Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2016, Vol. 11 Issue (2) : 119-131    https://doi.org/10.1007/s11515-016-1392-4
REVIEW
Functional role of metalloproteins in genome stability
Chunqiang Zhang1,1 _FIB-10392-CGZ,Fan Zhang1,1 _FIB-10392-CGZ,Ping Zhou2,2 _FIB-10392-CGZ,Caiguo Zhang3,*()
1. Department of Orthopedics, The first Affiliated Hospital of Kunming Medical University, Kunming 650032, China
2. Department of Nephrology, Jiangxi Provincial People's Hospital Nanchang, Nanchang 330006, China
3. Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
 Download: PDF(228 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cells contain a large number of metalloproteins that commonly harbor at least one metal ion cofactor. In metalloproteins, metal ions are usually coordinated by oxygen, sulfur, or nitrogen centers belonging to amino acid residues in the protein. The presence of the metal ion in metalloproteins allows them to take part in diverse biological processes, such as genome stability, metabolic catalysis, and cell cycle progression. Clinically, alteration of the function of metalloproteins in mammals is genetically associated with diseases characterized by DNA damage and repair defects. The present review focuses on the current perspectives of metal ion homeostasis in different organisms and summarizes the most recent understanding on magnesium, copper, iron, and manganese-containing proteins and their functional involvement in the maintenance of genome stability.

Keywords metalloprotein      ROS      DNA damage      DNA repair      iron      copper     
Corresponding Author(s): Caiguo Zhang   
Just Accepted Date: 29 March 2016   Online First Date: 26 April 2016    Issue Date: 17 May 2016
 Cite this article:   
Chunqiang Zhang,Fan Zhang,Ping Zhou, et al. Functional role of metalloproteins in genome stability[J]. Front. Biol., 2016, 11(2): 119-131.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-016-1392-4
https://academic.hep.com.cn/fib/EN/Y2016/V11/I2/119
Protein Metal ion(s) Main function Reference
Alcohol dehydrogenase (ADH) Zinc Facilitates the interconversion between alcohols and aldehydes or ketones with the reduction of nicotinamide adenine dinucleotide (NAD+ to NADH) Edenberg, 2007
Arginase Manganese Catalyzes the conversion of L-arginine into L-ornithine and urea Dowling et al., 2008
Catalase Iron Catalyzes the decomposition of hydrogen peroxide (H2O2) to water (H2O) and oxygen (O2) and mitigates the toxic effects of H2O2 in cells Zamocky et al., 2008
Cell adhesion molecule L1-related helicase (CHLR1) Iron Plays an important role in sister chromatid cohesion, DNA replication, and/or DNA repair Shah et al., 2013
Cytochrome complex (cyt c) Iron Is an essential component for the functioning of the electron transport chain and in the initiation of apoptosis Huttemann et al., 2012
Cytochrome coxidase (CcO) Iron and copper It is an essential component for the functioning of the electron transport chain and affects several aspects of mitochondrial function Srinivasan and Avadhani, 2012
DNA replication helicase/nuclease 2 (DNA2) Iron Required for processing double-strand breaks (DSB), end resection, and processing Okazaki fragments Cejka et al., 2010
DNA polymerases (Pola, d and e) Iron Initiating and processing DNA replication Miyabe et al., 2011
DNA polymerase b Magnesium Catalyzes base excision repair required for DNA maintenance, replication and recombination Sutton and Walker, 2001
DNA polymerase I Magnesium DNA replication and repair Meyer et al., 2004
DNA primase Iron Catalyzes the synthesis of a short RNA primer complementary to the single-stranded DNA template Schumacher et al., 2000; Wang et al., 2004
Fanconi anemia, complementation group J (FANCJ) Iron Promotes homologous recombination (HR) repair of damaged DNA Kee and D’Andrea, 2010
Hemocyanin Copper Function in the transport or storage of O2 Scudiero et al., 2007
Hemoglobin Iron Carries oxygen from respiratory organs to the rest of the body and acts as a biological Fenton reagent to promote heme degradation through the generation of ROS Gourianov and Kluger, 2003; Goodarzi et al., 2014
Hexokinase Magnesium Catalyzes the phosphorylation of hexoses forming hexose phosphate Aleshin et al., 1998
Manganese catalases Magnesium Catalyzing the decomposition of H2O2 to H2O and O2 Yoder et al., 2000
MMS19 Iron Functions in DNA repair, chromosome segregation, and heterochromatin silencing Stehling et al., 2013
Manganese superoxide dismutase (MnSOD) Manganese Detoxifies free radicles and protects cells from potential damage caused by excessive amounts of ROS Candas and Li, 2014
Myoglobin Iron Primary oxygen-carrying pigment of muscle tissues Garry and Mammen, 2007
Nitric oxide synthases (NOSs) Iron Catalyzes the production of nitric oxide (NO) from L-arginine Rodrigo et al., 2013
P2 DNA polymerase IV Magnesium DNA replication and repair Ling et al., 2001
Plastocyanin Copper Functions as an electron transfer agent between cytochrome f of the cytochrome b6f complex from photosystem II and P700+ from photosystem I Peers and Price, 2006
DNA repair helicase RAD3 Mediates nucleotide excision repair (NER) process Lee et al., 2000
Regulator of telomere elongation helicase 1 (RTEL1) Iron Functions in telomere-length regulation, DNA repair and in the maintenance of genomic stability Uringa et al., 2011
Small subunit of ribonucleotide reductase (RNR) Iron Catalyzes the reductive synthesis of deoxyribonucleotides from their corresponding ribonucleotides Zhang, 2014
Superoxide dismutase 1 (SOD1) Copper and zinc Functions in apoptotic signaling and in oxidative stress Valentine et al., 2005; Yoon et al., 2009
Taq DNA polymerase Magnesium DNA replication and repair Li et al., 1999
T7 DNA polymerase Magnesium DNA replication and repair Doublié et al., 1998
Xanthine oxidase (XO) Molybdenum Catalyzes the oxidation of hypoxanthine to xanthine Kelley et al., 2010
Xeroderma pigmentosum group D (XPD) Iron Mediates NER process Cappelli et al., 1999
Tab.1  Majormetalloproteins involved in the maintenance of genome stability
1 Abraham J, Balbo S, Crabb D, Brooks P J (2011). Alcohol metabolism in human cells causes DNA damage and activates the Fanconi anemia-breast cancer susceptibility (FA-BRCA) DNA damage response network. Alcohol Clin Exp Res, 35(12): 2113–2120
https://doi.org/10.1111/j.1530-0277.2011.01563.x pmid: 21919919
2 Acharya N, Johnson R E, Prakash S, Prakash L (2006). Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase zeta for mismatch extension and for extension opposite from DNA lesions. Mol Cell Biol, 26(24): 9555–9563
https://doi.org/10.1128/MCB.01671-06 pmid: 17030609
3 Aleshin A E, Zeng C, Bourenkov G P, Bartunik H D, Fromm H J, Honzatko R B (1998). The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate. Structure, 6(1): 39–50
https://doi.org/10.1016/S0969-2126(98)00006-9 pmid: 9493266
4 Ambani L M, Van Woert M H, Murphy S (1975). Brain peroxidase and catalase in Parkinson disease. Arch Neurol, 32(2): 114–118
https://doi.org/10.1001/archneur.1975.00490440064010 pmid: 1122174
5 An X, Zhang C, Sclafani R A, Seligman P, Huang M (2015). The late-annotated small ORF LSO1 is a target gene of the iron regulon of Saccharomyces cerevisiae. MicrobiologyOpen, 4(6): 941–951
https://doi.org/10.1002/mbo3.303 pmid: 26450372
6 Ansley D M, Wang B (2013). Oxidative stress and myocardial injury in the diabetic heart. J Pathol, 229(2): 232–241
https://doi.org/10.1002/path.4113 pmid: 23011912
7 Arigony A L, de Oliveira I M, Machado M, Bordin D L, Bergter L, Prá D, Henriques J A (2013). The influence of micronutrients in cell culture: a reflection on viability and genomic stability. BioMed Res Int, 2013: 597282
https://doi.org/10.1155/2013/597282 pmid: 23781504
8 Bachelard H S (1971). Allosteric activation of brain hexokinase by magnesium ions and by magnesium ion—adenosine triphosphate complex. Biochem J, 125(1): 249–254
https://doi.org/10.1042/bj1250249 pmid: 5158910
9 Banci L, Bertini I (2013). Metallomics and the cell: some definitions and general comments. Met Ions Life Sci, 12: 1–13
https://doi.org/10.1007/978-94-007-5561-1_1 pmid: 23595668
10 Barbosa L F, Cerqueira F M, Macedo A F, Garcia C C, Angeli J P, Schumacher R I, Sogayar M C, Augusto O, Carrì M T, Di Mascio P, Medeiros M H (2010). Increased SOD1 association with chromatin, DNA damage, p53 activation, and apoptosis in a cellular model of SOD1-linked ALS. Biochim Biophys Acta, 1802(5): 462–471
https://doi.org/10.1016/j.bbadis.2010.01.011 pmid: 20097285
11 Behrend L, Mohr A, Dick T, Zwacka R M (2005). Manganese superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Mol Cell Biol, 25(17): 7758–7769
https://doi.org/10.1128/MCB.25.17.7758-7769.2005 pmid: 16107721
12 Brosh R M Jr (2013). DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer, 13(8): 542–558
https://doi.org/10.1038/nrc3560 pmid: 23842644
13 Brown D R (2010). Metalloproteins and neuronal death. Metallomics, 2(3): 186–194
https://doi.org/10.1039/B912601E pmid: 21069156
14 Brunori M, Giuffrè A, Sarti P (2005). Cytochrome c oxidase, ligands and electrons. J Inorg Biochem, 99(1): 324–336
https://doi.org/10.1016/j.jinorgbio.2004.10.011 pmid: 15598510
15 Candas D, Li J J (2014). MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid Redox Signal, 20(10): 1599–1617
https://doi.org/10.1089/ars.2013.5305 pmid: 23581847
16 Cappelli E, Carrozzino F, Abbondandolo A, Frosina G (1999). The DNA helicases acting in nucleotide excision repair, XPD, CSB and XPB, are not required for PCNA-dependent repair of abasic sites. Eur J Biochem, 259(1-2): 325–330
https://doi.org/10.1046/j.1432-1327.1999.00050.x pmid: 9914510
17 Cárdenas M L, Cornish-Bowden A, Ureta T (1998). Evolution and regulatory role of the hexokinases. Biochim Biophys Acta, 1401(3): 242–264
https://doi.org/10.1016/S0167-4889(97)00150-X pmid: 9540816
18 Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S, Campbell J L, Kowalczykowski S C (2010). DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature, 467(7311): 112–116
https://doi.org/10.1038/nature09355 pmid: 20811461
19 Chen Z, Sui J, Zhang F, Zhang C (2015). Cullin family proteins and tumorigenesis: genetic association and molecular mechanisms. J Cancer, 6(3): 233–242
https://doi.org/10.7150/jca.11076 pmid: 25663940
20 Chung J Y, Kim H J, Kim M (2015). The protective effect of growth hormone on Cu/Zn superoxide dismutase-mutant motor neurons. BMC Neurosci, 16(1): 1
https://doi.org/10.1186/s12868-015-0140-z pmid: 25655275
21 Cooper C E, Torres J, Sharpe M A, Wilson M T (1997). Nitric oxide ejects electrons from the binuclear centre of cytochrome c oxidase by reacting with oxidised copper: a general mechanism for the interaction of copper proteins with nitric oxide? FEBS Lett, 414(2): 281–284
https://doi.org/10.1016/S0014-5793(97)01009-0 pmid: 9315702
22 Cruciat C M, Brunner S, Baumann F, Neupert W, Stuart R A (2000). The cytochrome bc1 and cytochrome c oxidase complexes associate to form a single supracomplex in yeast mitochondria. J Biol Chem, 275(24): 18093–18098
https://doi.org/10.1074/jbc.M001901200 pmid: 10764779
23 D’Agnillo F, Wood F, Porras C, Macdonald V W, Alayash A I (2000). Effects of hypoxia and glutathione depletion on hemoglobin- and myoglobin-mediated oxidative stress toward endothelium. Biochim Biophys Acta, 1495(2): 150–159
pmid: 10656972
24 Dlouhy A C, Outten C E (2013). The iron metallome in eukaryotic organisms. Met Ions Life Sci, 12: 241–278
https://doi.org/10.1007/978-94-007-5561-1_8 pmid: 23595675
25 Dong K, Addinall S G, Lydall D, Rutherford J C (2013). The yeast copper response is regulated by DNA damage. Mol Cell Biol, 33(20): 4041–4050
https://doi.org/10.1128/MCB.00116-13 pmid: 23959798
26 Doublié S, Tabor S, Long A M, Richardson C C, Ellenberger T (1998). Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature, 391(6664): 251–258
https://doi.org/10.1038/34593 pmid: 9440688
27 Dowling D P, Di Costanzo L, Gennadios H A, Christianson D W (2008). Evolution of the arginase fold and functional diversity. Cell Mol Life Sci, 65(13): 2039–2055
https://doi.org/10.1007/s00018-008-7554-z pmid: 18360740
28 Edenberg H J (2007). The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health, 30(1): 5–13
pmid: 17718394
29 Eide D J (2006). Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta, 1763(7): 711–722
https://doi.org/10.1016/j.bbamcr.2006.03.005 pmid: 16675045
30 El Mjiyad N, Caro-Maldonado A, Ramírez-Peinado S, Muñoz-Pinedo C (2011). Sugar-free approaches to cancer cell killing. Oncogene, 30(3): 253–264
https://doi.org/10.1038/onc.2010.466 pmid: 20972457
31 Elmore S (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol, 35(4): 495–516
https://doi.org/10.1080/01926230701320337 pmid: 17562483
32 Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V (2012). Role of apoptosis in disease. Aging (Albany, NY), 4(5): 330–349
https://doi.org/10.18632/aging.100459 pmid: 22683550
33 Franklin R B, Ma J, Zou J, Guan Z, Kukoyi B I, Feng P, Costello L C (2003). Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. J Inorg Biochem, 96(2-3): 435–442
https://doi.org/10.1016/S0162-0134(03)00249-6 pmid: 12888280
34 Frey A G, Bird A J, Evans-Galea M V, Blankman E, Winge D R, Eide D J (2011). Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator. PLoS ONE, 6(7): e22535
https://doi.org/10.1371/journal.pone.0022535 pmid: 21799889
35 Gardner A F, Kelman Z (2014). DNA polymerases in biotechnology. Front Microbiol, 5: 659
https://doi.org/10.3389/fmicb.2014.00659 pmid: 25520711
36 Gari K, León Ortiz A M, Borel V, Flynn H, Skehel J M, Boulton S J (2012). MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science, 337(6091): 243–245
https://doi.org/10.1126/science.1219664 pmid: 22678361
37 Garry D J, Mammen P P (2007). Molecular insights into the functional role of myoglobin. Adv Exp Med Biol, 618: 181–193
https://doi.org/10.1007/978-0-387-75434-5_14 pmid: 18269197
38 Glorieux C, Auquier J, Dejeans N, Sid B, Demoulin J B, Bertrand L, Verrax J, Calderon P B (2014). Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3K/Akt/mTor signaling pathway. Biochem Pharmacol, 89(2): 217–223
https://doi.org/10.1016/j.bcp.2014.02.025 pmid: 24630930
39 Goodarzi M, Moosavi-Movahedi A A, Habibi-Rezaei M, Shourian M, Ghourchian H, Ahmad F, Farhadi M, Saboury A A, Sheibani N (2014). Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species. Spectrochim Acta A Mol Biomol Spectrosc, 130: 561–567
https://doi.org/10.1016/j.saa.2014.04.056 pmid: 24813286
40 Góth L (2008). Catalase deficiency and type 2 diabetes. Diabetes Care, 31(12): e93
https://doi.org/10.2337/dc08-1607 pmid: 19033415
41 Gottlob K, Majewski N, Kennedy S, Kandel E, Robey R B, Hay N (2001). Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev, 15(11): 1406–1418
https://doi.org/10.1101/gad.889901 pmid: 11390360
42 Gourianov N, Kluger R (2003). Cross-linked bis-hemoglobins: connections and oxygen binding. J Am Chem Soc, 125(36): 10885–10892
https://doi.org/10.1021/ja036596i pmid: 12952468
43 Gwanyanya A, Amuzescu B, Zakharov S I, Macianskiene R, Sipido K R, Bolotina V M, Vereecke J, Mubagwa K (2004). Magnesium-inhibited, TRPM6/7-like channel in cardiac myocytes: permeation of divalent cations and pH-mediated regulation. J Physiol, 559(Pt 3): 761–776
https://doi.org/10.1113/jphysiol.2004.067637 pmid: 15272039
44 Harper J W, Elledge S J (2007). The DNA damage response: ten years after. Mol Cell, 28(5): 739–745
https://doi.org/10.1016/j.molcel.2007.11.015 pmid: 18082599
45 Hartwig A (2001). Role of magnesium in genomic stability. Mutat Res, 475(1-2): 113–121
https://doi.org/10.1016/S0027-5107(01)00074-4 pmid: 11295157
46 Holzer A K, Samimi G, Katano K, Naerdemann W, Lin X, Safaei R, Howell S B (2004). The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells. Mol Pharmacol, 66(4): 817–823
https://doi.org/10.1124/mol.104.001198 pmid: 15229296
47 Horn D, Barrientos A (2008). Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life, 60(7): 421–429
https://doi.org/10.1002/iub.50 pmid: 18459161
48 Huttemann M, Lee I, Grossman L I, Doan J W, Sanderson T H (2012). Phosphorylation of mammalian cytochrome c and cytochrome c oxidase in the regulation of cell destiny: respiration, apoptosis, and human disease.AdvExp Med Biol, 748: 237–264
49 Jacobo-Molina A, Ding J, Nanni R G, Clark A D Jr, Lu X, Tantillo C, Williams R L, Kamer G, Ferris A L, Clark P (1993). Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci USA, 90(13): 6320–6324
https://doi.org/10.1073/pnas.90.13.6320 pmid: 7687065
50 Jiang N, Tan N S, Ho B, Ding J L (2007). Respiratory protein-generated reactive oxygen species as an antimicrobial strategy. Nat Immunol, 8(10): 1114–1122
https://doi.org/10.1038/ni1501 pmid: 17721536
51 Johnson D C, Dean D R, Smith A D, Johnson M K (2005). Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem, 74(1): 247–281
https://doi.org/10.1146/annurev.biochem.74.082803.133518 pmid: 15952888
52 Kaji A, Colowick S P (1965). Adenosine triphosphatase activity of yeast hexokinase and its relation to the mechanism of the hexokinase reaction. J Biol Chem, 240(11): 4454–4462
pmid: 4221203
53 Kamga C, Krishnamurthy S, Shiva S (2012). Myoglobin and mitochondria: a relationship bound by oxygen and nitric oxide. Nitric Oxide, 26(4): 251–258
https://doi.org/10.1016/j.niox.2012.03.005 pmid: 22465476
54 Kang M Y, Kim H B, Piao C, Lee K H, Hyun J W, Chang I Y, You H J (2013). The critical role of catalase in prooxidant and antioxidant function of p53. Cell Death Differ, 20(1): 117–129
https://doi.org/10.1038/cdd.2012.102 pmid: 22918438
55 Kee Y, D’Andrea A D (2010). Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev, 24(16): 1680–1694
https://doi.org/10.1101/gad.1955310 pmid: 20713514
56 Kelley E E, Khoo N K, Hundley N J, Malik U Z, Freeman B A, Tarpey M M (2010). Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic Biol Med, 48(4): 493–498
https://doi.org/10.1016/j.freeradbiomed.2009.11.012 pmid: 19941951
57 Keyer K, Imlay J A (1996). Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci USA, 93(24): 13635–13640
https://doi.org/10.1073/pnas.93.24.13635 pmid: 8942986
58 Kim J, Kil I S, Seok Y M, Yang E S, Kim D K, Lim D G, Park J W, Bonventre J V, Park K M (2006). Orchiectomy attenuates post-ischemic oxidative stress and ischemia/reperfusion injury in mice. A role for manganese superoxide dismutase. J Biol Chem, 281(29): 20349–20356
https://doi.org/10.1074/jbc.M512740200 pmid: 16682413
59 Kim M, Lim J H, Ahn C S, Park K, Kim G T, Kim W T, Pai H S (2006). Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell, 18(9): 2341–2355
https://doi.org/10.1105/tpc.106.041509 pmid: 16920781
60 Kim S J, Cheresh P, Williams D, Cheng Y, Ridge K, Schumacker P T, Weitzman S, Bohr V A, Kamp D W (2014). Mitochondria-targeted Ogg1 and aconitase-2 prevent oxidant-induced mitochondrial DNA damage in alveolar epithelial cells. J Biol Chem, 289(9): 6165–6176
https://doi.org/10.1074/jbc.M113.515130 pmid: 24429287
61 Lange S S, Takata K, Wood R D (2011). DNA polymerases and cancer. Nat Rev Cancer, 11(2): 96–110
https://doi.org/10.1038/nrc2998 pmid: 21258395
62 Lee B S, Bi L, Garfinkel D J, Bailis A M (2000). Nucleotide excision repair/TFIIH helicases RAD3 and SSL2 inhibit short-sequence recombination and Ty1 retrotransposition by similar mechanisms. Mol Cell Biol, 20(7): 2436–2445
https://doi.org/10.1128/MCB.20.7.2436-2445.2000 pmid: 10713167
63 Li J, Liu J, Wang G, Cha J Y, Li G, Chen S, Li Z, Guo J, Zhang C, Yang Y, Kim W Y, Yun D J, Schumaker K S, Chen Z, Guo Y (2015). A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis. Plant Cell, 27(3): 908–925
https://doi.org/10.1105/tpc.114.135095 pmid: 25700484
64 Li Y, Huang T T, Carlson E J, Melov S, Ursell P C, Olson J L, Noble L J, Yoshimura M P, Berger C, Chan P H, Wallace D C, Epstein C J (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet, 11(4): 376–381
https://doi.org/10.1038/ng1295-376 pmid: 7493016
65 Li Y, Mitaxov V, Waksman G (1999). Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation. Proc Natl Acad Sci USA, 96(17): 9491–9496
https://doi.org/10.1073/pnas.96.17.9491 pmid: 10449720
66 Lill R, Hoffmann B, Molik S, Pierik A J, Rietzschel N, Stehling O, Uzarska M A, Webert H, Wilbrecht C, Mühlenhoff U (2012). The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta, 1823(9): 1491–1508
https://doi.org/10.1016/j.bbamcr.2012.05.009 pmid: 22609301
67 Ling H, Boudsocq F, Woodgate R, Yang W (2001). Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell, 107(1): 91–102
https://doi.org/10.1016/S0092-8674(01)00515-3 pmid: 11595188
68 Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y (2014). Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev, 114(8): 4366–4469
https://doi.org/10.1021/cr400479b pmid: 24758379
69 Lohman T M (1992). Escherichia coli DNA helicases: mechanisms of DNA unwinding. Mol Microbiol, 6(1): 5–14
https://doi.org/10.1111/j.1365-2958.1992.tb00831.x pmid: 1310794
70 Ma Z, Jacobsen F E, Giedroc D P (2009). Coordination chemistry of bacterial metal transport and sensing. Chem Rev, 109(10): 4644–4681
https://doi.org/10.1021/cr900077w pmid: 19788177
71 Maret W (2010). Metalloproteomics, metalloproteomes, and the annotation of metalloproteins. Metallomics, 2(2): 117–125
https://doi.org/10.1039/B915804A pmid: 21069142
72 Meyer A S, Blandino M, Spratt T E (2004). Escherichia coli DNA polymerase I (Klenow fragment) uses a hydrogen-bonding fork from Arg668 to the primer terminus and incoming deoxynucleotide triphosphate to catalyze DNA replication. J Biol Chem, 279(32): 33043–33046
https://doi.org/10.1074/jbc.C400232200 pmid: 15210707
73 Miyabe I, Kunkel T A, Carr A M (2011). The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet, 7(12): e1002407
https://doi.org/10.1371/journal.pgen.1002407 pmid: 22144917
74 Moltedo B, Faunes F, Haussmann D, De Ioannes P, De Ioannes A E, Puente J, Becker M I (2006). Immunotherapeutic effect of Concholepas hemocyanin in the murine bladder cancer model: evidence for conserved antitumor properties among hemocyanins. J Urol, 176(6 Pt 1): 2690–2695
https://doi.org/10.1016/j.juro.2006.07.136 pmid: 17085197
75 Moreira L G, Pereira L C, Drummond P R, De Mesquita J F (2013). Structural and functional analysis of human SOD1 in amyotrophic lateral sclerosis. PLoS ONE, 8(12): e81979
https://doi.org/10.1371/journal.pone.0081979 pmid: 24312616
76 Mori M (2007). Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J Nutr, 137(6 Suppl 2): 1616S–1620S
pmid: 17513437
77 Mulichak A M, Wilson J E, Padmanabhan K, Garavito R M (1998). The structure of mammalian hexokinase-1. Nat Struct Biol, 5(7): 555–560
https://doi.org/10.1038/811 pmid: 9665168
78 Nakano K, Bálint E, Ashcroft M, Vousden K H (2000). A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene, 19(37): 4283–4289
https://doi.org/10.1038/sj.onc.1203774 pmid: 10980602
79 Netz D J, Stith C M, Stümpfig M, Köpf G, Vogel D, Genau H M, Stodola J L, Lill R, Burgers P M, Pierik A J (2012). Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol, 8(1): 125–132
https://doi.org/10.1038/nchembio.721 pmid: 22119860
80 Nishitoh H, Kadowaki H, Nagai A, Maruyama T, Yokota T, Fukutomi H, Noguchi T, Matsuzawa A, Takeda K, Ichijo H (2008). ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev, 22(11): 1451–1464
https://doi.org/10.1101/gad.1640108 pmid: 18519638
81 Öhrvik H, Nose Y, Wood L K, Kim B E, Gleber S C, Ralle M, Thiele D J (2013). Ctr2 regulates biogenesis of a cleaved form of mammalian Ctr1 metal transporter lacking the copper- and cisplatin-binding ecto-domain. Proc Natl Acad Sci USA, 110(46): E4279–E4288
https://doi.org/10.1073/pnas.1311749110 pmid: 24167251
82 Pasinelli P, Belford M E, Lennon N, Bacskai B J, Hyman B T, Trotti D, Brown R H Jr (2004). Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron, 43(1): 19–30
https://doi.org/10.1016/j.neuron.2004.06.021 pmid: 15233914
83 Peers G, Price N M (2006). Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature, 441(7091): 341–344
https://doi.org/10.1038/nature04630 pmid: 16572122
84 Peng J, Stevenson F F, Doctrow S R, Andersen J K (2005). Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson disease. J Biol Chem, 280(32): 29194–29198
https://doi.org/10.1074/jbc.M500984200 pmid: 15946937
85 Plotnikov E Y, Chupyrkina A A, Pevzner I B, Isaev N K, Zorov D B (2009). Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney’s mitochondria. Biochim Biophys Acta, 1792(8): 796–803
https://doi.org/10.1016/j.bbadis.2009.06.005 pmid: 19545623
86 Purich D L, Fromm H J (1972). Activation of brain hexokinase by magnesium ions and by magnesium ion—adenosine triphosphate complex. Biochem J, 130(1): 63–69
https://doi.org/10.1042/bj1300063 pmid: 4655453
87 Ravet K, Pilon M (2013). Copper and iron homeostasis in plants: the challenges of oxidative stress. Antioxid Redox Signal, 19(9): 919–932
https://doi.org/10.1089/ars.2012.5084 pmid: 23199018
88 Rodrigo R, Libuy M, Feliú F, Hasson D (2013). Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. Dis Markers, 35(6): 773–790
https://doi.org/10.1155/2013/974358 pmid: 24347798
89 Rolfs A, Hediger M A (1999). Metal ion transporters in mammals: structure, function and pathological implications. J Physiol, 518(Pt 1): 1–12
https://doi.org/10.1111/j.1469-7793.1999.0001r.x pmid: 10373684
90 Rouault T A (2012). Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis Model Mech, 5(2): 155–164
https://doi.org/10.1242/dmm.009019 pmid: 22382365
91 Rouault T A (2015). Iron-sulfur proteins hiding in plain sight. Nat Chem Biol, 11(7): 442–445
https://doi.org/10.1038/nchembio.1843 pmid: 26083061
92 Sanvisens N, Romero A M, An X, Zhang C, de Llanos R, Martínez-Pastor M T, Bañó M C, Huang M, Puig S (2014). Yeast Dun1 kinase regulates ribonucleotide reductase inhibitor Sml1 in response to iron deficiency. Mol Cell Biol, 34(17): 3259–3271
https://doi.org/10.1128/MCB.00472-14 pmid: 24958100
93 Sarker M M, Zhong M (2014). Keyhole limpet hemocyanin augmented the killing activity, cytokine production and proliferation of NK cells, and inhibited the proliferation of Meth A sarcoma cells in vitro. Indian J Pharmacol, 46(1): 40–45
https://doi.org/10.4103/0253-7613.125164 pmid: 24550583
94 Sawaya M R, Prasad R, Wilson S H, Kraut J, Pelletier H (1997). Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry, 36(37): 11205–11215
https://doi.org/10.1021/bi9703812 pmid: 9287163
95 Schiavone J R, Hassan H M (1988). The role of redox in the regulation of manganese-containing superoxide dismutase biosynthesis in Escherichia coli. J BiolChem, 263: 4269–4273. Li Y, Huang T T, Carlson E J, Melov S, Ursell P C, Olson J L, Noble L J, Yoshimura M P, Berger C, Chan P H, Wallace D C, Epstein C J (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet, 11: 376–381
96 Schlieper G, Kim J H, Molojavyi A, Jacoby C, Laussmann T, Flögel U, Gödecke A, Schrader J (2004). Adaptation of the myoglobin knockout mouse to hypoxic stress. Am J Physiol Regul Integr Comp Physiol, 286(4): R786–R792
https://doi.org/10.1152/ajpregu.00043.2003 pmid: 14656764
97 Schumacher S B, Stucki M, Hübscher U (2000). The N-terminal region of DNA polymerase delta catalytic subunit is necessary for holoenzyme function. Nucleic Acids Res, 28(2): 620–625
https://doi.org/10.1093/nar/28.2.620 pmid: 10606663
98 Scudiero R, Trinchella F, Riggio M, Parisi E (2007). Structure and expression of genes involved in transport and storage of iron in red-blooded and hemoglobin-less antarctic notothenioids. Gene, 397(1-2): 1–11
https://doi.org/10.1016/j.gene.2007.03.003 pmid: 17570620
99 Shah N, Inoue A, Woo Lee S, Beishline K, Lahti J M, Noguchi E (2013). Roles of ChlR1 DNA helicase in replication recovery from DNA damage. Exp Cell Res, 319(14): 2244–2253
https://doi.org/10.1016/j.yexcr.2013.06.005 pmid: 23797032
100 Shapleigh J P, Hosler J P, Tecklenburg M M, Kim Y, Babcock G T, Gennis R B, Ferguson-Miller S (1992). Definition of the catalytic site of cytochrome c oxidase: specific ligands of heme a and the heme a3-CuB center. Proc Natl Acad Sci USA, 89(11): 4786–4790
https://doi.org/10.1073/pnas.89.11.4786 pmid: 1317571
101 Shefner J M, Reaume A G, Flood D G, Scott R W, Kowall N W, Ferrante R J, Siwek D F, Upton-Rice M, Brown R H Jr (1999). Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology, 53(6): 1239–1246
https://doi.org/10.1212/WNL.53.6.1239 pmid: 10522879
102 Shleev S, Tkac J, Christenson A, Ruzgas T, Yaropolov A I, Whittaker J W, Gorton L (2005). Direct electron transfer between copper-containing proteins and electrodes. Biosens Bioelectron, 20(12): 2517–2554
https://doi.org/10.1016/j.bios.2004.10.003 pmid: 15854824
103 Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G (2002). Maturation of cytosolic iron-sulfur proteins requires glutathione. J Biol Chem, 277(30): 26944–26949
https://doi.org/10.1074/jbc.M200677200 pmid: 12011041
104 Sivakamavalli J, Vaseeharan B (2015). Enzymatic elucidation of haemocyanin from Kuruma shrimp Marsupenaeus japonicus and its molecular recognition mechanism towards pathogens. J Biomol Struct Dyn, 33(6): 1302–1314
https://doi.org/10.1080/07391102.2014.945485 pmid: 25204648
105 Soo K Y, Atkin J D, Horne M K, Nagley P (2009). Recruitment of mitochondria into apoptotic signaling correlates with the presence of inclusions formed by amyotrophic lateral sclerosis-associated SOD1 mutations. J Neurochem, 108(3): 578–590
https://doi.org/10.1111/j.1471-4159.2008.05799.x pmid: 19046404
106 Srinivasan S, Avadhani N G (2012). Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med, 53(6): 1252–1263
https://doi.org/10.1016/j.freeradbiomed.2012.07.021 pmid: 22841758
107 Stehling O, Mascarenhas J, Vashisht A A, Sheftel A D, Niggemeyer B, Rösser R, Pierik A J, Wohlschlegel J A, Lill R (2013). Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron-sulfur proteins. Cell Metab, 18(2): 187–198
https://doi.org/10.1016/j.cmet.2013.06.015 pmid: 23891004
108 Stehling O, Vashisht A A, Mascarenhas J, Jonsson Z O, Sharma T, Netz D J, Pierik A J, Wohlschlegel J A, Lill R (2012). MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science, 337(6091): 195–199
https://doi.org/10.1126/science.1219723 pmid: 22678362
109 Sutton M D, Walker G C (2001). Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination. Proc Natl Acad Sci USA, 98(15): 8342–8349
https://doi.org/10.1073/pnas.111036998 pmid: 11459973
110 Tafuri F, Ronchi D, Magri F, Comi G P, Corti S (2015). SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front Cell Neurosci, 9: 336
https://doi.org/10.3389/fncel.2015.00336 pmid: 26379505
111 Torti S V, Torti F M (2013). Iron and cancer: more ore to be mined. Nat Rev Cancer, 13(5): 342–355
https://doi.org/10.1038/nrc3495 pmid: 23594855
112 Totzeck M, Hendgen-Cotta U B, Kelm M, Rassaf T (2014). Crosstalk between nitrite, myoglobin and reactive oxygen species to regulate vasodilation under hypoxia. PLoS ONE, 9(8): e105951
https://doi.org/10.1371/journal.pone.0105951 pmid: 25148388
113 Uramoto H, Sugio K, Oyama T, Hanagiri T, Yasumoto K (2006). P53R2, p53 inducible ribonucleotide reductase gene, correlated with tumor progression of non-small cell lung cancer. Anticancer Res, 26(2A): 983–988
pmid: 16619496
114 Uringa E J, Youds J L, Lisaingo K, Lansdorp P M, Boulton S J (2011). RTEL1: an essential helicase for telomere maintenance and the regulation of homologous recombination. Nucleic Acids Res, 39(5): 1647–1655
https://doi.org/10.1093/nar/gkq1045 pmid: 21097466
115 Valentine J S, Doucette P A, Zittin Potter S (2005). Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem, 74(1): 563–593
https://doi.org/10.1146/annurev.biochem.72.121801.161647 pmid: 15952898
116 van Brabant A J, Stan R, Ellis N A (2000). DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet, 1(1): 409–459
https://doi.org/10.1146/annurev.genom.1.1.409 pmid: 11701636
117 van Holde K E, Miller K I, Decker H (2001). Hemocyanins and invertebrate evolution. J Biol Chem, 276(19): 15563–15566
https://doi.org/10.1074/jbc.R100010200 pmid: 11279230
118 Waldron K J, Rutherford J C, Ford D, Robinson N J (2009). Metalloproteins and metal sensing. Nature, 460(7257): 823–830
https://doi.org/10.1038/nature08300 pmid: 19675642
119 Wang J, Sattar A K, Wang C C, Karam J D, Konigsberg W H, Steitz T A (1997). Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell, 89(7): 1087–1099
https://doi.org/10.1016/S0092-8674(00)80296-2 pmid: 9215631
120 Wang X, Ira G, Tercero J A, Holmes A M, Diffley J F, Haber J E (2004). Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol, 24(16): 6891–6899
https://doi.org/10.1128/MCB.24.16.6891-6899.2004 pmid: 15282291
121 Whittaker J W (2012). Non-heme manganese catalase–the 'other' catalase. Arch Biochem Biophys, 525: 111–120. Dowling D P, Di Costanzo L, Gennadios H A, Christianson D W (2008). Evolution of the arginase fold and functional diversity. Cell Mol Life Sci, 65: 2039–2055
122 Wu A J, Penner-Hahn J E, Pecoraro V L (2004). Structural, spectroscopic, and reactivity models for the manganese catalases. Chem Rev, 104(2): 903–938
https://doi.org/10.1021/cr020627v pmid: 14871145
123 Wu C, Yan L, Depre C, Dhar S K, Shen Y T, Sadoshima J, Vatner S F, Vatner D E (2009). Cytochrome c oxidase III as a mechanism for apoptosis in heart failure following myocardial infarction. Am J Physiol Cell Physiol, 297(4): C928–C934
https://doi.org/10.1152/ajpcell.00045.2009 pmid: 19625613
124 Xu W, Liu L Z, Loizidou M, Ahmed M, Charles I G (2002). The role of nitric oxide in cancer. Cell Res, 12(5-6): 311–320
https://doi.org/10.1038/sj.cr.7290133 pmid: 12528889
125 Yang L, Arora K, Beard W A, Wilson S H, Schlick T (2004). Critical role of magnesium ions in DNA polymerase beta’s closing and active site assembly. J Am Chem Soc, 126(27): 8441–8453
https://doi.org/10.1021/ja049412o pmid: 15238001
126 Yoder D W, Hwang J, Penner-Hahn J E (2000). Manganese catalases. Met Ions Biol Syst, 37: 527–557
pmid: 10693144
127 Yoon E J, Park H J, Kim G Y, Cho H M, Choi J H, Park H Y, Jang J Y, Rhim H S, Kang S M (2009). Intracellular amyloid beta interacts with SOD1 and impairs the enzymatic activity of SOD1: implications for the pathogenesis of amyotrophic lateral sclerosis. Exp Mol Med, 41(9): 611–617
https://doi.org/10.3858/emm.2009.41.9.067 pmid: 19478559
128 Yu F, Sugawara T, Nishi T, Liu J, Chan P H (2006). Overexpression of SOD1 in transgenic rats attenuates nuclear translocation of endonuclease G and apoptosis after spinal cord injury. J Neurotrauma, 23(5): 595–603
https://doi.org/10.1089/neu.2006.23.595 pmid: 16689664
129 Zamocky M, Furtmüller P G, Obinger C (2008). Evolution of catalases from bacteria to humans. Antioxid Redox Signal, 10(9): 1527–1548
https://doi.org/10.1089/ars.2008.2046 pmid: 18498226
130 Zhang C (2014). Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell, 5(10): 750–760
https://doi.org/10.1007/s13238-014-0083-7 pmid: 25000876
131 Zhang C, Guo H, Zhang J, Guo G, Schumaker K S, Guo Y (2010). Arabidopsis cockayne syndrome A-like proteins 1A and 1B form a complex with CULLIN4 and damage DNA binding protein 1A and regulate the response to UV irradiation. Plant Cell, 22(7): 2353–2369
https://doi.org/10.1105/tpc.110.073973 pmid: 20622147
132 Zhang C, Liu G, Huang M (2014a). Ribonucleotide reductase metallocofactor: assembly, maintenance and inhibition. Front Biol (Beijing), 9(2): 104–113
https://doi.org/10.1007/s11515-014-1302-6 pmid: 24899886
133 Zhang C, Liu Y (2015). Targeting cancer with sesterterpenoids: the new potential antitumor drugs. J Nat Med, 69(3): 255–266
https://doi.org/10.1007/s11418-015-0911-y pmid: 25894074
134 Zhang C, Zhang F (2015a). Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein Cell, 6(2): 88–100
https://doi.org/10.1007/s13238-014-0119-z pmid: 25476483
135 Zhang C, Zhang F (2015b). The multifunctions of WD40 proteins in genome integrity and cell cycle progression. J Genomics, 3: 40–50
https://doi.org/10.7150/jgen.11015 pmid: 25653723
136 Zhang F, Zhang L, Zhang C (2015). Long noncoding RNAs and tumorigenesis: genetic associations, molecular mechanisms, and therapeutic strategies.Tumour Biol, doi:10. 1007/s13277–015–4445–4
137 Zhang Y, Li H, Zhang C, An X, Liu L, Stubbe J, Huang M (2014b). Conserved electron donor complex Dre2-Tah18 is required for ribonucleotide reductase metallocofactor assembly and DNA synthesis. Proc Natl Acad Sci USA, 111(17): E1695–E1704
https://doi.org/10.1073/pnas.1405204111 pmid: 24733891
138 Zhou L, Sun C B, Liu C, Fan Y, Zhu H Y, Wu X W, Hu L, Li Q P (2015). Upregulation of arginase activity contributes to intracellular ROS production induced by high glucose in H9c2 cells. Int J Clin Exp Pathol, 8(3): 2728–2736
pmid: 26045778
[1] Volodymyr Padalko, Viktoriya Dzyuba, Olena Kozlova, Hanna Sheremet, Olena Protsenko. Zingiber officinale extends Drosophila melanogaster life span in xenobiotic-induced oxidative stress conditions[J]. Front. Biol., 2018, 13(2): 130-136.
[2] Muhammad Naveed, Mohammad Raees, Irfan Liaqat, Mohammad Kashif. Clastogenic ROS and biophotonics in precancerous diagnosis[J]. Front. Biol., 2018, 13(2): 103-122.
[3] Clare H. Scott Chialvo, Thomas Werner. Drosophila, destroying angels, and deathcaps! Oh my! A review of mycotoxin tolerance in the genus Drosophila[J]. Front. Biol., 2018, 13(2): 91-102.
[4] Vadim V. Davydov, Alexander V. Shestopalov, Evgenya R. Grabovetskaya. Physiological significance of oxidative stress and its role in adaptation of the human body to deleterious factors[J]. Front. Biol., 2018, 13(1): 19-27.
[5] Shipeng Shao, Lei Chang, Yingping Hou, Yujie Sun. Illuminating the structure and dynamics of chromatin by fluorescence labeling[J]. Front. Biol., 2017, 12(4): 241-257.
[6] Bijan Keikhaei, Pejman Slehi-fard, Seyed-Ali Nojoumi, Abbas Khosravi. Relationship between serum ferritin and hemoglobin levels determined by cardiac and hepatic T2 MRI in beta-thalassemia intermedia and major patients[J]. Front. Biol., 2017, 12(4): 311-315.
[7] Anatoliy I. Bozhkov, Eugeniy G. Ivanov, Yuliya A. Kuznetsova, Svetlana L. Ohiienko, Anastasiya Yu. Bondar’. Copper-induced liver fibrosis affects the behavior of bone marrow cells in primary culture[J]. Front. Biol., 2017, 12(4): 271-279.
[8] Arooj Arshad, Bisma Ashraf, Iftikhar Ali, Nazia Jamil. Biosynthesis of polyhydroxyalkanoates from styrene by Enterobacter spp. isolated from polluted environment[J]. Front. Biol., 2017, 12(3): 210-218.
[9] Anatoly I. Bozhkov,Natalia G. Menzyanova,Vadim V. Davydov,Natalia I. Kurguzova,Vadim I. Sidorov,Anastasia S. Vasilieva. Liver regeneration is associated with lipid reorganization in membranes of the endoplasmic reticulum[J]. Front. Biol., 2016, 11(5): 396-403.
[10] Arunesh Saras,Laura E. Simon,Harlan J. Brawer,Richard E. Price,Mark A. Tanouye. Drosophila seizure disorders: genetic suppression of seizure susceptibility[J]. Front. Biol., 2016, 11(2): 96-108.
[11] Nina K. Latcheva,Rupa Ghosh,Daniel R. Marenda. The epigenetics of CHARGE syndrome[J]. Front. Biol., 2016, 11(2): 85-95.
[12] Jinwei Suo,Sixue Chen,Qi Zhao,Lei SHI,Shaojun Dai. Fern spore germination in response to environmental factors[J]. Front. Biol., 2015, 10(4): 358-376.
[13] Gahana Advani,Anderly C. Chueh,Ya Chee Lim,Amardeep Dhillon,Heung-Chin Cheng. Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression[J]. Front. Biol., 2015, 10(3): 195-202.
[14] Daniel A. Berg,Ki-Jun Yoon,Brett Will,Alex Y. Xiao,Nam-Shik Kim,Kimberly M. Christian,Hongjun Song,Guo-li Ming. Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis[J]. Front. Biol., 2015, 10(3): 262-271.
[15] Shuxia Wang. Role of upstream stimulatory factor 2 in diabetic nephropathy[J]. Front. Biol., 2015, 10(3): 221-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed