Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (6) : 468-476    https://doi.org/10.1007/s11515-011-1187-6
REVIEW
NMDA receptor signaling: death or survival?
Tong LUO, Wei-Hua WU(), Bo-Shiun CHEN()
Institute of Molecular Medicine and Genetics, Department of Neurology, Georgia Health Sciences University, Augusta, GA 30912, USA
 Download: PDF(230 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Glutamate-induced neuronal damage is mainly caused by overactivation of N-methyl-D-aspartate (NMDA) receptors. Conversely, normal physiological brain function and neuronal survival require adequate activation of NMDA receptors. Studies have revealed that NMDA receptor-induced neuronal death or survival is mediated through distinct subset of NMDA receptors triggering different intracellular signaling pathways. Here we discuss recent advances in the characterization of NMDA receptors in neuronal protection, emphasizing subunit-specific role, which contributes to temporal-spatial distribution, subcellular localization and diverse channel properties of NMDA receptors.

Keywords NMDA receptors      glutamate      excitotoxicity      ischemia      neuroprotection     
Corresponding Author(s): WU Wei-Hua,Email:wwu@georgiahealth.edu; CHEN Bo-Shiun,Email:bochen@georgiahealth.edu   
Issue Date: 01 December 2011
 Cite this article:   
Bo-Shiun CHEN,Tong LUO,Wei-Hua WU. NMDA receptor signaling: death or survival?[J]. Front Biol, 2011, 6(6): 468-476.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1187-6
https://academic.hep.com.cn/fib/EN/Y2011/V6/I6/468
Fig.1  Distinct signaling pathways of synaptic and extrasynaptic NMDAR in neuron fate. (A) Synaptic NMDAR activity regulates gene expression to promote neuronal survivial. Synaptic NMDAR activity down-regulates the expression of pro-death genes by inhibiting forkhead box protein O (FOXO) activity though PI3K-Akt pathway. Synaptic current can also activate CaMKIV and upregulate a battery of pro-survival genes by activation of cAMP response element binding protein (CREB). (B) Extrasynaptic NMDAR signal has opposing effect on gene expression to induce neuronal death. Extrasynaptic NMDAR activity blocks CREB-dependent pro-survival gene expression. FOXOs are also targets of extrasynaptic NMDAR activity to activate expression of pro-death genes.
Fig.2  Distinct signaling pathways of synaptic and extrasynaptic NMDAR in neuron fate. A. Synaptic NMDAR activity regulates gene expression to promote neuronal survivial. Synaptic NMDAR activity down-regulates the expression of pro-death genes by inhibiting forkhead box protein O (FOXO) activity though PI3K-Akt pathway. Synaptic current can also activate CaMKIV and upregulate a battery of pro-survival genes by activation of cyclic-AMP response element binding protein (CREB). B. Extrasynaptic NMDAR signal has opposing effect on gene expression to induce neuronal death. Extrasynaptic NMDAR activity blocks CREB-dependent pro-survival gene expression. FOXOs are also targets of extrasynaptic NMDAR activity to activate expression of pro-death genes.
Fig.3  NR2C and NR3A promote neuronal survival. (A) IGF-1 or NMDA application to neurons phosphorylates serine 1096 of NR2C though PI3K-Akt pathway, which increases the surface expression of NR2C-containing NMDARs and promotes neuronal survival. (B) Overexpression of NR3A-containing NMDARs supports neuronal survival with an unknown mechanism.
1 Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd J W, Wang Y T, Salter M W, Tymianski M (2002). Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science , 298(5594): 846–850
doi: 10.1126/science.1072873 pmid:12399596
2 Al-Mubarak B, Soriano F X, Hardingham G E (2009). Synaptic NMDAR activity suppresses FOXO1 expression via a cis-acting FOXO binding site: FOXO1 is a FOXO target gene. Channels (Austin) , 3(4): 233–238
pmid:19690465
3 Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N (1994). Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol , 347(1): 150–160
doi: 10.1002/cne.903470112 pmid:7798379
4 Brunet A, Bonni A, Zigmond M J, Lin M Z, Juo P, Hu L S, Anderson M J, Arden K C, Blenis J, Greenberg M E (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell , 96(6): 857–868
doi: 10.1016/S0092-8674(00)80595-4 pmid:10102273
5 Cavara N A, Hollmann M (2008). Shuffling the deck anew: how NR3 tweaks NMDA receptor function. Mol Neurobiol , 38(1): 16–26
doi: 10.1007/s12035-008-8029-9 pmid:18654865
6 Cavara N A, Orth A, Hicking G, Seebohm G, Hollmann M (2010). Residues at the tip of the pore loop of NR3B-containing NMDA receptors determine Ca2+ permeability and Mg2+ block. BMC Neurosci , 11(1): 133
doi: 10.1186/1471-2202-11-133 pmid:20958962
7 Chandler L J, Sutton G, Dorairaj N R, Norwood D (2001). N-methyl D-aspartate receptor-mediated bidirectional control of extracellular signal-regulated kinase activity in cortical neuronal cultures. J Biol Chem , 276(4): 2627–2636
doi: 10.1074/jbc.M003390200 pmid:11062237
8 Chatterton J E, Awobuluyi M, Premkumar L S, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino K A, Nakanishi N, Tong G, Lipton S A, Zhang D (2002). Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature , 415(6873): 793–798
pmid:11823786
9 Chen B S, Roche K W (2007). Regulation of NMDA receptors by phosphorylation. Neuropharmacology , 53(3): 362–368
doi: 10.1016/j.neuropharm.2007.05.018 pmid:17644144
10 Chen B S, Roche K W (2009). Growth factor-dependent trafficking of cerebellar NMDA receptors via protein kinase B/Akt phosphorylation of NR2C. Neuron , 62(4): 471–478
doi: 10.1016/j.neuron.2009.04.015 pmid:19477150
11 Choi D W (1987). Ionic dependence of glutamate neurotoxicity. J Neurosci , 7(2): 369–379
pmid:2880938
12 Choi D W, Maulucci-Gedde M, Kriegstein A R (1987). Glutamate neurotoxicity in cortical cell culture. J Neurosci , 7(2): 357–368
pmid:2880937
13 Choi D W, Koh J Y, Peters S (1988). Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci , 8(1): 185–196
pmid:2892896
14 Ciabarra A M, Sullivan J M, Gahn L G, Pecht G, Heinemann S, Sevarino K A (1995). Cloning and characterization of chi-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci , 15(10): 6498–6508
pmid:7472412
15 Ciani E, Rizzi S, Paulsen R E, Contestabile A (1997). Chronic pre-explant blockade of the NMDA receptor affects survival of cerebellar granule cells explanted in vitro. Brain Res Dev Brain Res , 99(1): 112–117
doi: 10.1016/S0165-3806(96)00187-3 pmid:9088572
16 Clements J D, Lester R A, Tong G, Jahr C E, Westbrook G L (1992). The time course of glutamate in the synaptic cleft. Science , 258(5087): 1498–1501
doi: 1359647" target="_blank">10.1126/science. pmid:1359647 pmid:1359647
17 Collingridge G L, Isaac J T R, Wang Y T (2004). Receptor trafficking and synaptic plasticity. Nat Rev Neurosci , 5(12): 952–962
doi: 10.1038/nrn1556 pmid:15550950
18 Cui H, Hayashi A, Sun H S, Belmares M P, Cobey C, Phan T, Schweizer J, Salter M W, Wang Y T, Tasker R A, Garman D, Rabinowitz J, Lu P S, Tymianski M (2007). PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J Neurosci , 27(37): 9901–9915
doi: 10.1523/JNEUROSCI.1464-07.2007 pmid:17855605
19 Cull-Candy S, Brickley S, Farrant M (2001). NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol , 11(3): 327–335
doi: 10.1016/S0959-4388(00)00215-4 pmid:11399431
20 Cull-Candy S G, Leszkiewicz D N (2004). Role of distinct NMDA receptor subtypes at central synapses. Sci STKE , 2004(255): re16
doi: 10.1126/stke.2552004re16 pmid:15494561
21 Das S, Sasaki Y F, Rothe T, Premkumar L S, Takasu M, Crandall J E, Dikkes P, Conner D A, Rayudu P V, Cheung W, Chen H S, Lipton S A, Nakanishi N (1998). Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature , 393(6683): 377–381
doi: 10.1038/30748 pmid:9620802
22 Dick O, Bading H (2010). Synaptic activity and nuclear calcium signaling protect hippocampal neurons from death signal-associated nuclear translocation of FoxO3a induced by extrasynaptic N-methyl-D-aspartate receptors. J Biol Chem , 285(25): 19354–19361
doi: 10.1074/jbc.M110.127654 pmid:20404335
23 Dingledine R, Borges K, Bowie D, Traynelis S F (1999). The glutamate receptor ion channels. Pharmacol Rev , 51(1): 7–61
pmid:10049997
24 Dravid S M, Prakash A, Traynelis S F (2008). Activation of recombinant NR1/NR2C NMDA receptors. J Physiol , 586(18): 4425–4439
doi: 10.1113/jphysiol.2008.158634 pmid:18635641
25 Ebralidze A K, Rossi D J, Tonegawa S, Slater N T (1996). Modification of NMDA receptor channels and synaptic transmission by targeted disruption of the NR2C gene. J Neurosci , 16(16): 5014–5025
pmid:8756432
26 von Engelhardt J, Coserea I, Pawlak V, Fuchs E C, K?hr G, Seeburg P H, Monyer H, (2007). Excitotoxicity in vitro by NR2A- and NR2B-containing NMDA receptors. Neuropharmacology , 53(1): 10–17
doi: 10.1016/j.neuropharm.2007.04.015 pmid:17570444
27 Farrant M, Feldmeyer D, Takahashi T, Cull-Candy S G (1994). NMDA-receptor channel diversity in the developing cerebellum. Nature , 368(6469): 335–339
doi: 10.1038/368335a0 pmid:7907398
28 Groc L, Heine M, Cousins S L, Stephenson F A, Lounis B, Cognet L, Choquet D (2006). NMDA receptor surface mobility depends on NR2A-2B subunits. Proc Natl Acad Sci USA , 103(49): 18769–18774
doi: 10.1073/pnas.0605238103 pmid:17124177
29 Hardingham G E, Bading H (2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci , 11(10): 682–696
doi: 10.1038/nrn2911 pmid:20842175
30 Hardingham G E, Fukunaga Y, Bading H (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci , 5(5): 405–414
pmid:11953750
31 Ikonomidou C, Bosch F, Miksa M, Bittigau P, V?ckler J, Dikranian K, Tenkova T I, Stefovska V, Turski L, Olney J W (1999). Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science , 283(5398): 70–74
doi: 10.1126/science.283.5398.70 pmid:9872743
32 Ivanov A, Pellegrino C, Rama S, Dumalska I, Salyha Y, Ben-Ari Y, Medina I (2006). Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J Physiol , 572(Pt 3): 789–798
pmid:16513670
33 Kadotani H, Namura S, Katsuura G, Terashima T, Kikuchi H (1998). Attenuation of focal cerebral infarct in mice lacking NMDA receptor subunit NR2C. Neuroreport , 9(3): 471–475
doi: 10.1097/00001756-199802160-00021 pmid:9512392
34 Karavanova I, Vasudevan K, Cheng J, Buonanno A (2007). Novel regional and developmental NMDA receptor expression patterns uncovered in NR2C subunit-beta-galactosidase knock-in mice. Mol Cell Neurosci , 34(3): 468–480
doi: 10.1016/j.mcn.2006.12.001 pmid:17276696
35 Káradóttir R, Cavelier P, Bergersen L H, Attwell D (2005). NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature , 438(7071): 1162–1166
doi: 10.1038/nature04302 pmid:16372011
36 Kim M J, Dunah A W, Wang Y T, Sheng M (2005). Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron , 46(5): 745–760
doi: 10.1016/j.neuron.2005.04.031 pmid:15924861
37 Kutsuwada T, Sakimura K, Manabe T, Takayama C, Katakura N, Kushiya E, Natsume R, Watanabe M, Inoue Y, Yagi T, Aizawa S, Arakawa M, Takahashi T, Nakamura Y, Mori H, Mishina M (1996). Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice. Neuron , 16(2): 333–344
doi: 10.1016/S0896-6273(00)80051-3 pmid:8789948
38 Larsen R S, Corlew R J, Henson M A, Roberts A C, Mishina M, Watanabe M, Lipton S A, Nakanishi N, Pérez-Ota?o I, Weinberg R J, Philpot B D (2011). NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity. Nat Neurosci , 14(3): 338–344
doi: 10.1038/nn.2750 pmid:21297630
39 Lee F J S, Xue S, Pei L, Vukusic B, Chéry N, Wang Y, Wang Y T, Niznik H B, Yu X M, Liu F (2002). Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell , 111(2): 219–230
doi: 10.1016/S0092-8674(02)00962-5 pmid:12408866
40 Lehtinen M K, Yuan Z, Boag P R, Yang Y, Villén J, Becker E B E, DiBacco S, de la Iglesia N, Gygi S, Blackwell T K, Bonni A (2006). A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell , 125(5): 987–1001
doi: 10.1016/j.cell.2006.03.046 pmid:16751106
41 Liu Y, Wong T P, Aarts M, Rooyakkers A, Liu L, Lai T W, Wu D C, Lu J, Tymianski M, Craig A M, Wang Y T (2007). NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci , 27(11): 2846–2857
doi: 10.1523/JNEUROSCI.0116-07.2007 pmid:17360906
42 Low C M, Wee K S L (2010). New insights into the not-so-new NR3 subunits of N-methyl-D-aspartate receptor: localization, structure, and function. Mol Pharmacol , 78(1): 1–11
doi: 10.1124/mol.110.064006 pmid:20363861
43 Lucas D R, Newhouse J P (1957). The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol , 58(2): 193–201
pmid:13443577
44 Martel M A, Wyllie D J, Hardingham G E (2009). In developing hippocampal neurons, NR2B-containing N-methyl-D-aspartate receptors (NMDARs) can mediate signaling to neuronal survival and synaptic potentiation, as well as neuronal death. Neuroscience , 158(1): 334–343
doi: 10.1016/j.neuroscience.2008.01.080 pmid:18378405
45 Mayr B, Montminy M (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol , 2(8): 599–609
doi: 10.1038/35085068 pmid:11483993
46 Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, Yin X, Trapp B D, McRory J E, Rehak R, Zamponi G W, Wang W, Stys P K (2006). NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature , 439(7079): 988–992
pmid:16372019
47 Monyer H, Burnashev N, Laurie D J, Sakmann B, Seeburg P H (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron , 12(3): 529–540
doi: 10.1016/0896-6273(94)90210-0 pmid:7512349
48 Nakanishi N, Tu S, Shin Y, Cui J, Kurokawa T, Zhang D, Chen H S V, Tong G, Lipton S A (2009). Neuroprotection by the NR3A subunit of the NMDA receptor. J Neurosci , 29(16): 5260–5265
doi: 10.1523/JNEUROSCI.1067-09.2009 pmid:19386922
49 Nakazawa K, McHugh T J, Wilson M A, Tonegawa S (2004). NMDA receptors, place cells and hippocampal spatial memory. Nat Rev Neurosci , 5(5): 361–372
doi: 10.1038/nrn1385 pmid:15100719
50 Neyton J, Paoletti P (2006). Relating NMDA receptor function to receptor subunit composition: limitations of the pharmacological approach. J Neurosci , 26(5): 1331–1333
doi: 10.1523/JNEUROSCI.5242-05.2006 pmid:16452656
51 Ni H, Jiang Y W, Bo T, Wang J M, Wu X R (2005). c-Fos, N-methyl-d-aspartate receptor 2C, GABA-A-alpha1 immonoreactivity, seizure latency and neuronal injury following single or recurrent neonatal seizures in hippocampus of Wistar rat. Neurosci Lett , 380(1–2): 149–154
doi: 10.1016/j.neulet.2005.01.043 pmid:15854768
52 Niethammer M, Kim E, Sheng M (1996). Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci , 16(7): 2157–2163
pmid:8601796
53 Nishi M, Hinds H, Lu H P, Kawata M, Hayashi Y (2001). Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner. J Neurosci , 21(23): RC185
pmid:11717388
54 Olney J W, Sharpe L G (1969). Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science , 166(3903): 386–388
doi: 10.1126/science.166.3903.386 pmid:5812037
55 Papadia S, Soriano F X, Léveillé F, Martel M A, Dakin K A, Hansen H H, Kaindl A, Sifringer M, Fowler J, Stefovska V, McKenzie G, Craigon M, Corriveau R, Ghazal P, Horsburgh K, Yankner B A, Wyllie D J A, Ikonomidou C, Hardingham G E (2008). Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci , 11(4): 476–487
doi: 10.1038/nn2071 pmid:18344994
56 Pérez-Ota?o I, Luján R, Tavalin S J, Plomann M, Modregger J, Liu X B, Jones E G, Heinemann S F, Lo D C, Ehlers M D (2006). Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1. Nat Neurosci , 9(5): 611–621
doi: 10.1038/nn1680 pmid:16617342
57 Pi?a-Crespo J C, Talantova M, Micu I, States B, Chen H S V, Tu S, Nakanishi N, Tong G, Zhang D, Heinemann S F, Zamponi G W, Stys P K, Lipton S A (2010). Excitatory glycine responses of CNS myelin mediated by NR1/NR3 “NMDA” receptor subunits. J Neurosci , 30(34): 11501–11505
doi: 10.1523/JNEUROSCI.1593-10.2010 pmid:20739572
58 Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E, Yagi T, Aizawa S, Inoue Y, Sugiyama H, Mishina M (1995). Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature , 373(6510): 151–155
doi: 10.1038/373151a0 pmid:7816096
59 Salter M G, Fern R (2005). NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature , 438(7071): 1167–1171
doi: 10.1038/nature04301 pmid:16372012
60 Sasaki T, Takemori H, Yagita Y, Terasaki Y, Uebi T, Horike N, Takagi H, Susumu T, Teraoka H, Kusano K I, Hatano O, Oyama N, Sugiyama Y, Sakoda S, Kitagawa K (2011). SIK2 is a key regulator for neuronal survival after ischemia via TORC1-CREB. Neuron , 69(1): 106–119
doi: 10.1016/j.neuron.2010.12.004 pmid:21220102
61 Sasaki Y F, Rothe T, Premkumar L S, Das S, Cui J, Talantova M V, Wong H K, Gong X, Chan S F, Zhang D, Nakanishi N, Sucher N J, Lipton S A (2002). Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J Neurophysiol , 87(4): 2052–2063
pmid:11929923
62 Small D L, Poulter M O, Buchan A M, Morley P (1997). Alteration in NMDA receptor subunit mRNA expression in vulnerable and resistant regions of in vitro ischemic rat hippocampal slices. Neurosci Lett , 232(2): 87–90
doi: 10.1016/S0304-3940(97)00592-2 pmid:9302093
63 Sattler R, Xiong Z, Lu W Y, Hafner M, MacDonald J F, Tymianski M (1999). Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science , 284(5421): 1845–1848
doi: 10.1126/science.284.5421.1845 pmid:10364559
64 Sprengel R, Suchanek B, Amico C, Brusa R, Burnashev N, Rozov A, Hvalby O, Jensen V, Paulsen O, Andersen P, Kim J J, Thompson R F, Sun W, Webster L C, Grant S G, Eilers J, Konnerth A, Li J, McNamara J O, Seeburg P H (1998). Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell , 92(2): 279–289
doi: 10.1016/S0092-8674(00)80921-6 pmid:9458051
65 Steigerwald F, Schulz T W, Schenker L T, Kennedy M B, Seeburg P H, K?hr G (2000). C-Terminal truncation of NR2A subunits impairs synaptic but not extrasynaptic localization of NMDA receptors. J Neurosci , 20(12): 4573–4581
pmid:10844027
66 Stern P, Béhé P, Schoepfer R, Colquhoun D (1992). Single-channel conductances of NMDA receptors expressed from cloned cDNAs: comparison with native receptors. Proc Biol Sci , 250(1329): 271–277
doi: 10.1098/rspb.1992.0159 pmid:1283639
67 Sucher N J, Akbarian S, Chi C L, Leclerc C L, Awobuluyi M, Deitcher D L, Wu M K, Yuan J P, Jones E G, Lipton S A (1995). Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci , 15(10): 6509–6520
pmid:7472413
68 Traynelis S F, Wollmuth L P, McBain C J, Menniti F S, Vance K M, Ogden K K, Hansen K B, Yuan H, Myers S J, Dingledine R (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev , 62(3): 405–496
doi: 10.1124/pr.109.002451 pmid:20716669
69 Thomas C G, Miller A J, Westbrook G L (2006). Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol , 95(3): 1727–1734
doi: 10.1152/jn.00771.2005 pmid:16319212
70 Tong G, Takahashi H, Tu S, Shin Y, Talantova M, Zago W, Xia P, Nie Z, Goetz T, Zhang D, Lipton S A, Nakanishi N (2007). Modulation of NMDA receptor properties and synaptic transmission by the NR3A subunit in mouse hippocampal and cerebrocortical neurons. J Neurophysiol , 99(1): 122–132
doi: 10.1152/jn.01044.2006 pmid:18003876
71 Tovar K R, Westbrook G L (1999). The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci , 19(10): 4180–4188
pmid:10234045
72 Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian M M, Balel C, Wang M, Jia N, Zhang W, Lew F, Chan S L, Chen Y, Lu Y (2010). DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell , 140(2): 222–234
doi: 10.1016/j.cell.2009.12.055 pmid:20141836
73 Ulbrich M H, Isacoff E Y (2008). Rules of engagement for NMDA receptor subunits. Proc Natl Acad Sci USA , 105(37): 14163–14168
doi: 10.1073/pnas.0802075105 pmid:18779583
74 Wenzel A, Fritschy J M, Mohler H, Benke D (1997). NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J Neurochem , 68(2): 469–478
doi: 10.1046/j.1471-4159.1997.68020469.x pmid:9003031
75 Wee K S, Zhang Y, Khanna S, Low C M (2008). Immunolocalization of NMDA receptor subunit NR3B in selected structures in the rat forebrain, cerebellum, and lumbar spinal cord. J Comp Neurol , 509(1): 118–135
doi: 10.1002/cne.21747 pmid:18425811
76 Yao Y, Harrison C B, Freddolino P L, Schulten K, Mayer M L (2008). Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors. EMBO J , 27(15): 2158–2170
doi: 10.1038/emboj.2008.140 pmid:18636091
77 Zhou L, Li F, Xu H B, Luo C X, Wu H Y, Zhu M M, Lu W, Ji X, Zhou Q G, Zhu D Y (2010). Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med , 16(12): 1439–1443
doi: 10.1038/nm.2245 pmid:21102461
78 Zukin R S, Bennett M V (1995). Alternatively spliced isoforms of the NMDARI receptor subunit. Trends Neurosci , 18(7): 306–313
doi: 10.1016/0166-2236(95)93920-S pmid:7571011
[1] Bharti Chaudhary, Sonam Agarwal, Renu Bist. Invulnerability of bromelain against oxidative degeneration and cholinergic deficits imposed by dichlorvos in mice brains[J]. Front. Biol., 2018, 13(1): 56-62.
[2] Mohammad Jodeiri Farshbaf. Succinate dehydrogenase in Parkinson’s disease[J]. Front. Biol., 2017, 12(3): 175-182.
[3] Gregory W. Kirschen, Hanxiao Liu, Tracy Lang, Xuelin Liang, Shaoyu Ge, Qiaojie Xiong. The radial organization of neuronal primary cilia is acutely disrupted by seizure and ischemic brain injury[J]. Front. Biol., 2017, 12(2): 124-138.
[4] Kimberly D. Girling,Yu Tian Wang. Neuroprotective strategies for NMDAR-mediated excitotoxicity in Huntington’s Disease[J]. Front. Biol., 2016, 11(6): 439-458.
[5] Rachel Babij,Natalia De Marco Garcia. Neuronal activity controls the development of interneurons in the somatosensory cortex[J]. Front. Biol., 2016, 11(6): 459-470.
[6] Anita E. Autry,Megumi Adachi,Lisa M. Monteggia. Dynamic methylation driven by neuronal activity in hippocampal neurons impacts complex behavior[J]. Front. Biol., 2015, 10(5): 439-447.
[7] Cristina V. Dieni,Adam J. Wieckert,Linda Overstreet-Wadiche. Development of glutamatergic innervation during maturation of adult-born neurons[J]. Front. Biol., 2015, 10(4): 310-320.
[8] Chandler L. WALKER, Nai-Kui LIU, Xiao-Ming XU. PTEN/PI3K and MAPK signaling in protection and pathology following CNS injuries[J]. Front Biol, 2013, 8(4): 421-433.
[9] Li ZUO, William J. ROBERTS, Rosa C. TOLOMELLO, Adam T. GOINS. Ischemic and hypoxic preconditioning protect cardiac muscles via intracellular ROS signaling[J]. Front Biol, 2013, 8(3): 305-311.
[10] Chen Guang YU. Distinct roles for ERK1 and ERK2 in pathophysiology of CNS[J]. Front Biol, 2012, 7(3): 267-276.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed