|
|
Ischemic and hypoxic preconditioning protect cardiac muscles via intracellular ROS signaling |
Li ZUO( ), William J. ROBERTS, Rosa C. TOLOMELLO, Adam T. GOINS |
Molecular Physiology and Biophysics Laboratory, Department of Biological Sciences, Oakland University, Rochester, MI 48326, USA |
|
|
Abstract Oxidative stress can cause extensive damage to cardiac tissue under reperfusion conditions. However, preconditioning the myocardium may diminish these negative effects and alleviate reperfusion injury. There are a variety of preconditioning therapies, such as ischemic preconditioning (IPC) and hypoxic preconditioning (HPC), each targeting specific channels, receptors, and/or intracellular molecules. Ischemic preconditioning involves brief periods of ischemia followed by brief periods of reperfusion, thus strengthening the cardiac resistance for a longer period of ischemia. IPC involves complex mechanisms, some of which are still not completely understood today. Nevertheless, many studies have already established models of IPC. In addition, similar to IPC, HPC has also been recognized as preventing reperfusion injury. Reactive oxygen species (ROS) are known mediators of IPC and HPC. Particularly, mitochondria-generated ROS initiate activity of several beneficial preconditioning pathways. The role of ROS is paradoxical; low levels of ROS are key factors in signaling IPC/HPC, but high levels of ROS can contribute to increased oxidative stress on cardiomyocytes. Therefore, it is important to determine the molecular mechanism of IPC and HPC to avoid excessive accumulation of ROS to prevent cardiac injury. In this review, we will outline IPC and HPC, explaining the putative role of ROS in both pathways. We will also discuss preconditioning efficacy in certain conditions such as exercise and how the aging myocardium responds to preconditioning therapies.
|
Keywords
hypoxia
ischemia-reperfusion
ROS
cardiomyocyte
preconditioning
|
Corresponding Author(s):
ZUO Li,Email:zuo@oakland.edu
|
Issue Date: 01 June 2013
|
|
1 |
Abete P, Ferrara N, Cacciatore F, Madrid A, Bianco S, Calabrese C, Napoli C, Scognamiglio P, Bollella O, Cioppa A, Longobardi G, Rengo F (1997). Angina-induced protection against myocardial infarction in adult and elderly patients: a loss of preconditioning mechanism in the aging heart? J Am Coll Cardiol , 30(4): 947-954 doi: 10.1016/S0735-1097(97)00256-8 pmid:9316523
|
2 |
Abrahamsson T, Almgren O, Carlsson L (1985). Ischemia-induced local release of myocardial noradrenaline. J Cardiovasc Pharmacol , 7(Suppl 5): S19-S22 doi: 10.1097/00005344-198500075-00005 pmid:2410729
|
3 |
Ambrosio G, Zweier J L, Duilio C, Kuppusamy P, Santoro G, Elia P P, Tritto I, Cirillo P, Condorelli M, Chiariello M (1993). Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem , 268(25): 18532-18541 pmid:8395507
|
4 |
Ascens?o A, Ferreira R, Magalh?es J (2007). Exercise-induced cardioprotection—biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol , 117(1): 16-30 doi: 10.1016/j.ijcard.2006.04.076 pmid:16860886
|
5 |
Atsma D E, Bastiaanse E M, Jerzewski A, Van der Valk L J, Van der Laarse A (1995). Role of calcium-activated neutral protease (calpain) in cell death in cultured neonatal rat cardiomyocytes during metabolic inhibition. Circ Res , 76(6): 1071-1078 pmid:7758161
|
6 |
Behling R W, Malone H J (1995). KATP-channel openers protect against increased cytosolic calcium during ischaemia and reperfusion. J Mol Cell Cardiol , 27(9): 1809-1817 doi: 10.1016/0022-2828(95)90004-7 pmid:8523442
|
7 |
Bélichard P, Pruneau D, Rochette L (1987). Arterial hypertension, myocardial hypertrophy and disorders of cardiac rhythm induced by ligation of the left coronary artery in the rat. Arch Mal Coeur Vaiss , 80(6): 883-887 pmid:2959234
|
8 |
Boengler K, Schulz R, Heusch G (2009). Loss of cardioprotection with ageing. Cardiovasc Res , 83(2): 247-261 doi: 10.1093/cvr/cvp033 pmid:19176601
|
9 |
Braunwald E, Kloner R A (1985). Myocardial reperfusion: a double-edged sword? J Clin Invest , 76(5): 1713-1719 doi: 10.1172/JCI112160 pmid:4056048
|
10 |
Brookes P S, Yoon Y, Robotham J L, Anders M W, Sheu S S (2004). Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol , 287(4): C817-C833 doi: 10.1152/ajpcell.00139.2004 pmid:15355853
|
11 |
Cai Z, Zhong H, Bosch-Marce M, Fox-Talbot K, Wang L, Wei C, Trush M A, Semenza G L (2008). Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1 alpha. Cardiovasc Res , 77(3): 463-470 doi: 10.1093/cvr/cvm035 pmid:18006459
|
12 |
Carlsson L, Abrahamsson T, Almgren O (1985). Local release of myocardial norepinephrine during acute ischemia: an experimental study in the isolated perfused rat heart. J Cardiovasc Pharmacol , 7(4): 791-798 doi: 10.1097/00005344-198507000-00026 pmid:2410723
|
13 |
Carrasco A J, Dzeja P P, Alekseev A E, Pucar D, Zingman L V, Abraham M R, Hodgson D, Bienengraeber M, Puceat M, Janssen E, Wieringa B, Terzic A (2001). Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Proc Natl Acad Sci USA , 98(13): 7623-7628 doi: 10.1073/pnas.121038198 pmid:11390963
|
14 |
Chen C F, Tsai S Y, Ma M C, Wu M S (2003). Hypoxic preconditioning enhances renal superoxide dismutase levels in rats. J Physiol , 552(2): 561-569 doi: 10.1113/jphysiol.2003.045559 pmid:14561837
|
15 |
Crawford R M, Ranki H J, Botting C H, Budas G R, Jovanovic A (2002). Creatine kinase is physically associated with the cardiac ATP-sensitive K+ channel in vivo. FASEB J , 16(1): 102-104 pmid:11729098
|
16 |
Davies K J (1995). Oxidative stress: the paradox of aerobic life. Biochem Soc Symp , 61: 1-31 pmid:8660387
|
17 |
Dhalla N S, Elmoselhi A B, Hata T, Makino N (2000a). Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res , 47(3): 446-456 doi: 10.1016/S0008-6363(00)00078-X pmid:10963718
|
18 |
Dhalla N S, Temsah R M, Netticadan T (2000b). Role of oxidative stress in cardiovascular diseases. J Hypertens , 18(6): 655-673 doi: 10.1097/00004872-200018060-00002 pmid:10872549
|
19 |
Downey J M, Krieg T, Cohen M V (2008). Mapping preconditioning’s signaling pathways: an engineering approach. Ann N Y Acad Sci , 1123(1): 187-196 doi: 10.1196/annals.1420.022 pmid:18375591
|
20 |
Duranteau J, Chandel N S, Kulisz A, Shao Z, Schumacker P T (1998). Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem , 273(19): 11619-11624 doi: 10.1074/jbc.273.19.11619 pmid:9565580
|
21 |
Elmoselhi A B, Lukas A, Ostadal P, Dhalla N S (2003). Preconditioning attenuates ischemia-reperfusion-induced remodeling of Na+-K+-ATPase in hearts. Am J Physiol Heart Circ Physiol , 285(3): H1055-H1063 pmid:12763751
|
22 |
Fryer R M, Eells J T, Hsu A K, Henry M M, Gross G J (2000). Ischemic preconditioning in rats: role of mitochondrial K(ATP) channel in preservation of mitochondrial function. Am J Physiol Heart Circ Physiol , 278(1): H305-H312 pmid:10644614
|
23 |
Garlid K D, Paucek P, Yarov-Yarovoy V, Sun X, Schindler P A (1996). The mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem , 271(15): 8796-8799 doi: 10.1074/jbc.271.15.8796 pmid:8621517
|
24 |
Giordano F J (2005). Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest , 115(3): 500-508 pmid:15765131
|
25 |
Gopalakrishna R, Anderson W B (1989). Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc Natl Acad Sci USA , 86(17): 6758-6762 doi: 10.1073/pnas.86.17.6758 pmid:2505261
|
26 |
Gross G J, Hsu A, Falck J R, Nithipatikom K (2007). Mechanisms by which epoxyeicosatrienoic acids (EETs) elicit cardioprotection in rat hearts. J Mol Cell Cardiol , 42(3): 687-691 doi: 10.1016/j.yjmcc.2006.11.020 pmid:17217955
|
27 |
Halestrap A P (1989). The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim Biophys Acta , 973(3): 355-382 doi: 10.1016/S0005-2728(89)80378-0 pmid:2647140
|
28 |
Hamilton K L, Staib J L, Phillips T, Hess A, Lennon S L, Powers S K (2003). Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med , 34(7): 800-809 doi: 10.1016/S0891-5849(02)01431-4 pmid:12654467
|
29 |
Hekimi S, Lapointe J, Wen Y (2011). Taking a “good” look at free radicals in the aging process. Trends Cell Biol , 21(10): 569-576 doi: 10.1016/j.tcb.2011.06.008 pmid:21824781
|
30 |
Huang Y, Hickey R P, Yeh J L, Liu D, Dadak A, Young L H, Johnson R S, Giordano F J (2004). Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J , 18(10): 1138-1140 pmid:15132980
|
31 |
Jaffe M D, Quinn N K (1980). Warm-up phenomenon in angina pectoris. Lancet , 316(8201): 934-936 doi: 10.1016/S0140-6736(80)92101-7 pmid:6107586
|
32 |
Juhaszova M, Zorov D B, Kim S H, Pepe S, Fu Q, Fishbein K W, Ziman B D, Wang S, Ytrehus K, Antos C L, Olson E N, Sollott S J (2004). Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest , 113(11): 1535-1549 pmid:15173880
|
33 |
Kim M S, Akera T (1987). O2 free radicals: cause of ischemia-reperfusion injury to cardiac Na+-K+-ATPase. Am J Physiol , 252(2 Pt 2): H252-H257 pmid:3028176
|
34 |
Kloner R A, Jennings R B (2001). Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 2. Circulation , 104(25): 3158-3167 doi: 10.1161/hc5001.100039 pmid:11748117
|
35 |
Lemasters J J, Theruvath T P, Zhong Z, Nieminen A L (2009). Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta , 1787(11): 1395-1401 doi: 10.1016/j.bbabio.2009.06.009 pmid:19576166
|
36 |
Light P E, Sabir A A, Allen B G, Walsh M P, French R J (1996). Protein kinase C-induced changes in the stoichiometry of ATP binding activate cardiac ATP-sensitive K+ channels. A possible mechanistic link to ischemic preconditioning. Circ Res , 79(3): 399-406 pmid:8781473
|
37 |
McArdle F, Spiers S, Aldemir H, Vasilaki A, Beaver A, Iwanejko L, McArdle A, Jackson M J (2004). Preconditioning of skeletal muscle against contraction-induced damage: the role of adaptations to oxidants in mice. J Physiol , 561(1): 233-244 doi: 10.1113/jphysiol.2004.069914 pmid:15331678
|
38 |
Murphy E, Steenbergen C (2007). Gender-based differences in mechanisms of protection in myocardial ischemia-reperfusion injury. Cardiovasc Res , 75(3): 478-486 doi: 10.1016/j.cardiores.2007.03.025 pmid:17466956
|
39 |
Nayler W G, Elz J S (1986). Reperfusion injury: laboratory artifact or clinical dilemma? Circulation , 74(2): 215-221 doi: 10.1161/01.CIR.74.2.215 pmid:3731413
|
40 |
Opie L H (1992). Cardiac metabolism—emergence, decline, and resurgence`. Part II. Cardiovasc Res , 26(9): 817-830 doi: 10.1093/cvr/26.9.817 pmid:1451158
|
41 |
Osada M, Takeda S, Sato T, Komori S, Tamura K (1994). The protective effect of preconditioning on reperfusion-induced arrhythmia is lost by treatment with superoxide dismutase. Jpn Circ J , 58(4): 259-263 doi: 10.1253/jcj.58.259 pmid:8051784
|
42 |
Pagliaro P, Gattullo D, Rastaldo R, Losano G (2001). Ischemic preconditioning: from the first to the second window of protection. Life Sci , 69(1): 1-15 doi: 10.1016/S0024-3205(01)01113-4 pmid:11411799
|
43 |
Park J W, Chun Y S, Kim Y H, Kim C H, Kim M S (1997). Ischemic preconditioning reduces Op6 generation and prevents respiratory impairment in the mitochondria of post-ischemic reperfused heart of rat. Life Sci , 60(24): 2207-2219 doi: 10.1016/S0024-3205(97)00236-1 pmid:9188764
|
44 |
Peternelj T T, Coombes J S (2011). Antioxidant supplementation during exercise training: beneficial or detrimental? Sports Med , 41(12): 1043-1069 doi: 10.2165/11594400-000000000-00000 pmid:22060178
|
45 |
Rose G, Crocco P, De Rango F, Montesanto A, Passarino G (2011). Further support to the uncoupling-to-survive theory: the genetic variation of human UCP genes is associated with longevity. PLoS ONE , 6(12): e29650 doi: 10.1371/journal.pone.0029650 pmid:22216339
|
46 |
Saini H K, Machackova J, Dhalla N S (2004). Role of reactive oxygen species in ischemic preconditioning of subcellular organelles in the heart. Antioxid Redox Signal , 6(2): 393-404 doi: 10.1089/152308604322899468 pmid:15025941
|
47 |
Sanada S, Komuro I, Kitakaze M (2011). Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol , 301(5): H1723-H1741 doi: 10.1152/ajpheart.00553.2011 pmid:21856909
|
48 |
Stubbs S L, Hsiao S T, Peshavariya H, Lim S Y, Dusting G J, Dilley R J (2012) Hypoxic preconditioning enhances survival of human adipose-derived stem cells and conditions endothelial cells in vitro. Stem Cells Dev, Available online in Januaryβ27, 2012
|
49 |
Suzuki M, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, Seino S, Marbán E, Nakaya H (2002). Role of sarcolemmal K(ATP) channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest , 109(4): 509-516 pmid:11854323
|
50 |
Tanaka M, Fujiwara H, Yamasaki K, Sasayama S (1994). Superoxide dismutase and N-2-mercaptopropionyl glycine attenuate infarct size limitation effect of ischaemic preconditioning in the rabbit. Cardiovasc Res , 28(7): 980-986 doi: 10.1093/cvr/28.7.980 pmid:7954610
|
51 |
Turrell H E, Rodrigo G C, Norman R I, Dickens M, Standen N B (2011). Phenylephrine preconditioning involves modulation of cardiac sarcolemmal K(ATP) current by PKC delta, AMPK and p38 MAPK. J Mol Cell Cardiol , 51(3): 370-380 doi: 10.1016/j.yjmcc.2011.06.015 pmid:21740910
|
52 |
Vanden Hoek T L, Becker L B, Shao Z, Li C, Schumacker P T (1998). Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem , 273(29): 18092-18098 doi: 10.1074/jbc.273.29.18092 pmid:9660766
|
53 |
Wojtovich A P, Brookes P S (2008). The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: implications for ischemic preconditioning. Biochim Biophys Acta , 1777(7-8): 882-889 doi: 10.1016/j.bbabio.2008.03.025 pmid:18433712
|
54 |
Wojtovich A P, Nadtochiy S M, Brookes P S, Nehrke K (2012). Ischemic preconditioning: the role of mitochondria and aging. Exp Gerontol , 47(1): 1-7 doi: 10.1016/j.exger.2011.11.001 pmid:22100642
|
55 |
Yang X, Cohen M V, Downey J M (2010). Mechanism of cardioprotection by early ischemic preconditioning. Cardiovasc Drugs Ther , 24(3): 225-234 doi: 10.1007/s10557-010-6236-x pmid:20505987
|
56 |
Yuan G J, Ma J C, Gong Z J, Sun X M, Zheng S H, Li X (2005). Modulation of liver oxidant-antioxidant system by ischemic preconditioning during ischemia/reperfusion injury in rats. World J Gastroenterol , 11(12): 1825-1828 pmid:15793874
|
57 |
Zuo L, Chen Y R, Reyes L A, Lee H L, Chen C L, Villamena F A, Zweier J L (2009). The radical trap 5,5-dimethyl-1-pyrroline N-oxide exerts dose-dependent protection against myocardial ischemia-reperfusion injury through preservation of mitochondrial electron transport. J Pharmacol Exp Ther , 329(2): 515-523 doi: 10.1124/jpet.108.143479 pmid:19201989
|
58 |
Zuo L, Pasniciuc S, Wright V P, Merola A J, Clanton T L (2003). Sources for superoxide release: lessons from blockade of electron transport, NADPH oxidase, and anion channels in diaphragm. Antioxid Redox Signal , 5(5): 667-675 doi: 10.1089/152308603770310347 pmid:14580324
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|