Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (3) : 305-311    https://doi.org/10.1007/s11515-012-1225-z
REVIEW
Ischemic and hypoxic preconditioning protect cardiac muscles via intracellular ROS signaling
Li ZUO(), William J. ROBERTS, Rosa C. TOLOMELLO, Adam T. GOINS
Molecular Physiology and Biophysics Laboratory, Department of Biological Sciences, Oakland University, Rochester, MI 48326, USA
 Download: PDF(278 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Oxidative stress can cause extensive damage to cardiac tissue under reperfusion conditions. However, preconditioning the myocardium may diminish these negative effects and alleviate reperfusion injury. There are a variety of preconditioning therapies, such as ischemic preconditioning (IPC) and hypoxic preconditioning (HPC), each targeting specific channels, receptors, and/or intracellular molecules. Ischemic preconditioning involves brief periods of ischemia followed by brief periods of reperfusion, thus strengthening the cardiac resistance for a longer period of ischemia. IPC involves complex mechanisms, some of which are still not completely understood today. Nevertheless, many studies have already established models of IPC. In addition, similar to IPC, HPC has also been recognized as preventing reperfusion injury. Reactive oxygen species (ROS) are known mediators of IPC and HPC. Particularly, mitochondria-generated ROS initiate activity of several beneficial preconditioning pathways. The role of ROS is paradoxical; low levels of ROS are key factors in signaling IPC/HPC, but high levels of ROS can contribute to increased oxidative stress on cardiomyocytes. Therefore, it is important to determine the molecular mechanism of IPC and HPC to avoid excessive accumulation of ROS to prevent cardiac injury. In this review, we will outline IPC and HPC, explaining the putative role of ROS in both pathways. We will also discuss preconditioning efficacy in certain conditions such as exercise and how the aging myocardium responds to preconditioning therapies.

Keywords hypoxia      ischemia-reperfusion      ROS      cardiomyocyte      preconditioning     
Corresponding Author(s): ZUO Li,Email:zuo@oakland.edu   
Issue Date: 01 June 2013
 Cite this article:   
Li ZUO,William J. ROBERTS,Rosa C. TOLOMELLO, et al. Ischemic and hypoxic preconditioning protect cardiac muscles via intracellular ROS signaling[J]. Front Biol, 2013, 8(3): 305-311.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1225-z
https://academic.hep.com.cn/fib/EN/Y2013/V8/I3/305
Fig.1  This schematic demonstrates an intracellular pathway induced by ischemic preconditioning (IPC) during I/R.
Fig.2  This schematic demonstrates a putative intracellular pathway induced by hypoxic preconditioning (HPC) during I/R.
1 Abete P, Ferrara N, Cacciatore F, Madrid A, Bianco S, Calabrese C, Napoli C, Scognamiglio P, Bollella O, Cioppa A, Longobardi G, Rengo F (1997). Angina-induced protection against myocardial infarction in adult and elderly patients: a loss of preconditioning mechanism in the aging heart? J Am Coll Cardiol , 30(4): 947-954
doi: 10.1016/S0735-1097(97)00256-8 pmid:9316523
2 Abrahamsson T, Almgren O, Carlsson L (1985). Ischemia-induced local release of myocardial noradrenaline. J Cardiovasc Pharmacol , 7(Suppl 5): S19-S22
doi: 10.1097/00005344-198500075-00005 pmid:2410729
3 Ambrosio G, Zweier J L, Duilio C, Kuppusamy P, Santoro G, Elia P P, Tritto I, Cirillo P, Condorelli M, Chiariello M (1993). Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem , 268(25): 18532-18541
pmid:8395507
4 Ascens?o A, Ferreira R, Magalh?es J (2007). Exercise-induced cardioprotection—biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol , 117(1): 16-30
doi: 10.1016/j.ijcard.2006.04.076 pmid:16860886
5 Atsma D E, Bastiaanse E M, Jerzewski A, Van der Valk L J, Van der Laarse A (1995). Role of calcium-activated neutral protease (calpain) in cell death in cultured neonatal rat cardiomyocytes during metabolic inhibition. Circ Res , 76(6): 1071-1078
pmid:7758161
6 Behling R W, Malone H J (1995). KATP-channel openers protect against increased cytosolic calcium during ischaemia and reperfusion. J Mol Cell Cardiol , 27(9): 1809-1817
doi: 10.1016/0022-2828(95)90004-7 pmid:8523442
7 Bélichard P, Pruneau D, Rochette L (1987). Arterial hypertension, myocardial hypertrophy and disorders of cardiac rhythm induced by ligation of the left coronary artery in the rat. Arch Mal Coeur Vaiss , 80(6): 883-887
pmid:2959234
8 Boengler K, Schulz R, Heusch G (2009). Loss of cardioprotection with ageing. Cardiovasc Res , 83(2): 247-261
doi: 10.1093/cvr/cvp033 pmid:19176601
9 Braunwald E, Kloner R A (1985). Myocardial reperfusion: a double-edged sword? J Clin Invest , 76(5): 1713-1719
doi: 10.1172/JCI112160 pmid:4056048
10 Brookes P S, Yoon Y, Robotham J L, Anders M W, Sheu S S (2004). Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol , 287(4): C817-C833
doi: 10.1152/ajpcell.00139.2004 pmid:15355853
11 Cai Z, Zhong H, Bosch-Marce M, Fox-Talbot K, Wang L, Wei C, Trush M A, Semenza G L (2008). Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1 alpha. Cardiovasc Res , 77(3): 463-470
doi: 10.1093/cvr/cvm035 pmid:18006459
12 Carlsson L, Abrahamsson T, Almgren O (1985). Local release of myocardial norepinephrine during acute ischemia: an experimental study in the isolated perfused rat heart. J Cardiovasc Pharmacol , 7(4): 791-798
doi: 10.1097/00005344-198507000-00026 pmid:2410723
13 Carrasco A J, Dzeja P P, Alekseev A E, Pucar D, Zingman L V, Abraham M R, Hodgson D, Bienengraeber M, Puceat M, Janssen E, Wieringa B, Terzic A (2001). Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. Proc Natl Acad Sci USA , 98(13): 7623-7628
doi: 10.1073/pnas.121038198 pmid:11390963
14 Chen C F, Tsai S Y, Ma M C, Wu M S (2003). Hypoxic preconditioning enhances renal superoxide dismutase levels in rats. J Physiol , 552(2): 561-569
doi: 10.1113/jphysiol.2003.045559 pmid:14561837
15 Crawford R M, Ranki H J, Botting C H, Budas G R, Jovanovic A (2002). Creatine kinase is physically associated with the cardiac ATP-sensitive K+ channel in vivo. FASEB J , 16(1): 102-104
pmid:11729098
16 Davies K J (1995). Oxidative stress: the paradox of aerobic life. Biochem Soc Symp , 61: 1-31
pmid:8660387
17 Dhalla N S, Elmoselhi A B, Hata T, Makino N (2000a). Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res , 47(3): 446-456
doi: 10.1016/S0008-6363(00)00078-X pmid:10963718
18 Dhalla N S, Temsah R M, Netticadan T (2000b). Role of oxidative stress in cardiovascular diseases. J Hypertens , 18(6): 655-673
doi: 10.1097/00004872-200018060-00002 pmid:10872549
19 Downey J M, Krieg T, Cohen M V (2008). Mapping preconditioning’s signaling pathways: an engineering approach. Ann N Y Acad Sci , 1123(1): 187-196
doi: 10.1196/annals.1420.022 pmid:18375591
20 Duranteau J, Chandel N S, Kulisz A, Shao Z, Schumacker P T (1998). Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem , 273(19): 11619-11624
doi: 10.1074/jbc.273.19.11619 pmid:9565580
21 Elmoselhi A B, Lukas A, Ostadal P, Dhalla N S (2003). Preconditioning attenuates ischemia-reperfusion-induced remodeling of Na+-K+-ATPase in hearts. Am J Physiol Heart Circ Physiol , 285(3): H1055-H1063
pmid:12763751
22 Fryer R M, Eells J T, Hsu A K, Henry M M, Gross G J (2000). Ischemic preconditioning in rats: role of mitochondrial K(ATP) channel in preservation of mitochondrial function. Am J Physiol Heart Circ Physiol , 278(1): H305-H312
pmid:10644614
23 Garlid K D, Paucek P, Yarov-Yarovoy V, Sun X, Schindler P A (1996). The mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem , 271(15): 8796-8799
doi: 10.1074/jbc.271.15.8796 pmid:8621517
24 Giordano F J (2005). Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest , 115(3): 500-508
pmid:15765131
25 Gopalakrishna R, Anderson W B (1989). Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc Natl Acad Sci USA , 86(17): 6758-6762
doi: 10.1073/pnas.86.17.6758 pmid:2505261
26 Gross G J, Hsu A, Falck J R, Nithipatikom K (2007). Mechanisms by which epoxyeicosatrienoic acids (EETs) elicit cardioprotection in rat hearts. J Mol Cell Cardiol , 42(3): 687-691
doi: 10.1016/j.yjmcc.2006.11.020 pmid:17217955
27 Halestrap A P (1989). The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim Biophys Acta , 973(3): 355-382
doi: 10.1016/S0005-2728(89)80378-0 pmid:2647140
28 Hamilton K L, Staib J L, Phillips T, Hess A, Lennon S L, Powers S K (2003). Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med , 34(7): 800-809
doi: 10.1016/S0891-5849(02)01431-4 pmid:12654467
29 Hekimi S, Lapointe J, Wen Y (2011). Taking a “good” look at free radicals in the aging process. Trends Cell Biol , 21(10): 569-576
doi: 10.1016/j.tcb.2011.06.008 pmid:21824781
30 Huang Y, Hickey R P, Yeh J L, Liu D, Dadak A, Young L H, Johnson R S, Giordano F J (2004). Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J , 18(10): 1138-1140
pmid:15132980
31 Jaffe M D, Quinn N K (1980). Warm-up phenomenon in angina pectoris. Lancet , 316(8201): 934-936
doi: 10.1016/S0140-6736(80)92101-7 pmid:6107586
32 Juhaszova M, Zorov D B, Kim S H, Pepe S, Fu Q, Fishbein K W, Ziman B D, Wang S, Ytrehus K, Antos C L, Olson E N, Sollott S J (2004). Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest , 113(11): 1535-1549
pmid:15173880
33 Kim M S, Akera T (1987). O2 free radicals: cause of ischemia-reperfusion injury to cardiac Na+-K+-ATPase. Am J Physiol , 252(2 Pt 2): H252-H257
pmid:3028176
34 Kloner R A, Jennings R B (2001). Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 2. Circulation , 104(25): 3158-3167
doi: 10.1161/hc5001.100039 pmid:11748117
35 Lemasters J J, Theruvath T P, Zhong Z, Nieminen A L (2009). Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta , 1787(11): 1395-1401
doi: 10.1016/j.bbabio.2009.06.009 pmid:19576166
36 Light P E, Sabir A A, Allen B G, Walsh M P, French R J (1996). Protein kinase C-induced changes in the stoichiometry of ATP binding activate cardiac ATP-sensitive K+ channels. A possible mechanistic link to ischemic preconditioning. Circ Res , 79(3): 399-406
pmid:8781473
37 McArdle F, Spiers S, Aldemir H, Vasilaki A, Beaver A, Iwanejko L, McArdle A, Jackson M J (2004). Preconditioning of skeletal muscle against contraction-induced damage: the role of adaptations to oxidants in mice. J Physiol , 561(1): 233-244
doi: 10.1113/jphysiol.2004.069914 pmid:15331678
38 Murphy E, Steenbergen C (2007). Gender-based differences in mechanisms of protection in myocardial ischemia-reperfusion injury. Cardiovasc Res , 75(3): 478-486
doi: 10.1016/j.cardiores.2007.03.025 pmid:17466956
39 Nayler W G, Elz J S (1986). Reperfusion injury: laboratory artifact or clinical dilemma? Circulation , 74(2): 215-221
doi: 10.1161/01.CIR.74.2.215 pmid:3731413
40 Opie L H (1992). Cardiac metabolism—emergence, decline, and resurgence`. Part II. Cardiovasc Res , 26(9): 817-830
doi: 10.1093/cvr/26.9.817 pmid:1451158
41 Osada M, Takeda S, Sato T, Komori S, Tamura K (1994). The protective effect of preconditioning on reperfusion-induced arrhythmia is lost by treatment with superoxide dismutase. Jpn Circ J , 58(4): 259-263
doi: 10.1253/jcj.58.259 pmid:8051784
42 Pagliaro P, Gattullo D, Rastaldo R, Losano G (2001). Ischemic preconditioning: from the first to the second window of protection. Life Sci , 69(1): 1-15
doi: 10.1016/S0024-3205(01)01113-4 pmid:11411799
43 Park J W, Chun Y S, Kim Y H, Kim C H, Kim M S (1997). Ischemic preconditioning reduces Op6 generation and prevents respiratory impairment in the mitochondria of post-ischemic reperfused heart of rat. Life Sci , 60(24): 2207-2219
doi: 10.1016/S0024-3205(97)00236-1 pmid:9188764
44 Peternelj T T, Coombes J S (2011). Antioxidant supplementation during exercise training: beneficial or detrimental? Sports Med , 41(12): 1043-1069
doi: 10.2165/11594400-000000000-00000 pmid:22060178
45 Rose G, Crocco P, De Rango F, Montesanto A, Passarino G (2011). Further support to the uncoupling-to-survive theory: the genetic variation of human UCP genes is associated with longevity. PLoS ONE , 6(12): e29650
doi: 10.1371/journal.pone.0029650 pmid:22216339
46 Saini H K, Machackova J, Dhalla N S (2004). Role of reactive oxygen species in ischemic preconditioning of subcellular organelles in the heart. Antioxid Redox Signal , 6(2): 393-404
doi: 10.1089/152308604322899468 pmid:15025941
47 Sanada S, Komuro I, Kitakaze M (2011). Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol , 301(5): H1723-H1741
doi: 10.1152/ajpheart.00553.2011 pmid:21856909
48 Stubbs S L, Hsiao S T, Peshavariya H, Lim S Y, Dusting G J, Dilley R J (2012) Hypoxic preconditioning enhances survival of human adipose-derived stem cells and conditions endothelial cells in vitro. Stem Cells Dev, Available online in Januaryβ27, 2012
49 Suzuki M, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, Seino S, Marbán E, Nakaya H (2002). Role of sarcolemmal K(ATP) channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest , 109(4): 509-516
pmid:11854323
50 Tanaka M, Fujiwara H, Yamasaki K, Sasayama S (1994). Superoxide dismutase and N-2-mercaptopropionyl glycine attenuate infarct size limitation effect of ischaemic preconditioning in the rabbit. Cardiovasc Res , 28(7): 980-986
doi: 10.1093/cvr/28.7.980 pmid:7954610
51 Turrell H E, Rodrigo G C, Norman R I, Dickens M, Standen N B (2011). Phenylephrine preconditioning involves modulation of cardiac sarcolemmal K(ATP) current by PKC delta, AMPK and p38 MAPK. J Mol Cell Cardiol , 51(3): 370-380
doi: 10.1016/j.yjmcc.2011.06.015 pmid:21740910
52 Vanden Hoek T L, Becker L B, Shao Z, Li C, Schumacker P T (1998). Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem , 273(29): 18092-18098
doi: 10.1074/jbc.273.29.18092 pmid:9660766
53 Wojtovich A P, Brookes P S (2008). The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: implications for ischemic preconditioning. Biochim Biophys Acta , 1777(7-8): 882-889
doi: 10.1016/j.bbabio.2008.03.025 pmid:18433712
54 Wojtovich A P, Nadtochiy S M, Brookes P S, Nehrke K (2012). Ischemic preconditioning: the role of mitochondria and aging. Exp Gerontol , 47(1): 1-7
doi: 10.1016/j.exger.2011.11.001 pmid:22100642
55 Yang X, Cohen M V, Downey J M (2010). Mechanism of cardioprotection by early ischemic preconditioning. Cardiovasc Drugs Ther , 24(3): 225-234
doi: 10.1007/s10557-010-6236-x pmid:20505987
56 Yuan G J, Ma J C, Gong Z J, Sun X M, Zheng S H, Li X (2005). Modulation of liver oxidant-antioxidant system by ischemic preconditioning during ischemia/reperfusion injury in rats. World J Gastroenterol , 11(12): 1825-1828
pmid:15793874
57 Zuo L, Chen Y R, Reyes L A, Lee H L, Chen C L, Villamena F A, Zweier J L (2009). The radical trap 5,5-dimethyl-1-pyrroline N-oxide exerts dose-dependent protection against myocardial ischemia-reperfusion injury through preservation of mitochondrial electron transport. J Pharmacol Exp Ther , 329(2): 515-523
doi: 10.1124/jpet.108.143479 pmid:19201989
58 Zuo L, Pasniciuc S, Wright V P, Merola A J, Clanton T L (2003). Sources for superoxide release: lessons from blockade of electron transport, NADPH oxidase, and anion channels in diaphragm. Antioxid Redox Signal , 5(5): 667-675
doi: 10.1089/152308603770310347 pmid:14580324
[1] Volodymyr Padalko, Viktoriya Dzyuba, Olena Kozlova, Hanna Sheremet, Olena Protsenko. Zingiber officinale extends Drosophila melanogaster life span in xenobiotic-induced oxidative stress conditions[J]. Front. Biol., 2018, 13(2): 130-136.
[2] Muhammad Naveed, Mohammad Raees, Irfan Liaqat, Mohammad Kashif. Clastogenic ROS and biophotonics in precancerous diagnosis[J]. Front. Biol., 2018, 13(2): 103-122.
[3] Clare H. Scott Chialvo, Thomas Werner. Drosophila, destroying angels, and deathcaps! Oh my! A review of mycotoxin tolerance in the genus Drosophila[J]. Front. Biol., 2018, 13(2): 91-102.
[4] Vadim V. Davydov, Alexander V. Shestopalov, Evgenya R. Grabovetskaya. Physiological significance of oxidative stress and its role in adaptation of the human body to deleterious factors[J]. Front. Biol., 2018, 13(1): 19-27.
[5] Shipeng Shao, Lei Chang, Yingping Hou, Yujie Sun. Illuminating the structure and dynamics of chromatin by fluorescence labeling[J]. Front. Biol., 2017, 12(4): 241-257.
[6] Anatoliy I. Bozhkov, Eugeniy G. Ivanov, Yuliya A. Kuznetsova, Svetlana L. Ohiienko, Anastasiya Yu. Bondar’. Copper-induced liver fibrosis affects the behavior of bone marrow cells in primary culture[J]. Front. Biol., 2017, 12(4): 271-279.
[7] Anatoly I. Bozhkov,Natalia G. Menzyanova,Vadim V. Davydov,Natalia I. Kurguzova,Vadim I. Sidorov,Anastasia S. Vasilieva. Liver regeneration is associated with lipid reorganization in membranes of the endoplasmic reticulum[J]. Front. Biol., 2016, 11(5): 396-403.
[8] Chunqiang Zhang,Fan Zhang,Ping Zhou,Caiguo Zhang. Functional role of metalloproteins in genome stability[J]. Front. Biol., 2016, 11(2): 119-131.
[9] Arunesh Saras,Laura E. Simon,Harlan J. Brawer,Richard E. Price,Mark A. Tanouye. Drosophila seizure disorders: genetic suppression of seizure susceptibility[J]. Front. Biol., 2016, 11(2): 96-108.
[10] Nina K. Latcheva,Rupa Ghosh,Daniel R. Marenda. The epigenetics of CHARGE syndrome[J]. Front. Biol., 2016, 11(2): 85-95.
[11] Gahana Advani,Anderly C. Chueh,Ya Chee Lim,Amardeep Dhillon,Heung-Chin Cheng. Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression[J]. Front. Biol., 2015, 10(3): 195-202.
[12] Shuxia Wang. Role of upstream stimulatory factor 2 in diabetic nephropathy[J]. Front. Biol., 2015, 10(3): 221-229.
[13] Massimo Bonora,Paolo Pinton,Keisuke Ito. Mitochondrial control of hematopoietic stem cell balance and hematopoiesis[J]. Front. Biol., 2015, 10(2): 117-124.
[14] Joshua D. TOMPKINS,Arthur D. RIGGS. An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy[J]. Front. Biol., 2015, 10(1): 11-27.
[15] Claudia A. BERTUCCIO,Daniel C. DEVOR. Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases[J]. Front. Biol., 2015, 10(1): 52-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed