|
|
Neuronal activity controls the development of interneurons in the somatosensory cortex |
Rachel Babij1,2,Natalia De Marco Garcia1( ) |
1. Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA 2. Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, USA |
|
|
Abstract BACKGROUND: Neuronal activity in cortical areas regulates neurodevelopment by interacting with defined genetic programs to shape the mature central nervous system. Electrical activity is conveyed to sensory cortical areas via intracortical and thalamocortical neurons, and includes oscillatory patterns that have been measured across cortical regions. OBJECTIVE: In this work, we review the most recent findings about how electrical activity shapes the developmental assembly of functional circuitry in the somatosensory cortex, with an emphasis on interneuron maturation and integration. We include studies on the effect of various neurotransmitters and on the influence of thalamocortical afferent activity on circuit development. We additionally reviewed studies describing network activity patterns. METHODS: We conducted an extensive literature search using both the PubMed and Google Scholar search engines. The following keywords were used in various iterations: “interneuron”, “somatosensory”, “development”, “activity”, “network patterns”, “thalamocortical”, “NMDA receptor”, “plasticity”. We additionally selected papers known to us from past reading, and those recommended to us by reviewers and members of our lab. RESULTS: We reviewed a total of 132 articles that focused on the role of activity in interneuronal migration, maturation, and circuit development, as well as the source of electrical inputs and patterns of cortical activity in the somatosensory cortex. 79 of these papers included in this timely review were written between 2007 and 2016. CONCLUSIONS: Neuronal activity shapes the developmental assembly of functional circuitry in the somatosensory cortical interneurons. This activity impacts nearly every aspect of development and acquisition of mature neuronal characteristics, and may contribute to changing phenotypes, altered transmitter expression, and plasticity in the adult. Progressively changing oscillatory network patterns contribute to this activity in the early postnatal period, although a direct requirement for specific patterns and origins of activity remains to be demonstrated.
|
Keywords
interneuron
neurodevelopment
neuroplasticity
thalamocortical
NMDA receptors
neuronal maturation
|
Corresponding Author(s):
Natalia De Marco Garcia
|
Just Accepted Date: 08 November 2016
Online First Date: 01 December 2016
Issue Date: 26 December 2016
|
|
5 |
Allene C, Cossart R (2010). Early NMDA receptor-driven waves of activity in the developing neocortex: physiological or pathological network oscillations? J Physiol, 588(Pt 1): 83–91
https://doi.org/10.1113/jphysiol.2009.178798
pmid: 19917570
|
6 |
An S, Kilb W, Luhmann H J (2014). Sensory-evoked and spontaneous gamma and spindle bursts in neonatal rat motor cortex. J Neurosci, 34(33): 10870–10883
https://doi.org/10.1523/JNEUROSCI.4539-13.2014
pmid: 25122889
|
7 |
Anastasiades P G, Marques-Smith A, Lyngholm D, Lickiss T, Raffiq S, Kätzel D, Miesenböck G, Butt S J (2016). GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex. Nat Commun, 7: 10584
https://doi.org/10.1038/ncomms10584
pmid: 26843463
|
8 |
Arroyo D A, Feller M B (2016). Spatiotemporal Features of Retinal Waves Instruct the Wiring of the Visual Circuitry. Front Neural Circuits, 10: 54
https://doi.org/10.3389/fncir.2016.00054
pmid: 27507937
|
9 |
Ascoli G A, Alonso-Nanclares L, Anderson S A, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsáki G, Cauli B, Defelipe J, Fairén A, Feldmeyer D, Fishell G, Fregnac Y, Freund T F, Gardner D, Gardner E P, Goldberg J H, Helmstaedter M, Hestrin S, Karube F, Kisvárday Z F, Lambolez B, Lewis D A, Marin O, Markram H, Muñoz A, Packer A, Petersen C C, Rockland K S, Rossier J, Rudy B, Somogyi P, Staiger J F, Tamas G, Thomson A M, Toledo-Rodriguez M, Wang Y, West D C, Yuste R, Yuste R, and the Petilla Interneuron Nomenclature Group (2008). Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci, 9(7): 557–568
https://doi.org/10.1038/nrn2402
pmid: 18568015
|
10 |
Avila A, Vidal P M, Dear T N, Harvey R J, Rigo J M, Nguyen L (2013). Glycine receptor α2 subunit activation promotes cortical interneuron migration. Cell Reports, 4(4): 738–750
https://doi.org/10.1016/j.celrep.2013.07.016
pmid: 23954789
|
11 |
Baho E, Di Cristo G (2012). Neural activity and neurotransmission regulate the maturation of the innervation field of cortical GABAergic interneurons in an age-dependent manner. J Neurosci, 32(3): 911–918
https://doi.org/10.1523/JNEUROSCI.4352-11.2012
pmid: 22262889
|
1 |
Adelsberger H, Garaschuk O, Konnerth A (2005). Cortical calcium waves in resting newborn mice. Nat Neurosci, 8(8): 988–990
https://doi.org/10.1038/nn1502
pmid: 16007081
|
12 |
Bando Y, Irie K, Shimomura T, Umeshima H, Kushida Y, Kengaku M, Fujiyoshi Y, Hirano T, Tagawa Y (2016). Control of spontaneous Ca2+ transients is critical for neuronal maturation in the developing neocortex. Cereb Cortex, 26(1): 106–117
https://doi.org/10.1093/cercor/bhu180
pmid: 25112282
|
13 |
Batista-Brito R, Fishell G (2009). The developmental integration of cortical interneurons into a functional network. Curr Top Dev Biol, 87: 81–118
https://doi.org/10.1016/S0070-2153(09)01203-4
pmid: 19427517
|
14 |
Batista-Brito R, Machold R, Klein C, Fishell G (2008). Gene expression in cortical interneuron precursors is prescient of their mature function. Cereb Cortex, 18(10): 2306–2317
https://doi.org/10.1093/cercor/bhm258
pmid: 18250082
|
15 |
Behar T N, Schaffner A E, Scott C A, Greene C L, Barker J L (2000). GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb Cortex, 10(9): 899–909
https://doi.org/10.1093/cercor/10.9.899
pmid: 10982750
|
16 |
Behar T N, Scott C A, Greene C L, Wen X, Smith S V, Maric D, Liu Q Y, Colton C A, Barker J L (1999). Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci, 19(11): 4449–4461
pmid: 10341246
|
17 |
Bony G, Szczurkowska J, Tamagno I, Shelly M, Contestabile A, Cancedda L (2013). Non-hyperpolarizing GABAB receptor activation regulates neuronal migration and neurite growth and specification by cAMP/LKB1. Nat Commun, 4: 1800
https://doi.org/10.1038/ncomms2820
pmid: 23653212
|
18 |
Bortone D, Polleux F (2009). KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron, 62(1): 53–71
https://doi.org/10.1016/j.neuron.2009.01.034
pmid: 19376067
|
19 |
Butt S J, Fuccillo M, Nery S, Noctor S, Kriegstein A, Corbin J G, Fishell G (2005). The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron, 48(4): 591–604
https://doi.org/10.1016/j.neuron.2005.09.034
pmid: 16301176
|
20 |
Campanac E, Gasselin C, Baude A, Rama S, Ankri N, Debanne D (2013). Enhanced intrinsic excitability in basket cells maintains excitatory-inhibitory balance in hippocampal circuits. Neuron, 77(4): 712–722
https://doi.org/10.1016/j.neuron.2012.12.020
pmid: 23439123
|
21 |
Chaudhury S, Sharma V, Kumar V, Nag T C, Wadhwa S (2016). Activity-dependent synaptic plasticity modulates the critical phase of brain development. Brain Dev, 38(4): 355–363
https://doi.org/10.1016/j.braindev.2015.10.008
pmid: 26515724
|
22 |
Chu J, Anderson S A (2015). Development of cortical interneurons. Neuropsychopharmacology, 40(1): 16–23
https://doi.org/10.1038/npp.2014.171
pmid: 25103177
|
23 |
Close J, Xu H, De Marco García N, Batista-Brito R, Rossignol E, Rudy B, Fishell G (2012). Satb1 is an activity-modulated transcription factor required for the terminal differentiation and connectivity of medial ganglionic eminence-derived cortical interneurons. J Neurosci, 32(49): 17690–17705
https://doi.org/10.1523/JNEUROSCI.3583-12.2012
pmid: 23223290
|
24 |
Cohen-Kashi Malina K, Mohar B, Rappaport A N, Lampl I (2016). Local and thalamic origins of correlated ongoing and sensory-evoked cortical activities. Nat Commun, 7: 12740
https://doi.org/10.1038/ncomms12740
pmid: 27615520
|
25 |
Colonnese M T, Kaminska A, Minlebaev M, Milh M, Bloem B, Lescure S, Moriette G, Chiron C, Ben-Ari Y, Khazipov R (2010). A conserved switch in sensory processing prepares developing neocortex for vision. Neuron, 67(3): 480–498
https://doi.org/10.1016/j.neuron.2010.07.015
pmid: 20696384
|
26 |
Conhaim J, Easton C R, Becker M I, Barahimi M, Cedarbaum E R, Moore J G, Mather L F, Dabagh S, Minter D J, Moen S P, Moody W J (2011). Developmental changes in propagation patterns and transmitter dependence of waves of spontaneous activity in the mouse cerebral cortex. J Physiol, 589(Pt 10): 2529–2541
https://doi.org/10.1113/jphysiol.2010.202382
pmid: 21486817
|
27 |
Corlew R, Bosma M M, Moody W J (2004). Spontaneous, synchronous electrical activity in neonatal mouse cortical neurones. J Physiol, 560(Pt 2): 377–390
https://doi.org/10.1113/jphysiol.2004.071621
pmid: 15297578
|
28 |
Cossart R, Ikegaya Y, Yuste R (2005). Calcium imaging of cortical networks dynamics. Cell Calcium, 37(5): 451–457
https://doi.org/10.1016/j.ceca.2005.01.013
pmid: 15820393
|
29 |
Coulter D A (2001). Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int Rev Neurobiol, 45: 237–252
https://doi.org/10.1016/S0074-7742(01)45013-6
pmid: 11130901
|
30 |
Crair M C, Malenka R C (1995). A critical period for long-term potentiation at thalamocortical synapses. Nature, 375(6529): 325–328
https://doi.org/10.1038/375325a0
pmid: 7753197
|
31 |
Cruikshank S J, Urabe H, Nurmikko A V, Connors B W (2010). Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron, 65(2): 230–245
https://doi.org/10.1016/j.neuron.2009.12.025
pmid: 20152129
|
2 |
Agmon A, Connors B W (1992). Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex. J Neurosci, 12(1): 319–329
pmid: 1729440
|
3 |
Agmon A, O’Dowd D K (1992). NMDA receptor-mediated currents are prominent in the thalamocortical synaptic response before maturation of inhibition. J Neurophysiol, 68(1): 345–349
pmid: 1381421
|
4 |
Allène C, Cattani A, Ackman J B, Bonifazi P, Aniksztejn L, Ben-Ari Y, Cossart R (2008). Sequential generation of two distinct synapse-driven network patterns in developing neocortex. J Neurosci, 28(48): 12851–12863
https://doi.org/10.1523/JNEUROSCI.3733-08.2008
pmid: 19036979
|
32 |
Cuzon V C, Yeh P W, Cheng Q, Yeh H H (2006). Ambient GABA promotes cortical entry of tangentially migrating cells derived from the medial ganglionic eminence. Cereb Cortex, 16(10): 1377–1388
https://doi.org/10.1093/cercor/bhj084
pmid: 16339085
|
33 |
Cuzon Carlson V C, Yeh H H (2011). GABAA receptor subunit profiles of tangentially migrating neurons derived from the medial ganglionic eminence. Cereb Cortex, 21(8): 1792–1802
https://doi.org/10.1093/cercor/bhq247
pmid: 21148088
|
34 |
Daw M I, Scott H L, Isaac J T (2007). Developmental synaptic plasticity at the thalamocortical input to barrel cortex: mechanisms and roles. Mol Cell Neurosci, 34(4): 493–502
https://doi.org/10.1016/j.mcn.2007.01.001
pmid: 17329121
|
35 |
de Lima A D, Gieseler A, Voigt T (2009). Relationship between GABAergic interneurons migration and early neocortical network activity. Dev Neurobiol, 69(2-3): 105–123
https://doi.org/10.1002/dneu.20696
pmid: 19086030
|
36 |
De Marco García N V, Karayannis T, Fishell G (2011). Neuronal activity is required for the development of specific cortical interneuron subtypes. Nature, 472(7343): 351–355
https://doi.org/10.1038/nature09865
pmid: 21460837
|
37 |
De Marco García N V, Priya R, Tuncdemir S N, Fishell G, Karayannis T (2015). Sensory inputs control the integration of neurogliaform interneurons into cortical circuits. Nat Neurosci, 18(3): 393–401
https://doi.org/10.1038/nn.3946
pmid: 25664912
|
38 |
DeDiego I, Smith-Fernández A, Fairén A (1994). Cortical cells that migrate beyond area boundaries: characterization of an early neuronal population in the lower intermediate zone of prenatal rats. Eur J Neurosci, 6(6): 983–997
https://doi.org/10.1111/j.1460-9568.1994.tb00593.x
pmid: 7952285
|
39 |
Dehorter N, Ciceri G, Bartolini G, Lim L, del Pino I, Marín O (2015). Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. Science, 349(6253): 1216–1220
https://doi.org/10.1126/science.aab3415
pmid: 26359400
|
40 |
Denaxa M, Kalaitzidou M, Garefalaki A, Achimastou A, Lasrado R, Maes T, Pachnis V (2012). Maturation-promoting activity of SATB1 in MGE-derived cortical interneurons. Cell Reports, 2(5): 1351–1362
https://doi.org/10.1016/j.celrep.2012.10.003
pmid: 23142661
|
41 |
Dupont E, Hanganu I L, Kilb W, Hirsch S, Luhmann H J (2006). Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature, 439(7072): 79–83
https://doi.org/10.1038/nature04264
pmid: 16327778
|
42 |
Easton C R, Weir K, Scott A, Moen S P, Barger Z, Folch A, Hevner R F, Moody W J (2014). Genetic elimination of GABAergic neurotransmission reveals two distinct pacemakers for spontaneous waves of activity in the developing mouse cortex. J Neurosci, 34(11): 3854–3863
https://doi.org/10.1523/JNEUROSCI.3811-13.2014
pmid: 24623764
|
43 |
Erzurumlu R S, Gaspar P (2012). Development and critical period plasticity of the barrel cortex. Eur J Neurosci, 35(10): 1540–1553
https://doi.org/10.1111/j.1460-9568.2012.08075.x
pmid: 22607000
|
44 |
Espinosa J S, Stryker M P (2012). Development and plasticity of the primary visual cortex. Neuron, 75(2): 230–249
https://doi.org/10.1016/j.neuron.2012.06.009
pmid: 22841309
|
45 |
Espinosa J S, Wheeler D G, Tsien R W, Luo L (2009). Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron, 62(2): 205–217
https://doi.org/10.1016/j.neuron.2009.03.006
pmid: 19409266
|
46 |
Feldmeyer D (2012). Excitatory neuronal connectivity in the barrel cortex. Front Neuroanat, 6: 24
https://doi.org/10.3389/fnana.2012.00024
pmid: 22798946
|
47 |
Feldmeyer D, Brecht M, Helmchen F, Petersen C C, Poulet J F, Staiger J F, Luhmann H J, Schwarz C (2013). Barrel cortex function. Prog Neurobiol, 103: 3–27
https://doi.org/10.1016/j.pneurobio.2012.11.002
pmid: 23195880
|
48 |
Fishell G, Rudy B (2011). Mechanisms of inhibition within the telencephalon: “where the wild things are”. Annu Rev Neurosci, 34(1): 535–567
https://doi.org/10.1146/annurev-neuro-061010-113717
pmid: 21469958
|
49 |
Flint A C, Maisch U S, Weishaupt J H, Kriegstein A R, Monyer H (1997). NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci, 17(7): 2469–2476
pmid: 9065507
|
50 |
Frazer S, Otomo K, Dayer A (2015). Early-life serotonin dysregulation affects the migration and positioning of cortical interneuron subtypes. Transl Psychiatry, 5(9): e644
https://doi.org/10.1038/tp.2015.147
pmid: 26393490
|
51 |
Garaschuk O, Linn J, Eilers J, Konnerth A (2000). Large-scale oscillatory calcium waves in the immature cortex. Nat Neurosci, 3(5): 452–459
https://doi.org/10.1038/74823
pmid: 10769384
|
52 |
Gierdalski M, Jablonska B, Siucinska E, Lech M, Skibinska A, Kossut M (2001). Rapid regulation of GAD67 mRNA and protein level in cortical neurons after sensory learning. Cereb Cortex, 11(9): 806–815
https://doi.org/10.1093/cercor/11.9.806
pmid: 11532886
|
53 |
Golshani P, Gonçalves J T, Khoshkhoo S, Mostany R, Smirnakis S, Portera-Cailliau C (2009). Internally mediated developmental desynchronization of neocortical network activity. J Neurosci, 29(35): 10890–10899
https://doi.org/10.1523/JNEUROSCI.2012-09.2009
pmid: 19726647
|
54 |
Hanganu I L, Kilb W, Luhmann H J (2002). Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex. J Neurosci, 22(16): 7165–7176
pmid: 12177212
|
55 |
Heck N, Kilb W, Reiprich P, Kubota H, Furukawa T, Fukuda A, Luhmann H J (2007). GABA-A receptors regulate neocortical neuronal migration in vitro and in vivo. Cereb Cortex, 17(1): 138–148
https://doi.org/10.1093/cercor/bhj135
pmid: 16452638
|
56 |
Higashi S, Hioki K, Kurotani T, Kasim N, Molnár Z (2005). Functional thalamocortical synapse reorganization from subplate to layer IV during postnatal development in the reeler-like mutant rat (shaking rat Kawasaki). J Neurosci, 25(6): 1395–1406
https://doi.org/10.1523/JNEUROSCI.4023-04.2005
pmid: 15703393
|
57 |
Huang Z J, Di Cristo G, Ango F (2007). Development of GABA innervation in the cerebral and cerebellar cortices. Nat Rev Neurosci, 8(9): 673–686
https://doi.org/10.1038/nrn2188
pmid: 17704810
|
58 |
Inada H, Watanabe M, Uchida T, Ishibashi H, Wake H, Nemoto T, Yanagawa Y, Fukuda A, Nabekura J (2011). GABA regulates the multidirectional tangential migration of GABAergic interneurons in living neonatal mice. PLoS ONE, 6(12): e27048
https://doi.org/10.1371/journal.pone.0027048
pmid: 22180776
|
59 |
Iwasato T, Datwani A, Wolf A M, Nishiyama H, Taguchi Y, Tonegawa S, Knöpfel T, Erzurumlu R S, Itohara S (2000). Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature, 406(6797): 726–731
https://doi.org/10.1038/35021059
pmid: 10963597
|
60 |
Ji X Y, Zingg B, Mesik L, Xiao Z, Zhang L I, Tao H W (2016). Thalamocortical Innervation Pattern in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity. Cereb Cortex, 26(6): 2612–2625
https://doi.org/10.1093/cercor/bhv099
pmid: 25979090
|
61 |
Jiao Y, Zhang C, Yanagawa Y, Sun Q Q (2006). Major effects of sensory experiences on the neocortical inhibitory circuits. J Neurosci, 26(34): 8691–8701
https://doi.org/10.1523/JNEUROSCI.2478-06.2006
pmid: 16928857
|
62 |
Kanold P O (2004). Transient microcircuits formed by subplate neurons and their role in functional development of thalamocortical connections. Neuroreport, 15(14): 2149–2153
https://doi.org/10.1097/00001756-200410050-00001
pmid: 15371723
|
63 |
Kanold P O, Kara P, Reid R C, Shatz C J (2003). Role of subplate neurons in functional maturation of visual cortical columns. Science, 301(5632): 521–525
https://doi.org/10.1126/science.1084152
pmid: 12881571
|
64 |
Kanold P O, Luhmann H J (2010). The subplate and early cortical circuits. Annu Rev Neurosci, 33(1): 23–48
https://doi.org/10.1146/annurev-neuro-060909-153244
pmid: 20201645
|
65 |
Karayannis T, De Marco García N V, Fishell G J (2012). Functional adaptation of cortical interneurons to attenuated activity is subtype-specific. Front Neural Circuits, 6: 66
https://doi.org/10.3389/fncir.2012.00066
pmid: 23015781
|
66 |
Karnani M M, Jackson J, Ayzenshtat I, Tucciarone J, Manoocheri K, Snider W G, Yuste R (2016). Cooperative Subnetworks of Molecularly Similar Interneurons in Mouse Neocortex. Neuron, 90(1): 86–100
https://doi.org/10.1016/j.neuron.2016.02.037
pmid: 27021171
|
67 |
Kepecs A, Fishell G (2014). Interneuron cell types are fit to function. Nature, 505(7483): 318–326
https://doi.org/10.1038/nature12983
pmid: 24429630
|
68 |
Khazipov R, Luhmann H J (2006). Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci, 29(7): 414–418
https://doi.org/10.1016/j.tins.2006.05.007
pmid: 16713634
|
69 |
Khazipov R, Sirota A, Leinekugel X, Holmes G L, Ben-Ari Y, Buzsáki G (2004). Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature, 432(7018): 758–761
https://doi.org/10.1038/nature03132
pmid: 15592414
|
70 |
Kihara M, Yoshioka H, Hirai K, Hasegawa K, Kizaki Z, Sawada T (2002). Stimulation of N-methyl-D-aspartate (NMDA) receptors inhibits neuronal migration in embryonic cerebral cortex: a tissue culture study. Brain Res Dev Brain Res, 138(2): 195–198
https://doi.org/10.1016/S0165-3806(02)00490-X
pmid: 12354647
|
71 |
Kilb W, Kirischuk S, Luhmann H J (2011). Electrical activity patterns and the functional maturation of the neocortex. Eur J Neurosci, 34(10): 1677–1686
https://doi.org/10.1111/j.1460-9568.2011.07878.x
pmid: 22103424
|
72 |
Kilb W, Kirischuk S, Luhmann H J (2013). Role of tonic GABAergic currents during pre- and early postnatal rodent development. Front Neural Circuits, 7: 139
https://doi.org/10.3389/fncir.2013.00139
pmid: 24027498
|
73 |
Killackey H P (1973). Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat. Brain Res, 51: 326–331
https://doi.org/10.1016/0006-8993(73)90383-1
pmid: 4706020
|
74 |
Kirmse K, Kummer M, Kovalchuk Y, Witte O W, Garaschuk O, Holthoff K (2015). GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo. Nat Commun, 6: 7750
https://doi.org/10.1038/ncomms8750
pmid: 26177896
|
75 |
Koolen N, Dereymaeker A, Räsänen O, Jansen K, Vervisch J, Matic V, Naulaers G, De Vos M, Van Huffel S, Vanhatalo S (2016). Early development of synchrony in cortical activations in the human. Neuroscience, 322: 298–307
https://doi.org/10.1016/j.neuroscience.2016.02.017
pmid: 26876605
|
76 |
Kral A (2013). Auditory critical periods: a review from system’s perspective. Neuroscience, 247: 117–133
https://doi.org/10.1016/j.neuroscience.2013.05.021
pmid: 23707979
|
77 |
Laaris N, Carlson G C, Keller A (2000). Thalamic-evoked synaptic interactions in barrel cortex revealed by optical imaging. J Neurosci, 20(4): 1529–1537
pmid: 10662842
|
78 |
Lee L J, Iwasato T, Itohara S, Erzurumlu R S (2005). Exuberant thalamocortical axon arborization in cortex-specific NMDAR1 knockout mice. J Comp Neurol, 485(4): 280–292
https://doi.org/10.1002/cne.20481
pmid: 15803506
|
79 |
Lewis D A (2014). Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Curr Opin Neurobiol, 26: 22–26
https://doi.org/10.1016/j.conb.2013.11.003
pmid: 24650500
|
80 |
Li H, Fertuzinhos S, Mohns E, Hnasko T S, Verhage M, Edwards R, Sestan N, Crair M C (2013). Laminar and columnar development of barrel cortex relies on thalamocortical neurotransmission. Neuron, 79(5): 970–986
https://doi.org/10.1016/j.neuron.2013.06.043
pmid: 24012009
|
81 |
Liang F, Isackson P J, Jones E G (1996). Stimulus-dependent, reciprocal up- and downregulation of glutamic acid decarboxylase and Ca2+/calmodulin-dependent protein kinase II gene expression in rat cerebral cortex. Exp Brain Res, 110(2): 163–174
https://doi.org/10.1007/BF00228548
pmid: 8836681
|
82 |
Liodis P, Denaxa M, Grigoriou M, Akufo-Addo C, Yanagawa Y, Pachnis V (2007). Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. J Neurosci, 27(12): 3078–3089
https://doi.org/10.1523/JNEUROSCI.3055-06.2007
pmid: 17376969
|
83 |
Liu X, Hashimoto-Torii K, Torii M, Ding C, Rakic P (2010). Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors. J Neurosci, 30(12): 4197–4209
https://doi.org/10.1523/JNEUROSCI.4187-09.2010
pmid: 20335455
|
84 |
Liu X, Hashimoto-Torii K, Torii M, Haydar T F, Rakic P (2008). The role of ATP signaling in the migration of intermediate neuronal progenitors to the neocortical subventricular zone. Proc Natl Acad Sci USA, 105(33): 11802–11807
https://doi.org/10.1073/pnas.0805180105
pmid: 18689674
|
85 |
Liu X B, Murray K D, Jones E G (2004). Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. J Neurosci, 24(40): 8885–8895
https://doi.org/10.1523/JNEUROSCI.2476-04.2004
pmid: 15470155
|
86 |
Lorente de No R (1922). La Corteza Cerebral del Raton (Primera Contribucion- La Corteza Acustica). Trabajos del Laboratorio de Investigaciones Biologicas, 20: 41–78
|
87 |
LoTurco J J, Blanton M G, Kriegstein A R (1991). Initial expression and endogenous activation of NMDA channels in early neocortical development. J Neurosci, 11(3): 792–799
pmid: 1825846
|
88 |
Luhmann H J, Fukuda A, Kilb W (2015). Control of cortical neuronal migration by glutamate and GABA. Front Cell Neurosci, 9: 4
https://doi.org/10.3389/fncel.2015.00004
pmid: 25688185
|
89 |
Luhmann H J, Hanganu I, Kilb W (2003). Cellular physiology of the neonatal rat cerebral cortex. Brain Res Bull, 60(4): 345–353
https://doi.org/10.1016/S0361-9230(03)00059-5
pmid: 12781323
|
90 |
Luhmann H J, Kirischuk S, Sinning A, Kilb W (2014). Early GABAergic circuitry in the cerebral cortex. Curr Opin Neurobiol, 26: 72–78
https://doi.org/10.1016/j.conb.2013.12.014
pmid: 24434608
|
91 |
Manent J B, Jorquera I, Ben-Ari Y, Aniksztejn L, Represa A (2006). Glutamate acting on AMPA but not NMDA receptors modulates the migration of hippocampal interneurons. J Neurosci, 26(22): 5901–5909
https://doi.org/10.1523/JNEUROSCI.1033-06.2006
pmid: 16738232
|
92 |
Marín O (2012). Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci, 13(2): 107–120
pmid: 22251963
|
93 |
Marques-Smith A, Lyngholm D, Kaufmann A K, Stacey J A, Hoerder-Suabedissen A, Becker E B, Wilson M C, Molnár Z, Butt S J (2016). A Transient Translaminar GABAergic Interneuron Circuit Connects Thalamocortical Recipient Layers in Neonatal Somatosensory Cortex. Neuron, 89(3): 536–549
https://doi.org/10.1016/j.neuron.2016.01.015
pmid: 26844833
|
94 |
Matta J A, Pelkey K A, Craig M T, Chittajallu R, Jeffries B W, McBain C J (2013). Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity. Nat Neurosci, 16(8): 1032–1041
https://doi.org/10.1038/nn.3459
pmid: 23852113
|
95 |
McCabe A K, Chisholm S L, Picken-Bahrey H L, Moody W J (2006). The self-regulating nature of spontaneous synchronized activity in developing mouse cortical neurones. J Physiol, 577(Pt 1): 155–167
https://doi.org/10.1113/jphysiol.2006.117523
pmid: 16945966
|
96 |
Milh M, Kaminska A, Huon C, Lapillonne A, Ben-Ari Y, Khazipov R (2007). Rapid cortical oscillations and early motor activity in premature human neonate. Cereb Cortex, 17(7): 1582–1594
https://doi.org/10.1093/cercor/bhl069
pmid: 16950867
|
97 |
Minlebaev M, Ben-Ari Y, Khazipov R (2007). Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo. J Neurophysiol, 97(1): 692–700
https://doi.org/10.1152/jn.00759.2006
pmid: 17093125
|
98 |
Minlebaev M, Ben-Ari Y, Khazipov R (2009). NMDA receptors pattern early activity in the developing barrel cortex in vivo. Cereb Cortex, 19(3): 688–696
https://doi.org/10.1093/cercor/bhn115
pmid: 18663251
|
99 |
Minlebaev M, Colonnese M, Tsintsadze T, Sirota A, Khazipov R (2011). Early g oscillations synchronize developing thalamus and cortex. Science, 334(6053): 226–229
https://doi.org/10.1126/science.1210574
pmid: 21998388
|
100 |
Mix A, Hoppenrath K, Funke K (2015). Reduction in cortical parvalbumin expression due to intermittent theta-burst stimulation correlates with maturation of the perineuronal nets in young rats. Dev Neurobiol, 75(1): 1–11
https://doi.org/10.1002/dneu.22205
pmid: 24962557
|
101 |
Miyashita-Lin E M, Hevner R, Wassarman K M, Martinez S, Rubenstein J L (1999). Early neocortical regionalization in the absence of thalamic innervation. Science, 285(5429): 906–909
https://doi.org/10.1126/science.285.5429.906
pmid: 10436162
|
102 |
Miyoshi G, Butt S J, Takebayashi H, Fishell G (2007). Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J Neurosci, 27(29): 7786–7798
https://doi.org/10.1523/JNEUROSCI.1807-07.2007
pmid: 17634372
|
103 |
Miyoshi G, Fishell G (2011). GABAergic interneuron lineages selectively sort into specific cortical layers during early postnatal development. Cereb Cortex, 21(4): 845–852
https://doi.org/10.1093/cercor/bhq155
pmid: 20732898
|
104 |
Miyoshi G, Hjerling-Leffler J, Karayannis T, Sousa V H, Butt S J, Battiste J, Johnson J E, Machold R P, Fishell G (2010). Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci, 30(5): 1582–1594
https://doi.org/10.1523/JNEUROSCI.4515-09.2010
pmid: 20130169
|
105 |
Mizuno H, Luo W, Tarusawa E, Saito Y M, Sato T, Yoshimura Y, Itohara S, Iwasato T (2014). NMDAR-regulated dynamics of layer 4 neuronal dendrites during thalamocortical reorganization in neonates. Neuron, 82(2): 365–379
https://doi.org/10.1016/j.neuron.2014.02.026
pmid: 24685175
|
106 |
Molnár Z, Adams R, Blakemore C (1998). Mechanisms underlying the early establishment of thalamocortical connections in the rat. J Neurosci, 18(15): 5723–5745
pmid: 9671663
|
107 |
Murthy S, Niquille M, Hurni N, Limoni G, Frazer S, Chameau P, van Hooft J A, Vitalis T, Dayer A (2014). Serotonin receptor 3A controls interneuron migration into the neocortex. Nat Commun, 5: 5524
https://doi.org/10.1038/ncomms6524
pmid: 25409778
|
108 |
Narboux-Nême N, Evrard A, Ferezou I, Erzurumlu R S, Kaeser P S, Lainé J, Rossier J, Ropert N, Südhof T C, Gaspar P (2012). Neurotransmitter release at the thalamocortical synapse instructs barrel formation but not axon patterning in the somatosensory cortex. J Neurosci, 32(18): 6183–6196
https://doi.org/10.1523/JNEUROSCI.0343-12.2012
pmid: 22553025
|
109 |
Oh W C, Lutzu S, Castillo P E, Kwon H B (2016). De novo synaptogenesis induced by GABA in the developing mouse cortex. Science, 353(6303): 1037–1040
https://doi.org/10.1126/science.aaf5206
pmid: 27516412
|
110 |
Okaty B W, Miller M N, Sugino K, Hempel C M, Nelson S B (2009). Transcriptional and electrophysiological maturation of neocortical fast-spiking GABAergic interneurons. J Neurosci, 29(21): 7040–7052
https://doi.org/10.1523/JNEUROSCI.0105-09.2009
pmid: 19474331
|
111 |
Paoletti P, Bellone C, Zhou Q (2013). NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci, 14(6): 383–400
https://doi.org/10.1038/nrn3504
pmid: 23686171
|
112 |
Petersen C C (2007). The functional organization of the barrel cortex. Neuron, 56(2): 339–355
https://doi.org/10.1016/j.neuron.2007.09.017
pmid: 17964250
|
113 |
Porter J T, Johnson C K, Agmon A (2001). Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci, 21(8): 2699–2710
pmid: 11306623
|
114 |
Reiprich P, Kilb W, Luhmann H J (2005). Neonatal NMDA receptor blockade disturbs neuronal migration in rat somatosensory cortex in vivo. Cereb Cortex, 15(3): 349–358
https://doi.org/10.1093/cercor/bhh137
pmid: 15269112
|
115 |
Rheims S, Minlebaev M, Ivanov A, Represa A, Khazipov R, Holmes G L, Ben-Ari Y, Zilberter Y (2008). Excitatory GABA in rodent developing neocortex in vitro. J Neurophysiol, 100(2): 609–619
https://doi.org/10.1152/jn.90402.2008
pmid: 18497364
|
116 |
Riccio O, Potter G, Walzer C, Vallet P, Szabó G, Vutskits L, Kiss J Z, Dayer A G (2009). Excess of serotonin affects embryonic interneuron migration through activation of the serotonin receptor 6. Mol Psychiatry, 14(3): 280–290
https://doi.org/10.1038/mp.2008.89
pmid: 18663366
|
117 |
Rudy B, Fishell G, Lee S, Hjerling-Leffler J (2011). Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol, 71(1): 45–61
https://doi.org/10.1002/dneu.20853
pmid: 21154909
|
118 |
Rutherford L C, DeWan A, Lauer H M, Turrigiano G G (1997). Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J Neurosci, 17(12): 4527–4535
pmid: 9169513
|
119 |
Sanes D H, Kotak V C (2011). Developmental plasticity of auditory cortical inhibitory synapses. Hear Res, 279(1-2): 140–148
https://doi.org/10.1016/j.heares.2011.03.015
pmid: 21463668
|
120 |
Schwartz T H, Rabinowitz D, Unni V, Kumar V S, Smetters D K, Tsiola A, Yuste R (1998). Networks of coactive neurons in developing layer 1. Neuron, 20(3): 541–552
https://doi.org/10.1016/S0896-6273(00)80993-9
pmid: 9539127
|
121 |
Siegel F, Heimel J A, Peters J, Lohmann C (2012). Peripheral and central inputs shape network dynamics in the developing visual cortex in vivo. Curr Biol, 22(3): 253–258
https://doi.org/10.1016/j.cub.2011.12.026
pmid: 22264606
|
122 |
Sippy T, Yuste R (2013). Decorrelating action of inhibition in neocortical networks. J Neurosci, 33(23): 9813–9830
https://doi.org/10.1523/JNEUROSCI.4579-12.2013
pmid: 23739978
|
123 |
Soria J M, Valdeolmillos M (2002). Receptor-activated calcium signals in tangentially migrating cortical cells. Cereb Cortex, 12(8): 831–839
https://doi.org/10.1093/cercor/12.8.831
pmid: 12122031
|
124 |
Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003). In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA, 100(12): 7319–7324
https://doi.org/10.1073/pnas.1232232100
pmid: 12777621
|
125 |
Sultan K T, Brown K N, Shi S H (2013). Production and organization of neocortical interneurons. Front Cell Neurosci, 7: 221
https://doi.org/10.3389/fncel.2013.00221
pmid: 24312011
|
126 |
Sun J J, Luhmann H J (2007). Spatio-temporal dynamics of oscillatory network activity in the neonatal mouse cerebral cortex. Eur J Neurosci, 26(7): 1995–2004
https://doi.org/10.1111/j.1460-9568.2007.05819.x
pmid: 17868367
|
127 |
Sun Q Q, Huguenard J R, Prince D A (2006). Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons. J Neurosci, 26(4): 1219–1230
https://doi.org/10.1523/JNEUROSCI.4727-04.2006
pmid: 16436609
|
128 |
Sur M, Leamey C A (2001). Development and plasticity of cortical areas and networks. Nat Rev Neurosci, 2(4): 251–262
https://doi.org/10.1038/35067562
pmid: 11283748
|
129 |
Takano T (2015). Interneuron Dysfunction in Syndromic Autism: Recent Advances. Dev Neurosci, 37(6): 467–475
https://doi.org/10.1159/000434638
pmid: 26183392
|
130 |
Tasic B, Menon V, Nguyen T N, Kim T K, Jarsky T, Yao Z, Levi B, Gray L T, Sorensen S A, Dolbeare T, Bertagnolli D, Goldy J, Shapovalova N, Parry S, Lee C, Smith K, Bernard A, Madisen L, Sunkin S M, Hawrylycz M, Koch C, Zeng H (2016). Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci, 19(2): 335–346
https://doi.org/10.1038/nn.4216
pmid: 26727548
|
131 |
Tolner E A, Sheikh A, Yukin A Y, Kaila K, Kanold P O (2012). Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex. J Neurosci, 32(2): 692–702
https://doi.org/10.1523/JNEUROSCI.1538-11.2012
pmid: 22238105
|
132 |
Tolonen M, Palva J M, Andersson S, Vanhatalo S (2007). Development of the spontaneous activity transients and ongoing cortical activity in human preterm babies. Neuroscience, 145(3): 997–1006
https://doi.org/10.1016/j.neuroscience.2006.12.070
pmid: 17307296
|
133 |
Trevelyan A J, Muldoon S F, Merricks E M, Racca C, Staley K J (2015). The role of inhibition in epileptic networks. J Clin Neurophysiol, 32(3): 227–234
https://doi.org/10.1097/WNP.0000000000000160
pmid: 26035675
|
134 |
Tuncdemir S N, Wamsley B, Stam F J, Osakada F, Goulding M, Callaway E M, Rudy B, Fishell G (2016). Early Somatostatin Interneuron Connectivity Mediates the Maturation of Deep Layer Cortical Circuits. Neuron, 89(3): 521–535
https://doi.org/10.1016/j.neuron.2015.11.020
pmid: 26844832
|
135 |
Uhlén P, Fritz N, Smedler E, Malmersjö S, Kanatani S (2015). Calcium signaling in neocortical development. Dev Neurobiol, 75(4): 360–368
https://doi.org/10.1002/dneu.22273
pmid: 25652687
|
136 |
Van der Loos H, Woolsey T A (1973). Somatosensory cortex: structural alterations following early injury to sense organs. Science, 179(4071): 395–398
https://doi.org/10.1126/science.179.4071.395
pmid: 4682966
|
137 |
Van Eden C G, Mrzljak L, Voorn P, Uylings H B (1989). Prenatal development of GABA-ergic neurons in the neocortex of the rat. J Comp Neurol, 289(2): 213–227
https://doi.org/10.1002/cne.902890204
pmid: 2808764
|
138 |
Vitalis T, Ansorge M S, Dayer A G (2013). Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes. Front Cell Neurosci, 7: 93
https://doi.org/10.3389/fncel.2013.00093
pmid: 23801939
|
139 |
Vitalis T, Cases O, Passemard S, Callebert J, Parnavelas J G (2007). Embryonic depletion of serotonin affects cortical development. Eur J Neurosci, 26(2): 331–344
https://doi.org/10.1111/j.1460-9568.2007.05661.x
pmid: 17650110
|
140 |
Voigt T, Opitz T, de Lima A D (2001). Synchronous oscillatory activity in immature cortical network is driven by GABAergic preplate neurons. J Neurosci, 21(22): 8895–8905
pmid: 11698601
|
141 |
Welker C (1971). Microelectrode delineation of fine grain somatotopic organization of (SmI) cerebral neocortex in albino rat. Brain Res, 26(2): 259–275
pmid: 4100672
|
142 |
Welker C (1976). Receptive fields of barrels in the somatosensory neocortex of the rat. J Comp Neurol, 166(2): 173–189
https://doi.org/10.1002/cne.901660205
pmid: 770516
|
143 |
White L E, Fitzpatrick D (2007). Vision and cortical map development. Neuron, 56(2): 327–338
https://doi.org/10.1016/j.neuron.2007.10.011
pmid: 17964249
|
144 |
Wichterle H, Garcia-Verdugo J M, Herrera D G, Alvarez-Buylla A (1999). Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci, 2(5): 461–466
https://doi.org/10.1038/8131
pmid: 10321251
|
145 |
Wichterle H, Turnbull D H, Nery S, Fishell G, Alvarez-Buylla A (2001). In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development, 128(19): 3759–3771
pmid: 11585802
|
146 |
Woolsey T A, Van der Loos H (1970). The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res, 17(2): 205–242
https://doi.org/10.1016/0006-8993(70)90079-X
pmid: 4904874
|
147 |
Wu X, Fu Y, Knott G, Lu J, Di Cristo G, Huang Z J (2012). GABA signaling promotes synapse elimination and axon pruning in developing cortical inhibitory interneurons. J Neurosci, 32(1): 331–343
https://doi.org/10.1523/JNEUROSCI.3189-11.2012
pmid: 22219294
|
148 |
Yang J W, Hanganu-Opatz I L, Sun J J, Luhmann H J (2009). Three patterns of oscillatory activity differentially synchronize developing neocortical networks in vivo. J Neurosci, 29(28): 9011–9025
https://doi.org/10.1523/JNEUROSCI.5646-08.2009
pmid: 19605639
|
149 |
Yang J W, Reyes-Puerta V, Kilb W, Luhmann H J (2016). Spindle Bursts in Neonatal Rat Cerebral Cortex. Neural Plast, 2016: 3467832
https://doi.org/10.1155/2016/3467832
pmid: 27034844
|
150 |
Yozu M, Tabata H, Konig N, Nakajima K (2008). Migratory behavior of presumptive interneurons is affected by AMPA receptor activation in slice cultures of embryonic mouse neocortex. Dev Neurosci, 30(1-3): 105–116
https://doi.org/10.1159/000109856
pmid: 18075259
|
151 |
Zeisel A, Muñoz-Manchado A B, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S (2015). Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 347(6226): 1138–1142
https://doi.org/10.1126/science.aaa1934
pmid: 25700174
|
152 |
Zhang Z, Sun Q Q (2011). Development of NMDA NR2 subunits and their roles in critical period maturation of neocortical GABAergic interneurons. Dev Neurobiol, 71(3): 221–245
https://doi.org/10.1002/dneu.20844
pmid: 20936660
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|