–767
pmid: 8625413
20 Brenneman D E, Forsythe I D, Nicol T, Nelson P G (1990a). N-methyl-D-aspartate receptors influence neuronal survival in developing spinal cord cultures. Brain Res Dev Brain Res, 51(1): 63–68
pmid: 1967564
21 Brenneman D E, Yu C, Nelson P G (1990b). Multi-determinate regulation of neuronal survival: neuropeptides, excitatory amino acids and bioelectric activity. Int J Dev Neurosci, 8(4): 371–378
23 Burde R M, Schainker B, Kayes J (1971). Acute effect of oral and subcutaneous administration of monosodium glutamate on the arcuate nucleus of the hypothalamus in mice and rats. Nature, 233(5314): 58–60
pmid: 12058742
24 Burns L H, Pakzaban P, Deacon T W, Brownell A L, Tatter S B, Jenkins B G, Isacson O (1995). Selective putaminal excitotoxic lesions in non-human primates model the movement disorder of Huntington disease. Neuroscience, 64(4): 1007–1017
pmid: 7753372
22 Carroll J, Southwell A L, Graham R K, Lerch J P, Ehrnhoefer D E, Cao L P, Zhang W N, Deng Y, Bissada N, Henkelman R M, Hayden M R (2011). Mice lacking caspase-2 are protected from behavioral changes, but not pathology, in the YAC128 model of Huntington disease. Moler Neurodegener, 6(1): 59
pmid: 12574425
25 Cepeda C, Hurst R S, Calvert C R, Hern�ndez-Echeagaray E, Nguyen O K, Jocoy E, Christian L J, Ariano M A, Levine M S (2003). Transient and progressive electrophysiological alterations in the corticostriatal pathway in a mouse model of Huntington’s disease. J Neurosci, 23(3): 961–969
pmid: 12574425
26 Cepeda C, Itri J N, Flores-Hernández J, Hurst R S, Calvert C R, Levine M S (2001). Differential sensitivity of medium- and large-sized striatal neurons to NMDA but not kainate receptor activation in the rat. Eur J Neurosci, 14(10): 1577–1589
pmid: 11860453
27 Chapman D E, Keefe K A, Wilcox K S (2003). Evidence for functionally distinct synaptic NMDA receptors in ventromedial versus dorsolateral striatum. J Neurophysiol, 89(1): 69–80
pmid: 12522160
28 Chen M, Lu T J, Chen X J, Zhou Y, Chen Q, Feng X Y, Xu L, Duan W H, Xiong Z Q (2008). Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke, 39(11): 3042–3048
pmid: 18688011
29 Chen M, Ona V O, Li M, Ferrante R J, Fink K B, Zhu S, Bian J, Guo L, Farrell L A, Hersch S M, Hobbs W, Vonsattel J P, Cha J H, Friedlander R M (2000). Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med, 6(7): 797–801
pmid: 10888929
30 Chen N, Luo T, Wellington C, Metzler M, McCutcheon K, Hayden M R, Raymond L A (1999). Subtype-specific enhancement of NMDA receptor currents by mutant huntingtin. J Neurochem, 72(5): 1890–1898
pmid: 10217265
31 Choi D W (1995). Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci, 18(2): 58–60
pmid: 7537408
32 Choi D W, Koh J Y, Peters S (1988). Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci, 8(1): 185–196
pmid: 2892896
33 Clements J D, Westbrook G L (1991). Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron, 7(4): 605–613
pmid: 1681832
46 Cottrell J R, Dubé G R, Egles C, Liu G (2000). Distribution, density, and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons. J Neurophysiol, 84(3): 1573–1587
pmid: 2860206
34 Cowan C M, Fan M M, Fan J, Shehadeh J, Zhang L Y, Graham R K, Hayden M R, Raymond L A (2008). Polyglutamine-modulated striatal calpain activity in YAC transgenic huntington disease mouse model: impact on NMDA receptor function and toxicity. J Neurosci, 28(48): 12725–12735
pmid: 19036965
35 Coyle J T, Schwarcz R (1976). Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature, 263(5574): 244–246
pmid: 8731
36 Craven S E, El-Husseini A E, Bredt D S (1999). Synaptic targeting of the postsynaptic density protein PSD-95 mediated by lipid and protein motifs. Neuron, 22(3): 497–509
pmid: 10197530
37 Cross A J, Slater P, Reynolds G P (1986). Reduced high-affinity glutamate uptake sites in the brains of patients with Huntington’s disease. Neurosci Lett, 67(2): 198–202
pmid: 2873534
38 Cull-Candy S, Brickley S, Farrant M (2001). NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol, 11(3): 327–335
pmid: 11399431
39 Cull-Candy S G, Leszkiewicz D N (2004). Role of distinct NMDA receptor subtypes at central synapses. Sci STKE, 2004(255): re16
pmid: 15494561
40 Dau A, Gladding C M, Sepers M D, Raymond L A (2014). Chronic blockade of extrasynaptic NMDA receptors ameliorates synaptic dysfunction and pro-death signaling in Huntington disease transgenic mice. Neurobiol Dis, 62: 533–542
pmid: 24269729
41 DeRidder M N, Simon M J, Siman R, Auberson Y P, Raghupathi R, Meaney D F (2006). Traumatic mechanical injury to the hippocampus in vitro causes regional caspase-3 and calpain activation that is influenced by NMDA receptor subunit composition. Neurobiol Dis, 22(1): 165–176
pmid: 16356733
42 Didier M, Roux P, Piechaczyk M, Verrier B, Bockaert J, Pin J P (1989). Cerebellar granule cell survival and maturation induced by K+ and NMDA correlate with c-fos proto-oncogene expression. Neurosci Lett, 107(1-3): 55–62
pmid: 2575730
43 DiFiglia M (1990). Excitotoxic injury of the neostriatum: a model for Huntington’s disease. Trends Neurosci, 13(7): 286–289
pmid: 1695405
44 Dingledine R, Borges K, Bowie D, Traynelis S F (1999). The glutamate receptor ion channels. Pharmacol Rev, 51(1): 7–61
pmid: 10049997
45 Dragunow M, Faull R L, Lawlor P, Beilharz E J, Singleton K, Walker E B, Mee E (1995). In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. Neuroreport, 6(7): 1053–1057
pmid: 7632894
47 Ehrlich M E (2012). Huntington’s disease and the striatal medium spiny neuron: cell-autonomous and non-cell-autonomous mechanisms of disease. Neurotherapeutics, 9(2): 270–284
pmid: 22441874
48 El-Husseini A E, Schnell E, Chetkovich D M, Nicoll R A, Bredt D S (2000). PSD-95 involvement in maturation of excitatory synapses. Science, 290(5495): 1364–1368
pmid: 11082065
49 Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, Dufour N, Guillermier M, Brouillet E, Hantraye P, Déglon N, Ferrante R J, Bonvento G (2010). In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington’s disease subjects. Hum Mol Genet, 19(15): 3053–3067
pmid: 20494921
50 Fan J, Cowan C M, Zhang L Y, Hayden M R, Raymond L A (2009). Interaction of postsynaptic density protein-95 with NMDA receptors influences excitotoxicity in the yeast artificial chromosome mouse model of Huntington’s disease. J Neurosci, 29(35): 10928–10938
pmid: 19726651
51 Fan M M Y, Fernandes H B, Zhang L Y, Hayden M R, Raymond L A (2007). Altered NMDA receptor trafficking in a yeast artificial chromosome transgenic mouse model of Huntington’s disease. J Neurosci, 27(14): 3768–3779
pmid: 17409241
52 Fan M M Y, Raymond L A (2007). N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog Neurobiol, 81(5-6): 272–293
pmid: 17188796
53 Fan X, Jin W Y, Lu J, Wang J, Wang Y T (2014). Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat Neurosci, 17(3): 471–480
pmid: 24464042
55 Ferrante R J, Kowall N W, Beal M F, Martin J B, Bird E D, Richardson E P Jr (1987). Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol, 46(1): 12–27
pmid: 2947977
56 Ferrante R J, Kowall N W, Cipolloni P B, Storey E, Beal M F (1993). Excitotoxin lesions in primates as a model for Huntington’s disease: histopathologic and neurochemical characterization. Exp Neurol, 119(1): 46–71
pmid: 8432351
57 Fischer G, Mutel V, Trube G, Malherbe P, Kew J N, Mohacsi E, Heitz M P, Kemp J A (1997). Ro 25-6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit. Characterization in vitro. J Pharmacol Exp Ther, 283(3): 1285–1292
pmid: 9400004
58 Flint A C, Maisch U S, Weishaupt J H, Kriegstein A R, Monyer H (1997). NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci, 17(7): 2469–2476
pmid: 9065507
59 Foster K A, McLaughlin N, Edbauer D, Phillips M, Bolton A, Constantine-Paton M, Sheng M (2010). Distinct roles of NR2A and NR2B cytoplasmic tails in long-term potentiation. J Neurosci, 30(7): 2676–2685
pmid: 20164351
60 Franklin J L, Johnson E M Jr (1992). Suppression of programmed neuronal death by sustained elevation of cytoplasmic calcium. Trends Neurosci, 15(12): 501–508
pmid: 1282751
61 Freedman J K, Potts A M (1962). Repression of glutaminase I in the rat retina by administration of sodium-L-glutamate. Invest Ophthalmol, 1: 118–121
pmid: 13894868
62 Friedman L K (2006). Calcium: a role for neuroprotection and sustained adaptation. Mol Interv, 6(6): 315–329
pmid: 17200459
63 Gafni J, Ellerby L M (2002). Calpain activation in Huntington’s disease. J Neurosci, 22(12): 4842–4849
pmid: 12077181
64 Gallagher M J, Huang H, Pritchett D B, Lynch D R (1996). Interactions between ifenprodil and the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem, 271(16): 9603–9611
pmid: 8621635
65 Gascón S, Sobrado M, Roda J M, Rodríguez-Peña A, Díaz-Guerra M (2008). Excitotoxicity and focal cerebral ischemia induce truncation of the NR2A and NR2B subunits of the NMDA receptor and cleavage of the scaffolding protein PSD-95. Mol Psychiatry, 13(1): 99–114
pmid: 17486105
54 Gladding C M, Fan J, Zhang L Y, Wang L, Xu J, Li E H, Lombroso P J, Raymond L A (2014). Alterations in STriatal-Enriched protein tyrosine Phosphatase expression, activation, and downstream signaling in early and late stages of the YAC128 Huntington's disease mouse model. J Neurochem, 130(1): 145–159
pmid: 22479519
66 Gladding C M, Raymond L A (2011). Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci, 48(4): 308–320
pmid: 21600287
67 Gladding C M, Sepers M D, Xu J, Zhang L Y, Milnerwood A J, Lombroso P J, Raymond L A (2012). Calpain and STriatal-Enriched protein tyrosine phosphatase (STEP) activation contribute to extrasynaptic NMDA receptor localization in a Huntington’s disease mouse model. Hum Mol Genet, 21(17): 3739–3752
pmid: 22523092
68 Gotti B, Duverger D, Bertin J, Carter C, Dupont R, Frost J, Gaudilliere B, MacKenzie E T, Rousseau J, Scatton B, (1988). Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. I. Evidence for efficacy in models of focal cerebral ischemia. J Pharmacol Exp Ther, 247(3): 1211–1221
pmid: 2849668
69 Gouix E, Léveillé F, Nicole O, Melon C, Had-Aissouni L, Buisson A (2009). Reverse glial glutamate uptake triggers neuronal cell death through extrasynaptic NMDA receptor activation. Mol Cell Neurosci, 40(4): 463–473
pmid: 19340933
95 Graham D, Darles J, Langer S (1992). The neuroprotective properties of ifenprodil, a novel NMDA receptor antagonist, in neuronal cell culture toxicity studies. Eur J Pharmacol, 226(4): 373–376
pmid: 19918059
70 Graham R K, Deng Y, Carroll J, Vaid K, Cowan C, Pouladi M A, Metzler M, Bissada N, Wang L, Faull R L, Gray M, Yang X W, Raymond L A, Hayden M R (2010). Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J Neurosci, 30(45): 15019–15029
pmid: 21068307
71 Graham R K, Deng Y, Slow E J, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z, Warby S C, Doty C N, Roy S, Wellington C L, Leavitt B R, Raymond L A, Nicholson D W, Hayden M R (2006a). Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell, 125(6): 1179–1191
pmid: 16777606
72 Graham R K, Ehrnhoefer D E, Hayden M R (2011). Caspase-6 and neurodegeneration. Trends Neurosci, 34(12): 646–656
pmid: 22018804
73 Graham R K, Pouladi M A, Joshi P, Lu G, Deng Y, Wu N P, Figueroa B E, Metzler M, Andr� V M, Slow E J, Raymond L, Friedlander R, Levine M S, Leavitt B R, Hayden M R (2009). Differential susceptibility to excitotoxic stress in YAC128 mouse models of Huntington disease between initiation and progression of disease. J Neurosci, 29(7): 2193–2204
pmid: 19228972
74 Graham R K, Slow E J, Deng Y, Bissada N, Lu G, Pearson J, Shehadeh J, Leavitt B R, Raymond L A, Hayden M R (2006b). Levels of mutant huntingtin influence the phenotypic severity of Huntington disease in YAC128 mouse models. Neurobiol Dis, 21(2): 444–455
pmid: 16230019
75 Graveland G A, Williams R S, DiFiglia M (1985). Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science, 227(4688): 770–773
pmid: 3155875
76 Groc L, Heine M, Cousins S L, Stephenson F A, Lounis B, Cognet L, Choquet D (2006). NMDA receptor surface mobility depends on NR2A-2B subunits. Proc Natl Acad Sci U S A, 103(49): 18769–18774
pmid: 17124177
237 Grossberg G T, Thomas S J (2009). Memantine: a review of studies into its safety and efficacy in treating Alzheimer's disease and other dementias. Clin Interv Aging, 4: 367–377
77 Guidetti P, Bates G P, Graham R K, Hayden M R, Leavitt B R, MacDonald M E, Slow E J, Wheeler V C, Woodman B, Schwarcz R (2006). Elevated brain 3-hydroxykynurenine and quinolinate levels in Huntington disease mice. Neurobiol Dis, 23(1): 190–197
pmid: 16697652
78 Guidetti P, Luthi-Carter R E, Augood S J, Schwarcz R (2004). Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis, 17(3): 455–461
pmid: 15571981
79 Guttmann R P, Baker D L, Seifert K M, Cohen A S, Coulter D A, Lynch D R (2001). Specific proteolysis of the NR2 subunit at multiple sites by calpain. J Neurochem, 78(5): 1083–1093
pmid: 11553682
80 Guttmann R P, Sokol S, Baker D L, Simpkins K L, Dong Y, Lynch D R (2002). Proteolysis of the N-methyl-d-aspartate receptor by calpain in situ. J Pharmacol Exp Ther, 302(3): 1023–1030
pmid: 12183659
81 Hansson O, Guatteo E, Mercuri N B, Bernardi G, Li X J, Castilho R F, Brundin P (2001). Resistance to NMDA toxicity correlates with appearance of nuclear inclusions, behavioural deficits and changes in calcium homeostasis in mice transgenic for exon 1 of the huntington gene. Eur J Neurosci, 14(9): 1492–1504
pmid: 11722611
82 Hantraye P, Riche D, Maziere M, Isacson O (1990). A primate model of Huntington’s disease: behavioral and anatomical studies of unilateral excitotoxic lesions of the caudate-putamen in the baboon. Exp Neurol, 108(2): 91–104
pmid: 2139853
83 Hardingham G E, Bading H (2003). The Yin and Yang of NMDA receptor signalling. Trends Neurosci, 26(2): 81–89
pmid: 12536131
84 Hardingham G E, Bading H (2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci, 11(10): 682–696
pmid: 20842175
85 Hardingham G E, Fukunaga Y, Bading H (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci, 5(5): 405–414
pmid: 11953750
86 Harjes P, Wanker E E (2003). The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem Sci, 28(8): 425–433
pmid: 12932731
87 Harris A Z, Pettit D L (2007). Extrasynaptic and synaptic NMDA receptors form stable and uniform pools in rat hippocampal slices. J Physiol, 584(Pt 2): 509–519
pmid: 17717018
88 Hassel B, Tessler S, Faull R L, Emson P C (2008). Glutamate uptake is reduced in prefrontal cortex in Huntington’s disease. Neurochem Res, 33(2): 232–237
pmid: 17726644
89 Hayashi T, Thomas G M, Huganir R L (2009). Dual palmitoylation of NR2 subunits regulates NMDA receptor trafficking. Neuron, 64(2): 213–226
pmid: 19874789
90 Heinsen H, Rüb U, Gangnus D, Jungkunz G, Bauer M, Ulmar G, Bethke B, Schüler M, Böcker F, Eisenmenger W, Götz M, Strik M (1996). Nerve cell loss in the thalamic centromedian-parafascicular complex in patients with Huntington’s disease. Acta Neuropathol, 91(2): 161–168
pmid: 8787149
91 Hermel E, Gafni J, Propp S S, Leavitt B R, Wellington C L, Young J E, Hackam A S, Logvinova A V, Peel A L, Chen S F, Hook V, Singaraja R, Krajewski S, Goldsmith P C, Ellerby H M, Hayden M R, Bredesen D E, Ellerby L M (2004). Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington’s disease. Cell Death Differ, 11(4): 424–438
pmid: 14713958
92 Hodges A, Strand A D, Aragaki A K, Kuhn A, Sengstag T, Hughes G, Elliston L A, Hartog C, Goldstein D R, Thu D, Hollingsworth Z R, Collin F, Synek B, Holmans P A, Young A B, Wexler N S, Delorenzi M, Kooperberg C, Augood S J, Faull R L, Olson J M, Jones L, Luthi-Carter R (2006). Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet, 15(6): 965– 977
pmid: 16467349
93 Hodgson J G, Agopyan N, Gutekunst C A, Leavitt B R, LePiane F, Singaraja R, Smith D J, Bissada N, McCutcheon K, Nasir J, Jamot L, Li X J, Stevens M E, Rosemond E, Roder J C, Phillips A G, Rubin E M, Hersch S M, Hayden M R (1999). A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron, 23(1): 181–192
pmid: 10402204
94 Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R, Burns A, Dening T, Findlay D, Holmes C, Hughes A, Jacoby R, Jones R, Jones R, McKeith I, Macharouthu A, O’Brien J, Passmore P, Sheehan B, Juszczak E, Katona C, Hills R, Knapp M, Ballard C, Brown R, Banerjee S, Onions C, Griffin M, Adams J, Gray R, Johnson T, Bentham P, Phillips P (2012). Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med, 366(10): 893–903
pmid: 22397651
96 Huang K, Kang M H, Askew C, Kang R, Sanders S S, Wan J, Davis N G, Hayden M R (2010). Palmitoylation and function of glial glutamate transporter-1 is reduced in the YAC128 mouse model of Huntington disease. Neurobiol Dis, 40(1): 207–215
pmid: 20685337
97 Huang K, Yanai A, Kang R, Arstikaitis P, Singaraja R R, Metzler M, Mullard A, Haigh B, Gauthier-Campbell C, Gutekunst C A, Hayden M R, El-Husseini A (2004). Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron, 44(6): 977–986
pmid: 15603740
98 Hynd M R, Scott H L, Dodd P R (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int, 45(5): 583–595
pmid: 15234100
99 Ikonomidou C, Turski L (2002). Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol, 1(6): 383–386
pmid: 12849400
100 Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M, (1993). Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem, 268(4): 2836–2843
pmid: 8428958
101 Izumi Y, Tokuda K, Zorumski C F (2008). Long-term potentiation inhibition by low-level N-methyl-D-aspartate receptor activation involves calcineurin, nitric oxide, and p38 mitogen-activated protein kinase. Hippocampus, 18(3): 258–265
pmid: 18000819
102 Jarabek B R (2003). Regulation of proteins affecting NMDA receptor-induced excitotoxicity in a Huntington’s mouse model. Brain, 127(3): 505–516
103 Johnson J W, Ascher P (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature, 325(6104): 529–531
pmid: 2433595
104 Johnston M V (2005). Excitotoxicity in perinatal brain injury. Brain Pathol, 15(3): 234–240
pmid: 16196390
105 Kaltenbach L S, Romero E, Becklin R R, Chettier R, Bell R, Phansalkar A, Strand A, Torcassi C, Savage J, Hurlburt A, Cha G H, Ukani L, Chepanoske C L, Zhen Y, Sahasrabudhe S, Olson J, Kurschner C, Ellerby L M, Peltier J M, Botas J, Hughes R E (2007). Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet, 3(5): e82
pmid: 17500595
106 Kandel E R, Schwartz J H, Jessell T M (1995). Essentials of Neural Science and Behavior. McGraw Hill Professional
107 Kassubek J, Bernhard Landwehrmeyer G, Ecker D, Juengling F D, Muche R, Schuller S, Weindl A, Peinemann A (2004). Global cerebral atrophy in early stages of Huntington’s disease: quantitative MRI study. Neuroreport, 15(2): 363–365
pmid: 15076769
108 Katagiri H, Tanaka K, Manabe T (2001). Requirement of appropriate glutamate concentrations in the synaptic cleft for hippocampal LTP induction. Eur J Neurosci, 14(3): 547–553
pmid: 11553304
109 Katsura K, Ekholm A, Siesjö B K (1992). Coupling among changes in energy metabolism, acid-base homeostasis, and ion fluxes in ischemia. Can J Physiol Pharmacol, 70(Suppl): S170–S175
pmid: 1284229
110 Kaufman A M, Milnerwood A J, Sepers M D, Coquinco A, She K, Wang L, Lee H, Craig A M, Cynader M, Raymond L A (2012). Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons. J Neurosci, 32(12): 3992–4003
pmid: 22442066
111 Kew J N, Trube G, Kemp J A (1996). A novel mechanism of activity-dependent NMDA receptor antagonism describes the effect of ifenprodil in rat cultured cortical neurones. J Physiol, 497(Pt 3): 761–772
pmid: 9003561
112 Kim M, Velier J, Chase K, Laforet G, Kalchman M A, Hayden M R, Won L, Heller A, Aronin N, Difiglia M (1999). Forskolin and dopamine D1 receptor activation increase huntingtin’s association with endosomes in immortalized neuronal cells of striatal origin. Neuroscience, 89(4): 1159–1167
pmid: 10362304
113 Klapstein G J, Fisher R S, Zanjani H, Cepeda C, Jokel E S, Chesselet M F, Levine M S (2001). Electrophysiological and morphological changes in striatal spiny neurons in R6/2 Huntington’s disease transgenic mice. J Neurophysiol, 86(6): 2667–2677
pmid: 11731527
114 Koike T, Martin D P, Johnson E M Jr (1989). Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells. Proc Natl Acad Sci U S A, 86(16): 6421–6425
pmid: 2548215
115 Kornau H C, Schenker L T, Kennedy M B, Seeburg P H (1995). Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science, 269(5231): 1737–1740
pmid: 7569905
116 Koutsilieri E, Riederer P (2007). Excitotoxicity and new antiglutamatergic strategies in Parkinson’s disease and Alzheimer’s disease. Parkinsonism Relat Disord, 13(Suppl 3): S329–S331
pmid: 18267259
117 Kremer B, Clark C M, Almqvist E W, Raymond L A, Graf P, Jacova C, Mezei M, Hardy M A, Snow B, Martin W, Hayden M R (1999). Influence of lamotrigine on progression of early Huntington disease: a randomized clinical trial. Neurology, 53(5): 1000–1011
pmid: 10496259
118 Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M, Mishina M (1992). Molecular diversity of the NMDA receptor channel. Nature, 358(6381): 36–41
pmid: PMID:1377365
120 Lai T W, Wang Y T (2010). Fashioning drugs for stroke. Nat Med, 16(12): 1376–1378
pmid: 21135846
121 Lai T W, Zhang S, Wang Y T (2014). Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol, 115: 157–188
pmid: 24361499
122 Lan J Y, Skeberdis V A, Jover T, Grooms S Y, Lin Y, Araneda R C, Zheng X, Bennett M V, Zukin R S (2001). Protein kinase C modulates NMDA receptor trafficking and gating. Nat Neurosci, 4(4): 382–390
pmid: 11276228
123 Lee K S, Frank S, Vanderklish P, Arai A, Lynch G (1991). Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc Natl Acad Sci U S A, 88(16): 7233–7237
pmid: 1871130
124 Lee M S, Kwon Y T, Li M, Peng J, Friedlander R M, Tsai L H (2000). Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature, 405(6784): 360–364
pmid: 10830966
125 Lester R A J, Clements J D, Westbrook G L, Jahr C E (1990). Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature, 346(6284): 565–567
pmid: 1974037
126 Levine M S, Klapstein G J, Koppel A, Gruen E, Cepeda C, Vargas M E, Jokel E S, Carpenter E M, Zanjani H, Hurst R S, Efstratiadis A, Zeitlin S, Chesselet M F (1999). Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington's disease. J Neurosci Res, 58(4):515–532
127 Levine M S, Klapstein G J, Koppel A, Gruen E, Cepeda C, Vargas M E, Jokel E S, Carpenter E M, Zanjani H, Hurst R S, Efstratiadis A, Zeitlin S, Chesselet M F (1999). Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J Neurosci Res, 58(4): 515–532
pmid: 10533044
128 Li J H, Wang Y H, Wolfe B B, Krueger K E, Corsi L, Stocca G, Vicini S (1998). Developmental changes in localization of NMDA receptor subunits in primary cultures of cortical neurons. Eur J Neurosci, 10(5): 1704–1715
pmid: 9751142
119 Li L, Murphy T H, Hayden M R, Raymond L A (2004). Enhanced striatal NR2B-containing N-methyl-D-aspartate receptor-mediated synaptic currents in a mouse model of Huntington disease. J Neurophysiol, 92(5): 2738–2746
pmid: 21310659
239 Li X, Standley C, Sapp E, Valencia A, Qin Z H, Kegel K B, Yoder J, Comer-Tierney L A, Esteves M, Chase K, Alexander J, Masso N, Sobin L, Bellve K, Tuft R, Lifshitz L, Fogarty K, Aronin N, DiFiglia M (2009). Mutant Huntingtin Impairs Vesicle Formation from Recycling Endosomes by Interfering with Rab11 Activity. Mol Cell Biol, 29(22): 6106–6116
pmid: 21310659
240 Li S, Jin M, Koeglsperger T, Shepardson N E, Shankar G M, Selkoe D J (2011). Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci, 31(8): 6627–6638
pmid: 21310659
129 Liévens J C, Woodman B, Mahal A, Spasic-Boscovic O, Samuel D, Kerkerian-Le Goff L, Bates G P (2001). Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis, 8(5): 807–821
pmid: 11592850
130 Lim D, Fedrizzi L, Tartari M, Zuccato C, Cattaneo E, Brini M, Carafoli E (2008). Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease. J Biol Chem, 283(9): 5780–5789
pmid: 18156184
131 Lin Y, Skeberdis V A, Francesconi A, Bennett M V, Zukin R S (2004). Postsynaptic density protein-95 regulates NMDA channel gating and surface expression. J Neurosci, 24(45): 10138–10148
pmid: 15537884
132 Lipton S A (2004a). Failures and successes of NMDA receptor antagonists: molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx, 1(1): 101–110
133 Lipton S A (2004b). Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J Alzheimers Dis, 6(6 Suppl): S61–S74
pmid: 15665416
134 Liu D D, Yang Q, Li S T (2013). Activation of extrasynaptic NMDA receptors induces LTD in rat hippocampal CA1 neurons. Brain Res Bull, 93: 10–16
pmid: 23270879
135 Liu L, Wong T P, Pozza M F, Lingenhoehl K, Wang Y, Sheng M, Auberson Y P, Wang Y T (2004). Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science, 304(5673): 1021–1024
pmid: 15143284
136 Liu Y, Wong T P, Aarts M, Rooyakkers A, Liu L, Lai T W, Wu D C, Lu J, Tymianski M, Craig A M, Wang Y T (2007). NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci, 27(11): 2846–2857
pmid: 17360906
137 López-Menéndez C, Gascón S, Sobrado M, Vidaurre O G, Higuero A M, Rodríguez-Peña A, Iglesias T, Díaz-Guerra M (2009). Kidins220/ARMS downregulation by excitotoxic activation of NMDARs reveals its involvement in neuronal survival and death pathways. J Cell Sci, 122(Pt 19): 3554–3565
pmid: 19759287
138 Lu W, Man H, Ju W, Trimble W S, MacDonald J F, Wang Y T (2001). Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron, 29(1): 243–254
pmid: 11182095
139 Lucas D R, Newhouse J P (1957). The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol, 58(2): 193–201
pmid: 13443577
140 MacDermott A B, Mayer M L, Westbrook G L, Smith S J, Barker J L (1986). NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature, 321(6069): 519–522
pmid: 3012362
141 MacDonald M E, , and the The Huntington’s Disease Collaborative Research Group (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72(6): 971–983
pmid: 8458085
142 Man H Y, Wang Q, Lu W Y, Ju W, Ahmadian G, Liu L, D’Souza S, Wong T P, Taghibiglou C, Lu J, Becker L E, Pei L, Liu F, Wymann M P, MacDonald J F, Wang Y T (2003). Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron, 38(4): 611–624
pmid: 12765612
143 Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies S W, Bates G P (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87(3): 493–506
pmid: 8898202
144 Marklund N, Bakshi A, Castelbuono D J, Conte V, McIntosh T K (2006). Evaluation of pharmacological treatment strategies in traumatic brain injury. Curr Pharm Des, 12(13): 1645–1680
https://doi.org/10.2174/138161206776843340 pmid: 16729876
145 Martel M A, Ryan T J, Bell K F, Fowler J H, McMahon A, Al-Mubarak B, Komiyama N H, Horsburgh K, Kind P C, Grant S G, Wyllie D J, Hardingham G E (2012). The subtype of GluN2 C-terminal domain determines the response to excitotoxic insults. Neuron, 74(3): 543–556
pmid: 22578505
146 Martel M A, Wyllie D J A, Hardingham G E (2009). In developing hippocampal neurons, NR2B-containing N-methyl-D-aspartate receptors (NMDARs) can mediate signaling to neuronal survival and synaptic potentiation, as well as neuronal death. Neuroscience, 158(1): 334–343
pmid: 18378405
147 Martin H G S, Wang Y T (2010). Blocking the deadly effects of the NMDA receptor in stroke. Cell, 140(2): 174–176
pmid: 20141829
148 Matsumoto T, Obrenovitch T P, Parkinson N A, Symon L (1990). Cortical activity, ionic homeostasis, and acidosis during rat brain repetitive ischemia. Stroke, 21(8): 1192–1198
pmid: 2389300
149 Mattison H A, Hayashi T, Barria A (2012). Palmitoylation at two cysteine clusters on the C-terminus of GluN2A and GluN2B differentially control synaptic targeting of NMDA receptors. PLoS One, 7(11): e49089
pmid: 23166606
150 Mayer M L, Westbrook G L, Guthrie P B (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature, 309(5965): 261–263
pmid: 6325946
151 McGeer E G, McGeer P L (1976). Duplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acids. Nature, 263(5577): 517–519
154 Miller B R, Dorner J L, Shou M, Sari Y, Barton S J, Sengelaub D R, Kennedy R T, Rebec G V (2008). Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience, 153(1): 329–337
pmid: 18353560
155 Milnerwood A J, Cummings D M, Dallérac G M, Brown J Y, Vatsavayai S C, Hirst M C, Rezaie P, Murphy K P (2006). Early development of aberrant synaptic plasticity in a mouse model of Huntington’s disease. Hum Mol Genet, 15(10): 1690–1703
pmid: 16600988
156 Milnerwood A J, Gladding C M, Pouladi M A, Kaufman A M, Hines R M, Boyd J D, Ko R W, Vasuta O C, Graham R K, Hayden M R, Murphy T H, Raymond L A (2010). Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice. Neuron, 65(2): 178–190
pmid: 20152125
153 Milnerwood A J, Kaufman A M, Sepers M D, Gladding C M, Zhang L, Wang L, Fan J, Coquinco A, Qiao J Y, Lee H, Wang Y T, Cynader M, Raymond L A (2012). Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington's disease mice. Neurobiol Dis, 48(1): 40–51
pmid: 16625572
157 Milnerwood A J, Raymond L A (2007). Corticostriatal synaptic function in mouse models of Huntington’s disease: early effects of huntingtin repeat length and protein load. J Physiol, 585(Pt 3): 817–831
pmid: 17947312
158 Minnerup J, Sutherland B A, Buchan A M, Kleinschnitz C (2012). Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci, 13(9): 11753–11772
pmid: 23109881
159 Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg P H (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science, 256(5060): 1217–1221
pmid: 1350383
160 Mori H,Mishina M (1996). Molecular diversity and physiological roles of the NMDA-receptor channel. Nihon Yakurigaku Zasshi, 108(1): 1–12
161 Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature, 354(6348): 31–37
pmid: 1834949
162 Murphy K P, Carter R J, Lione L A, Mangiarini L, Mahal A, Bates G P, Dunnett S B, Morton A J (2000). Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington’s disease mutation. J Neurosci, 20(13): 5115–5123
pmid: 10864968
163 O’Donnell L A, Agrawal A, Jordan-Sciutto K L, Dichter M A, Lynch D R, Kolson D L (2006). Human immunodeficiency virus (HIV)-induced neurotoxicity: roles for the NMDA receptor subtypes. J Neurosci, 26(3): 981–990
pmid: 16421318
164 Obrenovitch T P, Urenjak J (1997). Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J Neurotrauma, 14(10): 677–698
pmid: 9383088
165 Okamoto S, Pouladi M A, Talantova M, Yao D, Xia P, Ehrnhoefer D E, Zaidi R, Clemente A, Kaul M, Graham R K, Zhang D, Vincent Chen H S, Tong G, Hayden M R, Lipton S A (2009). Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med, 15(12): 1407–1413
pmid: 19915593
166 Olney J W, Sharpe L G (1969). Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science, 166(3903): 386–388
pmid: 5812037
167 Papadia S, Stevenson P, Hardingham N R, Bading H, Hardingham G E (2005). Nuclear Ca2+ and the cAMP response element-binding protein family mediate a late phase of activity-dependent neuroprotection. J Neurosci, 25(17): 4279–4287
pmid: 15858054
168 Papouin T, Ladépêche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet J P, Oliet S H (2012). Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell, 150(3): 633–646
pmid: 22863013
169 Parsons M P, Raymond L A (2014). Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron, 82(2): 279–293
pmid: 24742457
170 Parsons M P, Vanni M P, Woodard C L, Kang R, Murphy T H, Raymond L A (2016). Real-time imaging of glutamate clearance reveals normal striatal uptake in Huntington disease mouse models. Nat Commun, 7: 11251
pmid: 27052848
171 Patrick G N, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai L H (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402(6762): 615–622
pmid: 10604467
172 Paul S, Nairn A C, Wang P, Lombroso P J (2003). NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat Neurosci, 6(1): 34–42
pmid: 12483215
173 Petralia R S, Wang Y X, Hua F, Yi Z, Zhou A, Ge L, Stephenson F A, Wenthold R J (2010). Organization of NMDA receptors at extrasynaptic locations. Neuroscience, 167(1): 68–87
pmid: 20096331
174 Pop C, Salvesen G S (2009). Human caspases: activation, specificity, and regulation. J Biol Chem, 284(33): 21777–21781
pmid: 19473994
175 Pouladi M A, Graham R K, Karasinska J M, Xie Y, Santos R D, Petersén A, Hayden M R (2009). Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin. Brain, 132(Pt 4): 919–932
pmid: 19224899
176 Prybylowski K, Chang K, Sans N, Kan L, Vicini S, Wenthold R J (2005). The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron, 47(6): 845–857
pmid: 16157279
177 Rami A, Krieglstein J (1993). Protective effects of calpain inhibitors against neuronal damage caused by cytotoxic hypoxia in vitro and ischemia in vivo. Brain Res, 609(1-2): 67–70
pmid: 8508322
178 Rosas H D, Koroshetz W J, Chen Y I, Skeuse C, Vangel M, Cudkowicz M E, Caplan K, Marek K, Seidman L J, Makris N, Jenkins B G, Goldstein J M (2003). Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology, 60(10): 1615–1620
pmid: 12771251
179 Rosenmund C, Clements J D, Westbrook G L (1993). Nonuniform probability of glutamate release at a hippocampal synapse. Science, 262(5134): 754–757
pmid: 7901909
180 Saavedra A, Giralt A, Rué L, Xifró X, Xu J, Ortega Z, Lucas J J, Lombroso P J, Alberch J, Pérez-Navarro E (2011). Striatal-enriched protein tyrosine phosphatase expression and activity in Huntington’s disease: a STEP in the resistance to excitotoxicity. J Neurosci, 31(22): 8150–8162
pmid: 21632937
181 Sanberg P R, Calderon S F, Giordano M, Tew J M, Norman A B (1989). The quinolinic acid model of Huntington’s disease: locomotor abnormalities. Exp Neurol, 105(1): 45–53
https://doi.org/10.1016/0014-4886(89)90170-2 pmid: 2526022
241 Sanberg P R, Lehmann J, Fibiger H C (1978). Impaired learning and memory after kainic acid lesions of the striatum: a behavioral model of Huntington’s disease. Brain Res, 149(2): 549–551
https://doi.org/10.1016/0014-4886(89)90170-2 pmid: 2526022
182 Sánchez I, Xu C J, Juo P, Kakizaka A, Blenis J, Yuan J (1999). Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron, 22(3): 623–633
pmid: 10197541
242 Sanders S, Hayden M (2015). Aberrant palmitoylation in Huntington disease. BiochmSoc Trans, 43(2): 205–210
pmid: 10197541
183 Sanz-Clemente A, Nicoll R A,Roche K W (2013). Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist, 19(1): 62–75
184 Sattler R, Tymianski M (2000). Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med (Berl), 78(1): 3–13
pmid: 10759025
185 Sattler R, Xiong Z, Lu W Y, Hafner M, MacDonald J F, Tymianski M (1999). Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science, 284(5421): 1845–1848
pmid: 10364559
186 Sawa A, Wiegand G W, Cooper J, Margolis R L, Sharp A H, Lawler J F Jr, Greenamyre J T, Snyder S H, Ross C A (1999). Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nat Med, 5(10): 1194–1198
pmid: 10502825
187 Schwarcz R, Bennett J P Jr, Coyle J T Jr (1977). Loss of striatal serotonin synaptic receptor binding induced by kainic acid lesions: correlations with Huntington’s Disease. J Neurochem, 28(4): 867–869
pmid: 142820
188 Shehadeh J, Fernandes H B, Zeron Mullins M M, Graham R K, Leavitt B R, Hayden M R, Raymond L A (2006). Striatal neuronal apoptosis is preferentially enhanced by NMDA receptor activation in YAC transgenic mouse model of Huntington disease. Neurobiol Dis, 21(2): 392–403
pmid: 16165367
189 Sheng M, Cummings J, Roldan L A, Jan Y N, Jan L Y (1994). Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature, 368(6467): 144–147
pmid: 8139656
190 Shirasaki D I, Greiner E R, Al-Ramahi I, Gray M, Boontheung P, Geschwind D H, Botas J, Coppola G, Horvath S, Loo J A, Yang X W (2012). Network organization of the huntingtin proteomic interactome in mammalian brain. Neuron, 75(1): 41–57
pmid: 22794259
191 Siman R, Noszek J C (1988). Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron, 1(4): 279–287
pmid: 2856162
192 Singaraja R R, Hadano S, Metzler M, Givan S, Wellington C L, Warby S, Yanai A, Gutekunst C A, Leavitt B R, Yi H, Fichter K, Gan L, McCutcheon K, Chopra V, Michel J, Hersch S M, Ikeda J E, Hayden M R (2002). HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum Mol Genet, 11(23): 2815–2828
pmid: 12393793
193 Singaraja R R, Huang K, Sanders S S, Milnerwood A J, Hines R, Lerch J P, Franciosi S, Drisdel R C, Vaid K, Young F B, Doty C, Wan J, Bissada N, Henkelman R M, Green W N, Davis N G, Raymond L A, Hayden M R (2011). Altered palmitoylation and neuropathological deficits in mice lacking HIP14. Hum Mol Genet, 20(20): 3899– 3909
pmid: 21775500
194 Spargo E, Everall I P, Lantos P L (1993). Neuronal loss in the hippocampus in Huntington’s disease: a comparison with HIV infection. J Neurol Neurosurg Psychiatry, 56(5): 487–491
pmid: 8505640
195 Sprengel R, Suchanek B, Amico C, Brusa R, Burnashev N, Rozov A, Hvalby O, Jensen V, Paulsen O, Andersen P, Kim J J, Thompson R F, Sun W, Webster L C, Grant S G, Eilers J, Konnerth A, Li J, McNamara J O, Seeburg P H (1998). Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell, 92(2): 279–289
pmid: 9458051
196 Strand A D, Baquet Z C, Aragaki A K, Holmans P, Yang L, Cleren C, Beal M F, Jones L, Kooperberg C, Olson J M, Jones K R (2007). Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J Neurosci, 27(43): 11758–11768
pmid: 17959817
197 Sun Y, Savanenin A, Reddy P H, Liu Y F (2001). Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. J Biol Chem, 276(27): 24713–24718
pmid: 11319238
198 Sun Z, Del Mar N, Meade C, Goldowitz D, Reiner A (2002). Differential changes in striatal projection neurons in R6/2 transgenic mice for Huntington’s disease. Neurobiol Dis, 11(3): 369–385
pmid: 12586547
199 Sutton L M, Sanders S S, Butland S L, Singaraja R R, Franciosi S, Southwell A L, Doty C N, Schmidt M E, Mui K K, Kovalik V, Young F B, Zhang W, Hayden M R (2013). Hip14l-deficient mice develop neuropathological and behavioural features of Huntington disease. Hum Mol Genet, 22(3): 452–465
pmid: 23077216
200 Tabrizi S J, Workman J, Hart P E, Mangiarini L, Mahal A, Bates G, Cooper J M, Schapira A H (2000). Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol, 47(1): 80–86
pmid: 10632104
201 Tallaksen-Greene S J, Janiszewska A, Benton K, Ruprecht L, Albin R L (2010). Lack of efficacy of NMDA receptor-NR2B selective antagonists in the R6/2 model of Huntington disease. Exp Neurol, 225(2): 402–407
pmid: 20659453
202 Tang T S, Slow E, Lupu V, Stavrovskaya I G, Sugimori M, Llinás R, Kristal B S, Hayden M R, Bezprozvanny I (2005). Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc Natl Acad Sci U S A, 102(7): 2602–2607
pmid: 15695335
203 Terasaki Y, Sasaki T, Yagita Y, Okazaki S, Sugiyama Y, Oyama N, Omura-Matsuoka E, Sakoda S, Kitagawa K (2010). Activation of NR2A receptors induces ischemic tolerance through CREB signaling. J Cereb Blood Flow Metab, 30(8): 1441–1449
204 The Huntington’s Disease Collaborative Research Group (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72(6): 971–983
pmid: 8458085
205 Thomas C G, Miller A J, Westbrook G L (2006). Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol, 95(3): 1727–1734
pmid: 16319212
243 Tobin A J (2004). G. Bates, P. Harper, L. Jones (eds). Huntington’S disease, Third edition. Human Genet, 114(3): 320–321
pmid: 16319212
206 Tovar K R, McGinley M J, Westbrook G L (2013). Triheteromeric NMDA receptors at hippocampal synapses. J Neurosci, 33(21): 9150–9160
pmid: 23699525
207 Tovar K R, Westbrook G L (1999). The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci, 19(10): 4180–4188
pmid: 10234045
208 Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian M M, Balel C, Wang M, Jia N, Zhang W, Lew F, Chan S L, Chen Y, Lu Y (2010). DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell, 140(2): 222–234
pmid: 20141836
245 Tymianski M (2004). Stroke in 2013: Disappointments and advances in acute stroke intervention. Nat Rev Neurol, 10(2): 66–68
pmid: 20141836
209 Uribe V, Wong B K, Graham R K, Cusack C L, Skotte N H, Pouladi M A, Xie Y, Feinberg K, Ou Y, Ouyang Y, Deng Y, Franciosi S, Bissada N, Spreeuw A, Zhang W, Ehrnhoefer D E, Vaid K, Miller F D, Deshmukh M, Howland D, Hayden M R (2012). Rescue from excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and neuroanatomical alterations in caspase-6-deficient mice. Hum Mol Genet, 21(9): 1954–1967
pmid: 22262731
210 Usdin M T, Shelbourne P F, Myers R M, Madison D V (1999). Impaired synaptic plasticity in mice carrying the Huntington’s disease mutation. Hum Mol Genet, 8(5): 839–846
pmid: 10196373
212 Van Raamsdonk J M, Pearson J, Slow E J, Hossain S M, Leavitt B R, Hayden M R (2005). Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington’s disease. J Neurosci, 25(16): 4169–4180
pmid: 15843620
213 Vonsattel J P, Myers R H, Stevens T J, Ferrante R J, Bird E D, Richardson E P Jr (1985). Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol, 44(6): 559–577
pmid: 2932539
214 Wang C X, Shuaib A (2005). NMDA/NR2B selective antagonists in the treatment of ischemic brain injury. Curr Drug Targets CNS Neurol Disord, 4(2): 143–151
pmid: 15857299
215 Wang Y, Briz V, Chishti A, Bi X, Baudry M (2013). Distinct roles for m-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J Neurosci, 33(48): 18880–18892
pmid: 24285894
216 Warby S C, Doty C N, Graham R K, Carroll J B, Yang Y Z, Singaraja R R, Overall C M, Hayden M R (2008). Activated caspase-6 and caspase-6-cleaved fragments of huntingtin specifically colocalize in the nucleus. Hum Mol Genet, 17(15): 2390–2404
pmid: 18445618
217 Watkins J C, Evans R H (1981). Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol, 21(1): 165–204
pmid: 6112965
211 Wellington C, Ellerby L M, Gutekunst C A, Rogers D, Warby S, Graham R K, Loubser O, van Raamsdonk J, Singaraja R, Yang Y Z, Gafni J, Bredesen D, Hersch S M, Leavitt B R, Roy S, Nicholson D W, Hayden M R (2002). Caspase cleavage of mutant Huntingtin precedes Neurodegeneration in Huntington’s disease. J Neurosci, 22(18): 7862–7872
pmid: 13642064
218 Wellington C L, Ellerby L M, Hackam A S, Margolis R L, Trifiro M A, Singaraja R, McCutcheon K, Salvesen G S, Propp S S, Bromm M, Rowland K J, Zhang T, Rasper D, Roy S, Thornberry N, Pinsky L, Kakizuka A, Ross C A, Nicholson D W, Bredesen D E, Hayden M R (1998). Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J Biol Chem, 273(15): 9158–9167
pmid: 9535906
219 Wellington C L, Singaraja R, Ellerby L, Savill J, Roy S, Leavitt B, Cattaneo E, Hackam A, Sharp A, Thornberry N, Nicholson D W, Bredesen D E, Hayden M R (2000). Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and nonneuronal cells. J Biol Chem, 275(26): 19831–19838
pmid: 10770929
220 Williams K (1993). Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol, 44(4): 851–859
pmid: 7901753
221 Wong B K Y, Ehrnhoefer D E, Graham R K, Martin D D, Ladha S, Uribe V, Stanek L M, Franciosi S, Qiu X, Deng Y, Kovalik V, Zhang W, Pouladi M A, Shihabuddin L S, Hayden M R (2015). Partial rescue of some features of Huntington Disease in the genetic absence of caspase-6 in YAC128 mice. Neurobiol Dis, 76: 24–36
pmid: 25583186
222 Wroge C M, Hogins J, Eisenman L, Mennerick S (2012). Synaptic NMDA receptors mediate hypoxic excitotoxic death. J Neurosci, 32(19): 6732–6742
pmid: 22573696
223 Xia P, Chen H S, Zhang D, Lipton S A (2010). Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J Neurosci, 30(33): 11246–11250
pmid: 20720132
224 Xu J, Kurup P, Zhang Y, Goebel-Goody S M, Wu P H, Hawasli A H, Baum M L, Bibb J A, Lombroso P J (2009). Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci, 29(29): 9330–9343
pmid: 19625523
225 Yamazaki M, Mori H, Araki K, Mori K J, Mishina M (1992). Cloning, expression and modulation of a mouse NMDA receptor subunit. FEBS Lett, 300(1): 39–45
pmid: 1532151
226 Yan G M, Ni B, Weller M, Wood K A, Paul S M (1994). Depolarization or glutamate receptor activation blocks apoptotic cell death of cultured cerebellar granule neurons. Brain Res, 656(1): 43–51
pmid: 7804844
227 Young A B, Greenamyre J T, Hollingsworth Z, Albin R, D’Amato C, Shoulson I, Penney J B (1988). NMDA receptor losses in putamen from patients with Huntington’s disease. Science, 241(4868): 981–983
pmid: 2841762
246 Young F B, Butland S L, Sanders S S, Sutton L M, Hayden M R (2012). Putting proteins in their place: Palmitoylation in Huntington disease and other neuropsychiatric diseases. Prog Neurobiol, 97(2): 220– 238
pmid: 25728572
228 Yuan H, Myers S J, Wells G, Nicholson K L, Swanger S A, Lyuboslavsky P, Tahirovic Y A, Menaldino D S, Ganesh T, Wilson L J, Liotta D C, Snyder J P, Traynelis S F (2015). Context-dependent GluN2B-selective inhibitors of NMDA receptor function are neuroprotective with minimal side effects. Neuron, 85(6): 1305– 1318
pmid: 25728572
229 Zeron M M, Hansson O, Chen N, Wellington C L, Leavitt B R, Brundin P, Hayden M R, Raymond L A (2002). Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron, 33(6): 849–860
pmid: 11906693
247 Zeron M M, Fernandes H B, Krebs C, Shehadeh J, Wellington C L, Leavitt B R, Baimbridge K G, Hayden M R, Raymond L A (2004). Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington’s disease. Mol Cell Neurosci, 25(3): 469–479
pmid: 11906693
230 Zhang Q G, Wu D N, Han D, Zhang G Y (2007). Critical role of PTEN in the coupling between PI3K/Akt and JNK1/2 signaling in ischemic brain injury. FEBS Lett, 581(3): 495–505
pmid: 17239858
231 Zhang S, Taghibiglou C, Girling K, Dong Z, Lin S Z, Lee W, Shyu W C, Wang Y T (2013). Critical role of increased PTEN nuclear translocation in excitotoxic and ischemic neuronal injuries. J Neurosci, 33(18): 7997–8008
pmid: 23637190
232 Zhang S J, Steijaert M N, Lau D, Sch�tz G, Delucinge-Vivier C, Descombes P, Bading H (2007). Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron, 53(4): 549–562
pmid: 17296556
233 Zhou L, Li F, Xu H B, Luo C X, Wu H Y, Zhu M M, Lu W, Ji X, Zhou Q G, Zhu D Y (2010). Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med, 16(12): 1439–1443
pmid: 21102461
234 Zhou M, Baudry M (2006). Developmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors. J Neurosci, 26(11): 2956–2963
pmid: 16540573
235 Zhou X, Ding Q, Chen Z, Yun H, Wang H (2013). Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic N-methyl-D-aspartate receptor function and neuronal excitotoxicity. J Biol Chem, 288(33): 24151–24159
pmid: 23839940
236 Zuccato C, Valenza M, Cattaneo E (2010). Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev, 90(3): 905–981
[1] Rachel Babij,Natalia De Marco Garcia. Neuronal activity controls the development of interneurons in the somatosensory cortex[J]. Front. Biol., 2016, 11(6): 459-470.
[2] Anita E. Autry,Megumi Adachi,Lisa M. Monteggia. Dynamic methylation driven by neuronal activity in hippocampal neurons impacts complex behavior[J]. Front. Biol., 2015, 10(5): 439-447.
[3] Chen Guang YU. Distinct roles for ERK1 and ERK2 in pathophysiology of CNS[J]. Front Biol, 2012, 7(3): 267-276.
[4] Tong LUO, Wei-Hua WU, Bo-Shiun CHEN. NMDA receptor signaling: death or survival?[J]. Front Biol, 2011, 6(6): 468-476.
[5] Jeff G. LEID, Emily COPE. Population level virulence in polymicrobial communities associated with chronic disease[J]. Front Biol, 2011, 6(6): 435-445.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed