Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2016, Vol. 11 Issue (6) : 459-470    https://doi.org/10.1007/s11515-016-1427-x
REVIEW
Neuronal activity controls the development of interneurons in the somatosensory cortex
Rachel Babij1,2,Natalia De Marco Garcia1()
1. Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
2. Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, USA
 Download: PDF(658 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Neuronal activity in cortical areas regulates neurodevelopment by interacting with defined genetic programs to shape the mature central nervous system. Electrical activity is conveyed to sensory cortical areas via intracortical and thalamocortical neurons, and includes oscillatory patterns that have been measured across cortical regions.

OBJECTIVE: In this work, we review the most recent findings about how electrical activity shapes the developmental assembly of functional circuitry in the somatosensory cortex, with an emphasis on interneuron maturation and integration. We include studies on the effect of various neurotransmitters and on the influence of thalamocortical afferent activity on circuit development. We additionally reviewed studies describing network activity patterns.

METHODS: We conducted an extensive literature search using both the PubMed and Google Scholar search engines. The following keywords were used in various iterations: “interneuron”, “somatosensory”, “development”, “activity”, “network patterns”, “thalamocortical”, “NMDA receptor”, “plasticity”. We additionally selected papers known to us from past reading, and those recommended to us by reviewers and members of our lab.

RESULTS: We reviewed a total of 132 articles that focused on the role of activity in interneuronal migration, maturation, and circuit development, as well as the source of electrical inputs and patterns of cortical activity in the somatosensory cortex. 79 of these papers included in this timely review were written between 2007 and 2016.

CONCLUSIONS: Neuronal activity shapes the developmental assembly of functional circuitry in the somatosensory cortical interneurons. This activity impacts nearly every aspect of development and acquisition of mature neuronal characteristics, and may contribute to changing phenotypes, altered transmitter expression, and plasticity in the adult. Progressively changing oscillatory network patterns contribute to this activity in the early postnatal period, although a direct requirement for specific patterns and origins of activity remains to be demonstrated.

Keywords interneuron      neurodevelopment      neuroplasticity      thalamocortical      NMDA receptors      neuronal maturation     
Corresponding Author(s): Natalia De Marco Garcia   
Just Accepted Date: 08 November 2016   Online First Date: 01 December 2016    Issue Date: 26 December 2016
 Cite this article:   
Rachel Babij,Natalia De Marco Garcia. Neuronal activity controls the development of interneurons in the somatosensory cortex[J]. Front. Biol., 2016, 11(6): 459-470.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-016-1427-x
https://academic.hep.com.cn/fib/EN/Y2016/V11/I6/459
Fig.1  Activity-dependent development of somatosensory cortex interneurons. Cortical interneurons (IN) follow a defined sequence of development, shown above. (Green – proliferation, light blue – tangential migration, blue – radial migration, navy – morphogenesis, purples – synaptic integration, transmitter expression, and mature characteristics.) (A) Timeline of interneuron development with summary of major findings of activity influence. 1 – Close et al., 2012; 2 – Denaxa et al., 2012; 3 – Bortone and Polleux, 2009; 4 – De Marco Garcia et al., 2011; 5 – Murthy et al., 2014; 6 – De Marco Garcia et al., 2015; 7 – Baho and DiCristo, 2012; 8 – Wu et al., 2012; 9 – Ji et al., 2006; 10 – Tuncdemir et al., 2016; 11 – Rutherford et al., 1997; 12 – Huang et al., 2007; 13 – Liang et al., 1996; 14 – Mix et al., 2015; 15 – Giardalski et al., 2001; 16 – Dehorter et al., 2015; 17-Campanac et al., 2013 (B) Cortical IN are born in the ganglionic eminences of the ventral telencephalon (1) and migrate tangentially to their cortical destination (2). Within the cortex, they migrate radially to the laminae (3), undergo morphological maturation (4), then begin to integrate into nascent networks and express characteristic transmitters, neuropeptides and calcium binding proteins (5). Neuronal activity is required along the way as these neurons acquire their mature characteristics.
5 Allene C, Cossart R (2010). Early NMDA receptor-driven waves of activity in the developing neocortex: physiological or pathological network oscillations? J Physiol, 588(Pt 1): 83–91
https://doi.org/10.1113/jphysiol.2009.178798 pmid: 19917570
6 An S, Kilb W, Luhmann H J (2014). Sensory-evoked and spontaneous gamma and spindle bursts in neonatal rat motor cortex. J Neurosci, 34(33): 10870–10883
https://doi.org/10.1523/JNEUROSCI.4539-13.2014 pmid: 25122889
7 Anastasiades P G, Marques-Smith A, Lyngholm D, Lickiss T, Raffiq S, Kätzel D, Miesenböck G, Butt S J (2016). GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex. Nat Commun, 7: 10584
https://doi.org/10.1038/ncomms10584 pmid: 26843463
8 Arroyo D A, Feller M B (2016). Spatiotemporal Features of Retinal Waves Instruct the Wiring of the Visual Circuitry. Front Neural Circuits, 10: 54
https://doi.org/10.3389/fncir.2016.00054 pmid: 27507937
9 Ascoli G A, Alonso-Nanclares L, Anderson S A, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsáki G, Cauli B, Defelipe J, Fairén A, Feldmeyer D, Fishell G, Fregnac Y, Freund T F, Gardner D, Gardner E P, Goldberg J H, Helmstaedter M, Hestrin S, Karube F, Kisvárday Z F, Lambolez B, Lewis D A, Marin O, Markram H, Muñoz A, Packer A, Petersen C C, Rockland K S, Rossier J, Rudy B, Somogyi P, Staiger J F, Tamas G, Thomson A M, Toledo-Rodriguez M, Wang Y, West D C, Yuste R, Yuste R, and the Petilla Interneuron Nomenclature Group (2008). Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci, 9(7): 557–568
https://doi.org/10.1038/nrn2402 pmid: 18568015
10 Avila A, Vidal P M, Dear T N, Harvey R J, Rigo J M, Nguyen L (2013). Glycine receptor α2 subunit activation promotes cortical interneuron migration. Cell Reports, 4(4): 738–750
https://doi.org/10.1016/j.celrep.2013.07.016 pmid: 23954789
11 Baho E, Di Cristo G (2012). Neural activity and neurotransmission regulate the maturation of the innervation field of cortical GABAergic interneurons in an age-dependent manner. J Neurosci, 32(3): 911–918
https://doi.org/10.1523/JNEUROSCI.4352-11.2012 pmid: 22262889
1 Adelsberger H, Garaschuk O, Konnerth A (2005). Cortical calcium waves in resting newborn mice. Nat Neurosci, 8(8): 988–990
https://doi.org/10.1038/nn1502 pmid: 16007081
12 Bando Y, Irie K, Shimomura T, Umeshima H, Kushida Y, Kengaku M, Fujiyoshi Y, Hirano T, Tagawa Y (2016). Control of spontaneous Ca2+ transients is critical for neuronal maturation in the developing neocortex. Cereb Cortex, 26(1): 106–117
https://doi.org/10.1093/cercor/bhu180 pmid: 25112282
13 Batista-Brito R, Fishell G (2009). The developmental integration of cortical interneurons into a functional network. Curr Top Dev Biol, 87: 81–118
https://doi.org/10.1016/S0070-2153(09)01203-4 pmid: 19427517
14 Batista-Brito R, Machold R, Klein C, Fishell G (2008). Gene expression in cortical interneuron precursors is prescient of their mature function. Cereb Cortex, 18(10): 2306–2317
https://doi.org/10.1093/cercor/bhm258 pmid: 18250082
15 Behar T N, Schaffner A E, Scott C A, Greene C L, Barker J L (2000). GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb Cortex, 10(9): 899–909
https://doi.org/10.1093/cercor/10.9.899 pmid: 10982750
16 Behar T N, Scott C A, Greene C L, Wen X, Smith S V, Maric D, Liu Q Y, Colton C A, Barker J L (1999). Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci, 19(11): 4449–4461
pmid: 10341246
17 Bony G, Szczurkowska J, Tamagno I, Shelly M, Contestabile A, Cancedda L (2013). Non-hyperpolarizing GABAB receptor activation regulates neuronal migration and neurite growth and specification by cAMP/LKB1. Nat Commun, 4: 1800
https://doi.org/10.1038/ncomms2820 pmid: 23653212
18 Bortone D, Polleux F (2009). KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron, 62(1): 53–71
https://doi.org/10.1016/j.neuron.2009.01.034 pmid: 19376067
19 Butt S J, Fuccillo M, Nery S, Noctor S, Kriegstein A, Corbin J G, Fishell G (2005). The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron, 48(4): 591–604
https://doi.org/10.1016/j.neuron.2005.09.034 pmid: 16301176
20 Campanac E, Gasselin C, Baude A, Rama S, Ankri N, Debanne D (2013). Enhanced intrinsic excitability in basket cells maintains excitatory-inhibitory balance in hippocampal circuits. Neuron, 77(4): 712–722
https://doi.org/10.1016/j.neuron.2012.12.020 pmid: 23439123
21 Chaudhury S, Sharma V, Kumar V, Nag T C, Wadhwa S (2016). Activity-dependent synaptic plasticity modulates the critical phase of brain development. Brain Dev, 38(4): 355–363
https://doi.org/10.1016/j.braindev.2015.10.008 pmid: 26515724
22 Chu J, Anderson S A (2015). Development of cortical interneurons. Neuropsychopharmacology, 40(1): 16–23
https://doi.org/10.1038/npp.2014.171 pmid: 25103177
23 Close J, Xu H, De Marco García N, Batista-Brito R, Rossignol E, Rudy B, Fishell G (2012). Satb1 is an activity-modulated transcription factor required for the terminal differentiation and connectivity of medial ganglionic eminence-derived cortical interneurons. J Neurosci, 32(49): 17690–17705
https://doi.org/10.1523/JNEUROSCI.3583-12.2012 pmid: 23223290
24 Cohen-Kashi Malina K, Mohar B, Rappaport A N, Lampl I (2016). Local and thalamic origins of correlated ongoing and sensory-evoked cortical activities. Nat Commun, 7: 12740
https://doi.org/10.1038/ncomms12740 pmid: 27615520
25 Colonnese M T, Kaminska A, Minlebaev M, Milh M, Bloem B, Lescure S, Moriette G, Chiron C, Ben-Ari Y, Khazipov R (2010). A conserved switch in sensory processing prepares developing neocortex for vision. Neuron, 67(3): 480–498
https://doi.org/10.1016/j.neuron.2010.07.015 pmid: 20696384
26 Conhaim J, Easton C R, Becker M I, Barahimi M, Cedarbaum E R, Moore J G, Mather L F, Dabagh S, Minter D J, Moen S P, Moody W J (2011). Developmental changes in propagation patterns and transmitter dependence of waves of spontaneous activity in the mouse cerebral cortex. J Physiol, 589(Pt 10): 2529–2541
https://doi.org/10.1113/jphysiol.2010.202382 pmid: 21486817
27 Corlew R, Bosma M M, Moody W J (2004). Spontaneous, synchronous electrical activity in neonatal mouse cortical neurones. J Physiol, 560(Pt 2): 377–390
https://doi.org/10.1113/jphysiol.2004.071621 pmid: 15297578
28 Cossart R, Ikegaya Y, Yuste R (2005). Calcium imaging of cortical networks dynamics. Cell Calcium, 37(5): 451–457
https://doi.org/10.1016/j.ceca.2005.01.013 pmid: 15820393
29 Coulter D A (2001). Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int Rev Neurobiol, 45: 237–252
https://doi.org/10.1016/S0074-7742(01)45013-6 pmid: 11130901
30 Crair M C, Malenka R C (1995). A critical period for long-term potentiation at thalamocortical synapses. Nature, 375(6529): 325–328
https://doi.org/10.1038/375325a0 pmid: 7753197
31 Cruikshank S J, Urabe H, Nurmikko A V, Connors B W (2010). Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron, 65(2): 230–245
https://doi.org/10.1016/j.neuron.2009.12.025 pmid: 20152129
2 Agmon A, Connors B W (1992). Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex. J Neurosci, 12(1): 319–329
pmid: 1729440
3 Agmon A, O’Dowd D K (1992). NMDA receptor-mediated currents are prominent in the thalamocortical synaptic response before maturation of inhibition. J Neurophysiol, 68(1): 345–349
pmid: 1381421
4 Allène C, Cattani A, Ackman J B, Bonifazi P, Aniksztejn L, Ben-Ari Y, Cossart R (2008). Sequential generation of two distinct synapse-driven network patterns in developing neocortex. J Neurosci, 28(48): 12851–12863
https://doi.org/10.1523/JNEUROSCI.3733-08.2008 pmid: 19036979
32 Cuzon V C, Yeh P W, Cheng Q, Yeh H H (2006). Ambient GABA promotes cortical entry of tangentially migrating cells derived from the medial ganglionic eminence. Cereb Cortex, 16(10): 1377–1388
https://doi.org/10.1093/cercor/bhj084 pmid: 16339085
33 Cuzon Carlson V C, Yeh H H (2011). GABAA receptor subunit profiles of tangentially migrating neurons derived from the medial ganglionic eminence. Cereb Cortex, 21(8): 1792–1802
https://doi.org/10.1093/cercor/bhq247 pmid: 21148088
34 Daw M I, Scott H L, Isaac J T (2007). Developmental synaptic plasticity at the thalamocortical input to barrel cortex: mechanisms and roles. Mol Cell Neurosci, 34(4): 493–502
https://doi.org/10.1016/j.mcn.2007.01.001 pmid: 17329121
35 de Lima A D, Gieseler A, Voigt T (2009). Relationship between GABAergic interneurons migration and early neocortical network activity. Dev Neurobiol, 69(2-3): 105–123
https://doi.org/10.1002/dneu.20696 pmid: 19086030
36 De Marco García N V, Karayannis T, Fishell G (2011). Neuronal activity is required for the development of specific cortical interneuron subtypes. Nature, 472(7343): 351–355
https://doi.org/10.1038/nature09865 pmid: 21460837
37 De Marco García N V, Priya R, Tuncdemir S N, Fishell G, Karayannis T (2015). Sensory inputs control the integration of neurogliaform interneurons into cortical circuits. Nat Neurosci, 18(3): 393–401
https://doi.org/10.1038/nn.3946 pmid: 25664912
38 DeDiego I, Smith-Fernández A, Fairén A (1994). Cortical cells that migrate beyond area boundaries: characterization of an early neuronal population in the lower intermediate zone of prenatal rats. Eur J Neurosci, 6(6): 983–997
https://doi.org/10.1111/j.1460-9568.1994.tb00593.x pmid: 7952285
39 Dehorter N, Ciceri G, Bartolini G, Lim L, del Pino I, Marín O (2015). Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. Science, 349(6253): 1216–1220
https://doi.org/10.1126/science.aab3415 pmid: 26359400
40 Denaxa M, Kalaitzidou M, Garefalaki A, Achimastou A, Lasrado R, Maes T, Pachnis V (2012). Maturation-promoting activity of SATB1 in MGE-derived cortical interneurons. Cell Reports, 2(5): 1351–1362
https://doi.org/10.1016/j.celrep.2012.10.003 pmid: 23142661
41 Dupont E, Hanganu I L, Kilb W, Hirsch S, Luhmann H J (2006). Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature, 439(7072): 79–83
https://doi.org/10.1038/nature04264 pmid: 16327778
42 Easton C R, Weir K, Scott A, Moen S P, Barger Z, Folch A, Hevner R F, Moody W J (2014). Genetic elimination of GABAergic neurotransmission reveals two distinct pacemakers for spontaneous waves of activity in the developing mouse cortex. J Neurosci, 34(11): 3854–3863
https://doi.org/10.1523/JNEUROSCI.3811-13.2014 pmid: 24623764
43 Erzurumlu R S, Gaspar P (2012). Development and critical period plasticity of the barrel cortex. Eur J Neurosci, 35(10): 1540–1553
https://doi.org/10.1111/j.1460-9568.2012.08075.x pmid: 22607000
44 Espinosa J S, Stryker M P (2012). Development and plasticity of the primary visual cortex. Neuron, 75(2): 230–249
https://doi.org/10.1016/j.neuron.2012.06.009 pmid: 22841309
45 Espinosa J S, Wheeler D G, Tsien R W, Luo L (2009). Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron, 62(2): 205–217
https://doi.org/10.1016/j.neuron.2009.03.006 pmid: 19409266
46 Feldmeyer D (2012). Excitatory neuronal connectivity in the barrel cortex. Front Neuroanat, 6: 24
https://doi.org/10.3389/fnana.2012.00024 pmid: 22798946
47 Feldmeyer D, Brecht M, Helmchen F, Petersen C C, Poulet J F, Staiger J F, Luhmann H J, Schwarz C (2013). Barrel cortex function. Prog Neurobiol, 103: 3–27
https://doi.org/10.1016/j.pneurobio.2012.11.002 pmid: 23195880
48 Fishell G, Rudy B (2011). Mechanisms of inhibition within the telencephalon: “where the wild things are”. Annu Rev Neurosci, 34(1): 535–567
https://doi.org/10.1146/annurev-neuro-061010-113717 pmid: 21469958
49 Flint A C, Maisch U S, Weishaupt J H, Kriegstein A R, Monyer H (1997). NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci, 17(7): 2469–2476
pmid: 9065507
50 Frazer S, Otomo K, Dayer A (2015). Early-life serotonin dysregulation affects the migration and positioning of cortical interneuron subtypes. Transl Psychiatry, 5(9): e644
https://doi.org/10.1038/tp.2015.147 pmid: 26393490
51 Garaschuk O, Linn J, Eilers J, Konnerth A (2000). Large-scale oscillatory calcium waves in the immature cortex. Nat Neurosci, 3(5): 452–459
https://doi.org/10.1038/74823 pmid: 10769384
52 Gierdalski M, Jablonska B, Siucinska E, Lech M, Skibinska A, Kossut M (2001). Rapid regulation of GAD67 mRNA and protein level in cortical neurons after sensory learning. Cereb Cortex, 11(9): 806–815
https://doi.org/10.1093/cercor/11.9.806 pmid: 11532886
53 Golshani P, Gonçalves J T, Khoshkhoo S, Mostany R, Smirnakis S, Portera-Cailliau C (2009). Internally mediated developmental desynchronization of neocortical network activity. J Neurosci, 29(35): 10890–10899
https://doi.org/10.1523/JNEUROSCI.2012-09.2009 pmid: 19726647
54 Hanganu I L, Kilb W, Luhmann H J (2002). Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex. J Neurosci, 22(16): 7165–7176
pmid: 12177212
55 Heck N, Kilb W, Reiprich P, Kubota H, Furukawa T, Fukuda A, Luhmann H J (2007). GABA-A receptors regulate neocortical neuronal migration in vitro and in vivo. Cereb Cortex, 17(1): 138–148
https://doi.org/10.1093/cercor/bhj135 pmid: 16452638
56 Higashi S, Hioki K, Kurotani T, Kasim N, Molnár Z (2005). Functional thalamocortical synapse reorganization from subplate to layer IV during postnatal development in the reeler-like mutant rat (shaking rat Kawasaki). J Neurosci, 25(6): 1395–1406
https://doi.org/10.1523/JNEUROSCI.4023-04.2005 pmid: 15703393
57 Huang Z J, Di Cristo G, Ango F (2007). Development of GABA innervation in the cerebral and cerebellar cortices. Nat Rev Neurosci, 8(9): 673–686
https://doi.org/10.1038/nrn2188 pmid: 17704810
58 Inada H, Watanabe M, Uchida T, Ishibashi H, Wake H, Nemoto T, Yanagawa Y, Fukuda A, Nabekura J (2011). GABA regulates the multidirectional tangential migration of GABAergic interneurons in living neonatal mice. PLoS ONE, 6(12): e27048
https://doi.org/10.1371/journal.pone.0027048 pmid: 22180776
59 Iwasato T, Datwani A, Wolf A M, Nishiyama H, Taguchi Y, Tonegawa S, Knöpfel T, Erzurumlu R S, Itohara S (2000). Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature, 406(6797): 726–731
https://doi.org/10.1038/35021059 pmid: 10963597
60 Ji X Y, Zingg B, Mesik L, Xiao Z, Zhang L I, Tao H W (2016). Thalamocortical Innervation Pattern in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity. Cereb Cortex, 26(6): 2612–2625
https://doi.org/10.1093/cercor/bhv099 pmid: 25979090
61 Jiao Y, Zhang C, Yanagawa Y, Sun Q Q (2006). Major effects of sensory experiences on the neocortical inhibitory circuits. J Neurosci, 26(34): 8691–8701
https://doi.org/10.1523/JNEUROSCI.2478-06.2006 pmid: 16928857
62 Kanold P O (2004). Transient microcircuits formed by subplate neurons and their role in functional development of thalamocortical connections. Neuroreport, 15(14): 2149–2153
https://doi.org/10.1097/00001756-200410050-00001 pmid: 15371723
63 Kanold P O, Kara P, Reid R C, Shatz C J (2003). Role of subplate neurons in functional maturation of visual cortical columns. Science, 301(5632): 521–525
https://doi.org/10.1126/science.1084152 pmid: 12881571
64 Kanold P O, Luhmann H J (2010). The subplate and early cortical circuits. Annu Rev Neurosci, 33(1): 23–48
https://doi.org/10.1146/annurev-neuro-060909-153244 pmid: 20201645
65 Karayannis T, De Marco García N V, Fishell G J (2012). Functional adaptation of cortical interneurons to attenuated activity is subtype-specific. Front Neural Circuits, 6: 66
https://doi.org/10.3389/fncir.2012.00066 pmid: 23015781
66 Karnani M M, Jackson J, Ayzenshtat I, Tucciarone J, Manoocheri K, Snider W G, Yuste R (2016). Cooperative Subnetworks of Molecularly Similar Interneurons in Mouse Neocortex. Neuron, 90(1): 86–100
https://doi.org/10.1016/j.neuron.2016.02.037 pmid: 27021171
67 Kepecs A, Fishell G (2014). Interneuron cell types are fit to function. Nature, 505(7483): 318–326
https://doi.org/10.1038/nature12983 pmid: 24429630
68 Khazipov R, Luhmann H J (2006). Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci, 29(7): 414–418
https://doi.org/10.1016/j.tins.2006.05.007 pmid: 16713634
69 Khazipov R, Sirota A, Leinekugel X, Holmes G L, Ben-Ari Y, Buzsáki G (2004). Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature, 432(7018): 758–761
https://doi.org/10.1038/nature03132 pmid: 15592414
70 Kihara M, Yoshioka H, Hirai K, Hasegawa K, Kizaki Z, Sawada T (2002). Stimulation of N-methyl-D-aspartate (NMDA) receptors inhibits neuronal migration in embryonic cerebral cortex: a tissue culture study. Brain Res Dev Brain Res, 138(2): 195–198
https://doi.org/10.1016/S0165-3806(02)00490-X pmid: 12354647
71 Kilb W, Kirischuk S, Luhmann H J (2011). Electrical activity patterns and the functional maturation of the neocortex. Eur J Neurosci, 34(10): 1677–1686
https://doi.org/10.1111/j.1460-9568.2011.07878.x pmid: 22103424
72 Kilb W, Kirischuk S, Luhmann H J (2013). Role of tonic GABAergic currents during pre- and early postnatal rodent development. Front Neural Circuits, 7: 139
https://doi.org/10.3389/fncir.2013.00139 pmid: 24027498
73 Killackey H P (1973). Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat. Brain Res, 51: 326–331
https://doi.org/10.1016/0006-8993(73)90383-1 pmid: 4706020
74 Kirmse K, Kummer M, Kovalchuk Y, Witte O W, Garaschuk O, Holthoff K (2015). GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo. Nat Commun, 6: 7750
https://doi.org/10.1038/ncomms8750 pmid: 26177896
75 Koolen N, Dereymaeker A, Räsänen O, Jansen K, Vervisch J, Matic V, Naulaers G, De Vos M, Van Huffel S, Vanhatalo S (2016). Early development of synchrony in cortical activations in the human. Neuroscience, 322: 298–307
https://doi.org/10.1016/j.neuroscience.2016.02.017 pmid: 26876605
76 Kral A (2013). Auditory critical periods: a review from system’s perspective. Neuroscience, 247: 117–133
https://doi.org/10.1016/j.neuroscience.2013.05.021 pmid: 23707979
77 Laaris N, Carlson G C, Keller A (2000). Thalamic-evoked synaptic interactions in barrel cortex revealed by optical imaging. J Neurosci, 20(4): 1529–1537
pmid: 10662842
78 Lee L J, Iwasato T, Itohara S, Erzurumlu R S (2005). Exuberant thalamocortical axon arborization in cortex-specific NMDAR1 knockout mice. J Comp Neurol, 485(4): 280–292
https://doi.org/10.1002/cne.20481 pmid: 15803506
79 Lewis D A (2014). Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Curr Opin Neurobiol, 26: 22–26
https://doi.org/10.1016/j.conb.2013.11.003 pmid: 24650500
80 Li H, Fertuzinhos S, Mohns E, Hnasko T S, Verhage M, Edwards R, Sestan N, Crair M C (2013). Laminar and columnar development of barrel cortex relies on thalamocortical neurotransmission. Neuron, 79(5): 970–986
https://doi.org/10.1016/j.neuron.2013.06.043 pmid: 24012009
81 Liang F, Isackson P J, Jones E G (1996). Stimulus-dependent, reciprocal up- and downregulation of glutamic acid decarboxylase and Ca2+/calmodulin-dependent protein kinase II gene expression in rat cerebral cortex. Exp Brain Res, 110(2): 163–174
https://doi.org/10.1007/BF00228548 pmid: 8836681
82 Liodis P, Denaxa M, Grigoriou M, Akufo-Addo C, Yanagawa Y, Pachnis V (2007). Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. J Neurosci, 27(12): 3078–3089
https://doi.org/10.1523/JNEUROSCI.3055-06.2007 pmid: 17376969
83 Liu X, Hashimoto-Torii K, Torii M, Ding C, Rakic P (2010). Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors. J Neurosci, 30(12): 4197–4209
https://doi.org/10.1523/JNEUROSCI.4187-09.2010 pmid: 20335455
84 Liu X, Hashimoto-Torii K, Torii M, Haydar T F, Rakic P (2008). The role of ATP signaling in the migration of intermediate neuronal progenitors to the neocortical subventricular zone. Proc Natl Acad Sci USA, 105(33): 11802–11807
https://doi.org/10.1073/pnas.0805180105 pmid: 18689674
85 Liu X B, Murray K D, Jones E G (2004). Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. J Neurosci, 24(40): 8885–8895
https://doi.org/10.1523/JNEUROSCI.2476-04.2004 pmid: 15470155
86 Lorente de No R (1922). La Corteza Cerebral del Raton (Primera Contribucion- La Corteza Acustica). Trabajos del Laboratorio de Investigaciones Biologicas, 20: 41–78
87 LoTurco J J, Blanton M G, Kriegstein A R (1991). Initial expression and endogenous activation of NMDA channels in early neocortical development. J Neurosci, 11(3): 792–799
pmid: 1825846
88 Luhmann H J, Fukuda A, Kilb W (2015). Control of cortical neuronal migration by glutamate and GABA. Front Cell Neurosci, 9: 4
https://doi.org/10.3389/fncel.2015.00004 pmid: 25688185
89 Luhmann H J, Hanganu I, Kilb W (2003). Cellular physiology of the neonatal rat cerebral cortex. Brain Res Bull, 60(4): 345–353
https://doi.org/10.1016/S0361-9230(03)00059-5 pmid: 12781323
90 Luhmann H J, Kirischuk S, Sinning A, Kilb W (2014). Early GABAergic circuitry in the cerebral cortex. Curr Opin Neurobiol, 26: 72–78
https://doi.org/10.1016/j.conb.2013.12.014 pmid: 24434608
91 Manent J B, Jorquera I, Ben-Ari Y, Aniksztejn L, Represa A (2006). Glutamate acting on AMPA but not NMDA receptors modulates the migration of hippocampal interneurons. J Neurosci, 26(22): 5901–5909
https://doi.org/10.1523/JNEUROSCI.1033-06.2006 pmid: 16738232
92 Marín O (2012). Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci, 13(2): 107–120
pmid: 22251963
93 Marques-Smith A, Lyngholm D, Kaufmann A K, Stacey J A, Hoerder-Suabedissen A, Becker E B, Wilson M C, Molnár Z, Butt S J (2016). A Transient Translaminar GABAergic Interneuron Circuit Connects Thalamocortical Recipient Layers in Neonatal Somatosensory Cortex. Neuron, 89(3): 536–549
https://doi.org/10.1016/j.neuron.2016.01.015 pmid: 26844833
94 Matta J A, Pelkey K A, Craig M T, Chittajallu R, Jeffries B W, McBain C J (2013). Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity. Nat Neurosci, 16(8): 1032–1041
https://doi.org/10.1038/nn.3459 pmid: 23852113
95 McCabe A K, Chisholm S L, Picken-Bahrey H L, Moody W J (2006). The self-regulating nature of spontaneous synchronized activity in developing mouse cortical neurones. J Physiol, 577(Pt 1): 155–167
https://doi.org/10.1113/jphysiol.2006.117523 pmid: 16945966
96 Milh M, Kaminska A, Huon C, Lapillonne A, Ben-Ari Y, Khazipov R (2007). Rapid cortical oscillations and early motor activity in premature human neonate. Cereb Cortex, 17(7): 1582–1594
https://doi.org/10.1093/cercor/bhl069 pmid: 16950867
97 Minlebaev M, Ben-Ari Y, Khazipov R (2007). Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo. J Neurophysiol, 97(1): 692–700
https://doi.org/10.1152/jn.00759.2006 pmid: 17093125
98 Minlebaev M, Ben-Ari Y, Khazipov R (2009). NMDA receptors pattern early activity in the developing barrel cortex in vivo. Cereb Cortex, 19(3): 688–696
https://doi.org/10.1093/cercor/bhn115 pmid: 18663251
99 Minlebaev M, Colonnese M, Tsintsadze T, Sirota A, Khazipov R (2011). Early g oscillations synchronize developing thalamus and cortex. Science, 334(6053): 226–229
https://doi.org/10.1126/science.1210574 pmid: 21998388
100 Mix A, Hoppenrath K, Funke K (2015). Reduction in cortical parvalbumin expression due to intermittent theta-burst stimulation correlates with maturation of the perineuronal nets in young rats. Dev Neurobiol, 75(1): 1–11
https://doi.org/10.1002/dneu.22205 pmid: 24962557
101 Miyashita-Lin E M, Hevner R, Wassarman K M, Martinez S, Rubenstein J L (1999). Early neocortical regionalization in the absence of thalamic innervation. Science, 285(5429): 906–909
https://doi.org/10.1126/science.285.5429.906 pmid: 10436162
102 Miyoshi G, Butt S J, Takebayashi H, Fishell G (2007). Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J Neurosci, 27(29): 7786–7798
https://doi.org/10.1523/JNEUROSCI.1807-07.2007 pmid: 17634372
103 Miyoshi G, Fishell G (2011). GABAergic interneuron lineages selectively sort into specific cortical layers during early postnatal development. Cereb Cortex, 21(4): 845–852
https://doi.org/10.1093/cercor/bhq155 pmid: 20732898
104 Miyoshi G, Hjerling-Leffler J, Karayannis T, Sousa V H, Butt S J, Battiste J, Johnson J E, Machold R P, Fishell G (2010). Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci, 30(5): 1582–1594
https://doi.org/10.1523/JNEUROSCI.4515-09.2010 pmid: 20130169
105 Mizuno H, Luo W, Tarusawa E, Saito Y M, Sato T, Yoshimura Y, Itohara S, Iwasato T (2014). NMDAR-regulated dynamics of layer 4 neuronal dendrites during thalamocortical reorganization in neonates. Neuron, 82(2): 365–379
https://doi.org/10.1016/j.neuron.2014.02.026 pmid: 24685175
106 Molnár Z, Adams R, Blakemore C (1998). Mechanisms underlying the early establishment of thalamocortical connections in the rat. J Neurosci, 18(15): 5723–5745
pmid: 9671663
107 Murthy S, Niquille M, Hurni N, Limoni G, Frazer S, Chameau P, van Hooft J A, Vitalis T, Dayer A (2014). Serotonin receptor 3A controls interneuron migration into the neocortex. Nat Commun, 5: 5524
https://doi.org/10.1038/ncomms6524 pmid: 25409778
108 Narboux-Nême N, Evrard A, Ferezou I, Erzurumlu R S, Kaeser P S, Lainé J, Rossier J, Ropert N, Südhof T C, Gaspar P (2012). Neurotransmitter release at the thalamocortical synapse instructs barrel formation but not axon patterning in the somatosensory cortex. J Neurosci, 32(18): 6183–6196
https://doi.org/10.1523/JNEUROSCI.0343-12.2012 pmid: 22553025
109 Oh W C, Lutzu S, Castillo P E, Kwon H B (2016). De novo synaptogenesis induced by GABA in the developing mouse cortex. Science, 353(6303): 1037–1040
https://doi.org/10.1126/science.aaf5206 pmid: 27516412
110 Okaty B W, Miller M N, Sugino K, Hempel C M, Nelson S B (2009). Transcriptional and electrophysiological maturation of neocortical fast-spiking GABAergic interneurons. J Neurosci, 29(21): 7040–7052
https://doi.org/10.1523/JNEUROSCI.0105-09.2009 pmid: 19474331
111 Paoletti P, Bellone C, Zhou Q (2013). NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci, 14(6): 383–400
https://doi.org/10.1038/nrn3504 pmid: 23686171
112 Petersen C C (2007). The functional organization of the barrel cortex. Neuron, 56(2): 339–355
https://doi.org/10.1016/j.neuron.2007.09.017 pmid: 17964250
113 Porter J T, Johnson C K, Agmon A (2001). Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci, 21(8): 2699–2710
pmid: 11306623
114 Reiprich P, Kilb W, Luhmann H J (2005). Neonatal NMDA receptor blockade disturbs neuronal migration in rat somatosensory cortex in vivo. Cereb Cortex, 15(3): 349–358
https://doi.org/10.1093/cercor/bhh137 pmid: 15269112
115 Rheims S, Minlebaev M, Ivanov A, Represa A, Khazipov R, Holmes G L, Ben-Ari Y, Zilberter Y (2008). Excitatory GABA in rodent developing neocortex in vitro. J Neurophysiol, 100(2): 609–619
https://doi.org/10.1152/jn.90402.2008 pmid: 18497364
116 Riccio O, Potter G, Walzer C, Vallet P, Szabó G, Vutskits L, Kiss J Z, Dayer A G (2009). Excess of serotonin affects embryonic interneuron migration through activation of the serotonin receptor 6. Mol Psychiatry, 14(3): 280–290
https://doi.org/10.1038/mp.2008.89 pmid: 18663366
117 Rudy B, Fishell G, Lee S, Hjerling-Leffler J (2011). Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol, 71(1): 45–61
https://doi.org/10.1002/dneu.20853 pmid: 21154909
118 Rutherford L C, DeWan A, Lauer H M, Turrigiano G G (1997). Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J Neurosci, 17(12): 4527–4535
pmid: 9169513
119 Sanes D H, Kotak V C (2011). Developmental plasticity of auditory cortical inhibitory synapses. Hear Res, 279(1-2): 140–148
https://doi.org/10.1016/j.heares.2011.03.015 pmid: 21463668
120 Schwartz T H, Rabinowitz D, Unni V, Kumar V S, Smetters D K, Tsiola A, Yuste R (1998). Networks of coactive neurons in developing layer 1. Neuron, 20(3): 541–552
https://doi.org/10.1016/S0896-6273(00)80993-9 pmid: 9539127
121 Siegel F, Heimel J A, Peters J, Lohmann C (2012). Peripheral and central inputs shape network dynamics in the developing visual cortex in vivo. Curr Biol, 22(3): 253–258
https://doi.org/10.1016/j.cub.2011.12.026 pmid: 22264606
122 Sippy T, Yuste R (2013). Decorrelating action of inhibition in neocortical networks. J Neurosci, 33(23): 9813–9830
https://doi.org/10.1523/JNEUROSCI.4579-12.2013 pmid: 23739978
123 Soria J M, Valdeolmillos M (2002). Receptor-activated calcium signals in tangentially migrating cortical cells. Cereb Cortex, 12(8): 831–839
https://doi.org/10.1093/cercor/12.8.831 pmid: 12122031
124 Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003). In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA, 100(12): 7319–7324
https://doi.org/10.1073/pnas.1232232100 pmid: 12777621
125 Sultan K T, Brown K N, Shi S H (2013). Production and organization of neocortical interneurons. Front Cell Neurosci, 7: 221
https://doi.org/10.3389/fncel.2013.00221 pmid: 24312011
126 Sun J J, Luhmann H J (2007). Spatio-temporal dynamics of oscillatory network activity in the neonatal mouse cerebral cortex. Eur J Neurosci, 26(7): 1995–2004
https://doi.org/10.1111/j.1460-9568.2007.05819.x pmid: 17868367
127 Sun Q Q, Huguenard J R, Prince D A (2006). Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons. J Neurosci, 26(4): 1219–1230
https://doi.org/10.1523/JNEUROSCI.4727-04.2006 pmid: 16436609
128 Sur M, Leamey C A (2001). Development and plasticity of cortical areas and networks. Nat Rev Neurosci, 2(4): 251–262
https://doi.org/10.1038/35067562 pmid: 11283748
129 Takano T (2015). Interneuron Dysfunction in Syndromic Autism: Recent Advances. Dev Neurosci, 37(6): 467–475
https://doi.org/10.1159/000434638 pmid: 26183392
130 Tasic B, Menon V, Nguyen T N, Kim T K, Jarsky T, Yao Z, Levi B, Gray L T, Sorensen S A, Dolbeare T, Bertagnolli D, Goldy J, Shapovalova N, Parry S, Lee C, Smith K, Bernard A, Madisen L, Sunkin S M, Hawrylycz M, Koch C, Zeng H (2016). Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci, 19(2): 335–346
https://doi.org/10.1038/nn.4216 pmid: 26727548
131 Tolner E A, Sheikh A, Yukin A Y, Kaila K, Kanold P O (2012). Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex. J Neurosci, 32(2): 692–702
https://doi.org/10.1523/JNEUROSCI.1538-11.2012 pmid: 22238105
132 Tolonen M, Palva J M, Andersson S, Vanhatalo S (2007). Development of the spontaneous activity transients and ongoing cortical activity in human preterm babies. Neuroscience, 145(3): 997–1006
https://doi.org/10.1016/j.neuroscience.2006.12.070 pmid: 17307296
133 Trevelyan A J, Muldoon S F, Merricks E M, Racca C, Staley K J (2015). The role of inhibition in epileptic networks. J Clin Neurophysiol, 32(3): 227–234
https://doi.org/10.1097/WNP.0000000000000160 pmid: 26035675
134 Tuncdemir S N, Wamsley B, Stam F J, Osakada F, Goulding M, Callaway E M, Rudy B, Fishell G (2016). Early Somatostatin Interneuron Connectivity Mediates the Maturation of Deep Layer Cortical Circuits. Neuron, 89(3): 521–535
https://doi.org/10.1016/j.neuron.2015.11.020 pmid: 26844832
135 Uhlén P, Fritz N, Smedler E, Malmersjö S, Kanatani S (2015). Calcium signaling in neocortical development. Dev Neurobiol, 75(4): 360–368
https://doi.org/10.1002/dneu.22273 pmid: 25652687
136 Van der Loos H, Woolsey T A (1973). Somatosensory cortex: structural alterations following early injury to sense organs. Science, 179(4071): 395–398
https://doi.org/10.1126/science.179.4071.395 pmid: 4682966
137 Van Eden C G, Mrzljak L, Voorn P, Uylings H B (1989). Prenatal development of GABA-ergic neurons in the neocortex of the rat. J Comp Neurol, 289(2): 213–227
https://doi.org/10.1002/cne.902890204 pmid: 2808764
138 Vitalis T, Ansorge M S, Dayer A G (2013). Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes. Front Cell Neurosci, 7: 93
https://doi.org/10.3389/fncel.2013.00093 pmid: 23801939
139 Vitalis T, Cases O, Passemard S, Callebert J, Parnavelas J G (2007). Embryonic depletion of serotonin affects cortical development. Eur J Neurosci, 26(2): 331–344
https://doi.org/10.1111/j.1460-9568.2007.05661.x pmid: 17650110
140 Voigt T, Opitz T, de Lima A D (2001). Synchronous oscillatory activity in immature cortical network is driven by GABAergic preplate neurons. J Neurosci, 21(22): 8895–8905
pmid: 11698601
141 Welker C (1971). Microelectrode delineation of fine grain somatotopic organization of (SmI) cerebral neocortex in albino rat. Brain Res, 26(2): 259–275
pmid: 4100672
142 Welker C (1976). Receptive fields of barrels in the somatosensory neocortex of the rat. J Comp Neurol, 166(2): 173–189
https://doi.org/10.1002/cne.901660205 pmid: 770516
143 White L E, Fitzpatrick D (2007). Vision and cortical map development. Neuron, 56(2): 327–338
https://doi.org/10.1016/j.neuron.2007.10.011 pmid: 17964249
144 Wichterle H, Garcia-Verdugo J M, Herrera D G, Alvarez-Buylla A (1999). Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci, 2(5): 461–466
https://doi.org/10.1038/8131 pmid: 10321251
145 Wichterle H, Turnbull D H, Nery S, Fishell G, Alvarez-Buylla A (2001). In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development, 128(19): 3759–3771
pmid: 11585802
146 Woolsey T A, Van der Loos H (1970). The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res, 17(2): 205–242
https://doi.org/10.1016/0006-8993(70)90079-X pmid: 4904874
147 Wu X, Fu Y, Knott G, Lu J, Di Cristo G, Huang Z J (2012). GABA signaling promotes synapse elimination and axon pruning in developing cortical inhibitory interneurons. J Neurosci, 32(1): 331–343
https://doi.org/10.1523/JNEUROSCI.3189-11.2012 pmid: 22219294
148 Yang J W, Hanganu-Opatz I L, Sun J J, Luhmann H J (2009). Three patterns of oscillatory activity differentially synchronize developing neocortical networks in vivo. J Neurosci, 29(28): 9011–9025
https://doi.org/10.1523/JNEUROSCI.5646-08.2009 pmid: 19605639
149 Yang J W, Reyes-Puerta V, Kilb W, Luhmann H J (2016). Spindle Bursts in Neonatal Rat Cerebral Cortex. Neural Plast, 2016: 3467832
https://doi.org/10.1155/2016/3467832 pmid: 27034844
150 Yozu M, Tabata H, Konig N, Nakajima K (2008). Migratory behavior of presumptive interneurons is affected by AMPA receptor activation in slice cultures of embryonic mouse neocortex. Dev Neurosci, 30(1-3): 105–116
https://doi.org/10.1159/000109856 pmid: 18075259
151 Zeisel A, Muñoz-Manchado A B, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S (2015). Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 347(6226): 1138–1142
https://doi.org/10.1126/science.aaa1934 pmid: 25700174
152 Zhang Z, Sun Q Q (2011). Development of NMDA NR2 subunits and their roles in critical period maturation of neocortical GABAergic interneurons. Dev Neurobiol, 71(3): 221–245
https://doi.org/10.1002/dneu.20844 pmid: 20936660
[1] Anita E. Autry,Megumi Adachi,Lisa M. Monteggia. Dynamic methylation driven by neuronal activity in hippocampal neurons impacts complex behavior[J]. Front. Biol., 2015, 10(5): 439-447.
[2] Yicheng Ding,Linda Howard,Louise Gallagher,Sanbing Shen. Regulation and postsynaptic binding of neurexins – drug targets for neurodevelopmental and neuropsychiatric disorders[J]. Front. Biol., 2015, 10(3): 239-251.
[3] Aaron MCGEE,Guohui LI,Zhongming LU,Shenfeng QIU. Convergent synaptic and circuit substrates underlying autism genetic risks[J]. Front. Biol., 2014, 9(2): 137-150.
[4] Kimberly M. CHRISTIAN, Hongjun SONG, Guo-li MING. Application of reprogrammed patient cells to investigate the etiology of neurological and psychiatric disorders[J]. Front Biol, 2012, 7(3): 179-188.
[5] Tong LUO, Wei-Hua WU, Bo-Shiun CHEN. NMDA receptor signaling: death or survival?[J]. Front Biol, 2011, 6(6): 468-476.
[6] Hedong LI, Wei SHI. Neural progenitor diversity and their therapeutic potential for spinal cord repair[J]. Front Biol, 2010, 5(5): 386-395.
[7] Richard D. Smrt, Xinyu Zhao, . Epigenetic regulation of neuronal dendrite and dendritic spine development[J]. Front. Biol., 2010, 5(4): 304-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed