|
|
Physiological significance of oxidative stress and its role in adaptation of the human body to deleterious factors |
Vadim V. Davydov1( ), Alexander V. Shestopalov1, Evgenya R. Grabovetskaya2 |
1. Chair of biochemistry and molecular biology Pirogov Russian National Research Medical University, Moscow, 117997, Russia 2. Chair of biochemistry V.N. Karazin Kharkov National University, Ukraine, Kharkov, 61077, Ukraine |
|
|
Abstract BACKGROUND: Oxidative stress is an extremely widespread condition manifested in an increased rate of free-radical processes and accumulation of reactive oxygen species (ROS) in the tissues. It appears in different physiologic states and pathological processes accompanied by stimulation of the sympathetic adrenal system or tissue hypoxia or under stress. However, until now, there is still no clarity on the issue of the significance of oxidative stress in the development of adaptation processes in the organism. OBJECTIVE: In the present work we will review the most recent finding about physiologic role of oxidative stress and its participation in adaptation of an organism to effect of different adverse factors. METHODS: A systematic literature search was performed using the Pubmed search engine. Studies published over past 18 years, i.e. between 1998 and 2015 were considered for review. Followed keywords were used: “oxidative stress,” “free radical oxidation,” “ROS,” “endogenous aldehydes,” “adaptation.” RESULTS: The article cites arguments supporting the notion that oxidative stress serves as a nonspecific link in the adaptation of the human body to the effects of injurious factors. Oxidative stress exerts regulatory effects by changing the redox state of the cell. Oxidative stress affects on various intracellular proteins containing cysteine ??residues, e.g., enzymes, chaperones, and transcription factors, etc. For this reason, the use of antioxidants for the treatment and prophylaxis of a wide range of diseases is not recommended. CONCLUSION: Further investigation is needed in this field. The most attention should be paid to careful experimental verification aimed at quantitative assessment of the ROS level in tissues under oxidative stress, as well as at the study of possibility of enhancing the catabolism of free radical oxidation carbonyl products in order to prevent tissue damage under oxidative stress.
|
Keywords
oxidative stress
free radical oxidation
ROS
adaptation
endogenous aldehydes
|
Corresponding Author(s):
Vadim V. Davydov
|
Online First Date: 15 March 2018
Issue Date: 26 March 2018
|
|
1 |
Afroze T, Sadi A M, Momen M A, Gu S, Heximer S, Husain M (2007). c-Myb-dependent inositol 1,4,5-trisphosphate receptor type-1 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 27(6): 1305–1311
https://doi.org/10.1161/ATVBAHA.107.142059
pmid: 17363689
|
2 |
Akhtar M, Wright J N (2015). Acyl-Carbon Bond Cleaving Cytochrome P450 Enzymes: CYP17A1, CYP19A1 and CYP51A1. Adv Exp Med Biol, 851: 107–130
https://doi.org/10.1007/978-3-319-16009-2_4
pmid: 26002733
|
3 |
Antelmann H, Helmann J D (2011). Thiol-based redox switches and gene regulation. Antioxid Redox Signal, 14(6): 1049–1063
https://doi.org/10.1089/ars.2010.3400
pmid: 20626317
|
4 |
Basse A L, Isidor M S, Winther S, Skjoldborg N B, Murholm M, Andersen E S, Pedersen S B, Wolfrum C, Quistorff B, Hansen J B (2017). Regulation of glycolysis in brown adipocytes by HIF-1a. Sci Rep, 7(1): 4052
https://doi.org/10.1038/s41598-017-04246-y
pmid: 28642579
|
5 |
Baud O, Greene A E, Li J, Wang H, Volpe J J, Rosenberg P A (2004). Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci, 24(7): 1531–1540
https://doi.org/10.1523/JNEUROSCI.3989-03.2004
pmid: 14973232
|
6 |
Becker L B (2004). New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res, 6 1 (3): 461 –470
|
7 |
Betteridge D J (2000). What is oxidative stress? Metabolism, 49(2 Suppl 1): 3–8
https://doi.org/10.1016/S0026-0495(00)80077-3
pmid: 10693912
|
8 |
Bleier L, Wittig I, Heide H, Steger M, Brandt U, Dröse S (2015). Generator-specific targets of mitochondrial reactive oxygen species. Free Radic Biol Med, 78: 1–10
https://doi.org/10.1016/j.freeradbiomed.2014.10.511
pmid: 25451644
|
9 |
Brandes N, Schmitt S, Jakob U (2009). Thiol-based redox switches in eukaryotic proteins. Antioxid Redox Signal, 11(5): 997–1014
https://doi.org/10.1089/ars.2008.2285
pmid: 18999917
|
10 |
Brown D I, Griendling K K (2015). Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res, 116(3): 531–549
https://doi.org/10.1161/CIRCRESAHA.116.303584
pmid: 25634975
|
11 |
Chandel N S, Tuveson D A (2014). The promise and perils of antioxidants for cancer patients. N Engl J Med, 371(2): 177–178
https://doi.org/10.1056/NEJMcibr1405701
pmid: 25006725
|
12 |
Chen Y, Azad M B, Gibson S B (2009). Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ, 16(7): 1040–1052
https://doi.org/10.1038/cdd.2009.49
pmid: 19407826
|
13 |
Chen Y, Xu H, Liu J, Zhang C, Leutz A, Mo X (2007). The c-Myb functions as a downstream target of PDGF-mediated survival signal in vascular smooth muscle cells. Biochem Biophys Res Commun, 360(2): 433–436
https://doi.org/10.1016/j.bbrc.2007.06.078
pmid: 17599807
|
14 |
Chen Y R, Zweier J L (2014). Cardiac mitochondria and ROS generation. Circ Res, 114(3): 524–537
https://doi.org/10.1161/CIRCRESAHA.114.300559
pmid: 24481843
|
15 |
Cheng Y, Chen G, Hong L, Zhou L, Hu M, Li B, Huang J, Xia L, Li C (2013). How does hypoxia inducible factor-1a participate in enhancing the glycolysis activity in cervical cancer? Ann Diagn Pathol, 17(3): 305–311
https://doi.org/10.1016/j.anndiagpath.2012.12.002
pmid: 23375385
|
16 |
Collins Y, Chouchani E T, James A M, Menger K E, Cochemé H M, Murphy M P (2012). Mitochondrial redox signalling at a glance. J Cell Sci, 125(Pt 4): 801–806
https://doi.org/10.1242/jcs.098475
pmid: 22448036
|
17 |
Corre S, Galibert M D (2005). Upstream stimulating factors: highly versatile stress-responsive transcription factors. Pigment Cell Res, 18(5): 337–348
https://doi.org/10.1111/j.1600-0749.2005.00262.x
pmid: 16162174
|
18 |
Corre S, Galibert M D (2006). [USF as a key regulatory element of gene expression]. Med Sci (Paris), 22(1): 62–67
https://doi.org/10.1051/medsci/200622162
pmid: 16386222
|
19 |
Cox A G, Winterbourn C C, Hampton M B (2009). Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J, 425(2): 313–325
https://doi.org/10.1042/BJ20091541
pmid: 20025614
|
20 |
D’Autréaux B, Toledano M B (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol, 8(10): 813–824
https://doi.org/10.1038/nrm2256
pmid: 17848967
|
21 |
Davydov V V (2014). Age-dependent change in aldo-keto reductases composition in the blood of rats. Am J Biomed Life Sci, 2(1): 1–4
|
22 |
Davydov V V, Bozhkov A I, Grabovetskaya E R (2014). Age-related peculiarities of change in content of free radical oxidation products in muscle during stress. Fron Biol, 9(4): 283–286
|
23 |
Davydov V V, Bozhkov A I, Kulchitskiy O K (2012). Physiological and pathophysiological role of endogenous aldehydes, Saarbrucken: Palmarium Academic Publishing, 240 (inRussian)
|
24 |
Davydov V V, Dobaeva N M, Bozhkov A I (2004). Possible role of alteration of aldehyde’s scavenger enzymes during aging. Exp Gerontol, 39(1): 11–16
https://doi.org/10.1016/j.exger.2003.08.009
pmid: 14724059
|
25 |
Davydov V V, Shvets V N (2001). Lipid peroxidation in the heart of adult and old rats during immobilization stress. Exp Gerontol, 36(7): 1155–1160
https://doi.org/10.1016/S0531-5565(01)00086-9
pmid: 11404056
|
26 |
Davydov V V, Shvets V N (2003). Age-dependent differences in the stimulation of lipid peroxidation in the heart of rats during immobilization stress. Exp Gerontol, 38(6): 693–698
https://doi.org/10.1016/S0531-5565(03)00063-9
pmid: 12814805
|
27 |
Dröge W (2002). Free radicals in the physiological control of cell function. Physiol Rev, 82(1): 47–95
https://doi.org/10.1152/physrev.00018.2001
pmid: 11773609
|
28 |
Dröse S, Brandt U, Wittig I (2014). Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim Biophys Acta, 1844(8): 1344–1354
https://doi.org/10.1016/j.bbapap.2014.02.006
pmid: 24561273
|
29 |
Farrell K A, Withers S B, Holt C M (2011). C-Myb function in the vessel wall. Front Biosci (Elite Ed), 3: 968–977
pmid: 21622105
|
30 |
Finkel T (2011). Signal transduction by reactive oxygen species. J Cell Biol, 194(1): 7–15
https://doi.org/10.1083/jcb.201102095
pmid: 21746850
|
31 |
Fridovich I (1999). Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci, 893(1 OXIDATIVE/ENE): 13–18
https://doi.org/10.1111/j.1749-6632.1999.tb07814.x
pmid: 10672226
|
32 |
Giles G I (2006). The redox regulation of thiol dependent signaling pathways in cancer. Curr Pharm Des, 12(34): 4427–4443
https://doi.org/10.2174/138161206779010549
pmid: 17168752
|
33 |
Groitl B, Jakob U (2014). Thiol-based redox switches. Biochim Biophys Acta, 1844(8): 1335–1343
https://doi.org/10.1016/j.bbapap.2014.03.007
pmid: 24657586
|
34 |
Halliwell B (2009). The wanderings of a free radical. Free Radic Biol Med, 46(5): 531–542
https://doi.org/10.1016/j.freeradbiomed.2008.11.008
pmid: 19111608
|
35 |
Halliwell B (2012). Free radicals and antioxidants: updating a personal view. Nutr Rev, 70(5): 257–265
https://doi.org/10.1111/j.1753-4887.2012.00476.x
pmid: 22537212
|
36 |
Harman D (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol, 11(3): 298–300
https://doi.org/10.1093/geronj/11.3.298
pmid: 13332224
|
37 |
Hinerfeld D, Traini M D, Weinberger R P, Cochran B, Doctrow S R, Harry J, Melov S (2004). Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J Neurochem, 88(3): 657–667
https://doi.org/10.1046/j.1471-4159.2003.02195.x
pmid: 14720215
|
38 |
Hirano F, Tanaka H, Hirano Y, Hiramoto M, Handa H, Makino I, Scheidereit C (1998). Functional interference of Sp1 and NF-kappaB through the same DNA binding site. Mol Cell Biol, 18(3): 1266–1274
https://doi.org/10.1128/MCB.18.3.1266
pmid: 9488441
|
39 |
Imlay J A (2008). Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem, 77(1): 755–776
https://doi.org/10.1146/annurev.biochem.77.061606.161055
pmid: 18173371
|
40 |
Jomova K, Valko M (2011). Advances in metal-induced oxidative stress and human disease. Toxicol, 283 (2 –3): 65–87
|
41 |
Kuntsevich N V (2010). The role of nuclear factor Nf-b in the rejection of transplatant. Vestnik transplantology and artifical organs, 1: 72–77 (in Russian)
|
42 |
Leonarduzzi G, Sottero B, Poli G (2010). Targeting tissue oxidative damage by means of cell signaling modulators: the antioxidant concept revisited. Pharmacol Ther, 128(2): 336–374
https://doi.org/10.1016/j.pharmthera.2010.08.003
pmid: 20732353
|
43 |
Leonarduzzi G, Sottero B, Testa G, Biasi F, Poli G (2011). New insights into redox-modulated cell signaling. Curr Pharm Des, 17(36): 3994–4006
https://doi.org/10.2174/138161211798764906
pmid: 22188450
|
44 |
Ma Q (2013). Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol, 53(1): 401–426
https://doi.org/10.1146/annurev-pharmtox-011112-140320
pmid: 23294312
|
45 |
Ma Q, and the MaQ (2008). Xenobiotic-activated receptors: from transcription to drug metabolism to disease. Chem Res Toxicol, 21(9): 1651–1671
https://doi.org/10.1021/tx800156s
pmid: 18707139
|
46 |
Marín-Hernández A, Gallardo-Pérez J C, Ralph S J, Rodríguez-Enríquez S, Moreno-Sánchez R (2009). HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem, 9(9): 1084–1101
https://doi.org/10.2174/138955709788922610
pmid: 19689405
|
47 |
Meerson F Z (1984). Pathogenesis and prevention of stress and ischemic injures of heart. Moscow. Medicina (B Aires), 270 (in Russian)
|
48 |
Menshikova E B, Lankin V Z, Zenkov N K (2006). The oxidative stress. Antioxidants and prooxidants. Moscow: Slovo, 556 (in Russian)
|
49 |
Miki H, Funato Y (2012). Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. J Biochem, 151(3): 255–261
https://doi.org/10.1093/jb/mvs006
pmid: 22287686
|
50 |
Montuschi P, Barnes P, Roberts L J 2nd (2007). Insights into oxidative stress: the isoprostanes. Curr Med Chem, 14(6): 703–717
https://doi.org/10.2174/092986707780059607
pmid: 17346157
|
51 |
Morigasaki S, Shimada K, Ikner A, Yanagida M, Shiozaki K (2008). Glycolytic enzyme GAPDH promotes peroxide stress signaling through multistep phosphorelay to a MAPK cascade. Mol Cell, 30(1): 108–113
https://doi.org/10.1016/j.molcel.2008.01.017
pmid: 18406331
|
52 |
Muller F L, Lustgarten M S, Jang Y, Richardson A, Van Remmen H (2007). Trends in oxidative aging theories. Free Radic Biol Med, 43(4): 477–503
https://doi.org/10.1016/j.freeradbiomed.2007.03.034
pmid: 17640558
|
53 |
Myung S K, Ju W, Cho B, Oh S W, Park S M, Koo B K, Park B J, and the Korean Meta-Analysis Study Group (2013). Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ, 346(jan18 1): f10
https://doi.org/10.1136/bmj.f10
pmid: 23335472
|
54 |
Nayanatara A K, Nagaraja H S, Anupama B K (2005). The effect of repeated swimming stress on organ weights and lipid peroxidation in rats. Thai J Physiol Sci, 18(1): 3–9
|
55 |
Nietzel T, Mostertz J, Hochgräfe F, Schwarzländer M (2017). Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches. Mitochondrion, 33: 72–83
https://doi.org/10.1016/j.mito.2016.07.010
pmid: 27456428
|
56 |
O’Brein PJO, Siraki A G, Shangari N (2005). Aldehyde sources metabolism, molecular toxicity mechanisms,and possible effects on human health. Critical Reviews inToxicology, 35: 609–662
|
57 |
Piwowar A (2010). [Advanced oxidation protein products. Part I. Mechanism of the formation, characteristics and property]. Pol Merkur Lekarski, 28(164): 166–169
pmid: 20369749
|
58 |
Plotnikov E Y, Silachev D N, Jankauskas S S, Rokitskaya T I, Chupyrkina A A, Pevzner I B, Zorova L D, Isaev N K, Antonenko Y N, Skulachev V P, Zorov D B (2012). Mild uncoupling of respiration and phosphorylation as a mechanism providing nephro- and neuroprotective effects of penetrating cations of the SkQ family. Biochemistry (Mosc), 77(9): 1029–1037
https://doi.org/10.1134/S0006297912090106
pmid: 23157263
|
59 |
Poyton R O, Ball K A, Castello P R (2009). Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab, 20(7): 332–340
https://doi.org/10.1016/j.tem.2009.04.001
pmid: 19733481
|
60 |
Reczek C R, Chandel N S (2015). ROS-dependent signal transduction. Curr Opin Cell Biol, 33: 8–13
https://doi.org/10.1016/j.ceb.2014.09.010
pmid: 25305438
|
61 |
Roginsky V A, Tashlitsky V N, Skulachev V P (2009). Chain-breaking antioxidant activity of reduced forms of mitochondria-targeted quinones, a novel type of geroprotectors. Aging (Albany NY), 1(5): 481–489
https://doi.org/10.18632/aging.100049
pmid: 20195487
|
62 |
Russell E G, Cotter T G (2015). New Insight into the Role of Reactive Oxygen Species (ROS) in Cellular Signal-Transduction Processes, 319: 221 –254
|
63 |
Sahin E, Gumuslu S (2007). Immobilization stress in rat tissues: alteration of protein oxidation, lipid peroxidation and antioxidant defense system. Comp Biochem Physio. C. Toxicol Pharmacol, 144(4): 324–347
|
64 |
Schieber M, Chandel N S (2014). ROS function in redox signaling and oxidative stress. Curr Biol, 24(10): R453–R462
https://doi.org/10.1016/j.cub.2014.03.034
pmid: 24845678
|
65 |
Sena L A, Chandel N S (2012). Physiological roles of mitochondrial reactive oxygen species. Mol Cell, 48(2): 158–167
https://doi.org/10.1016/j.molcel.2012.09.025
pmid: 23102266
|
66 |
Skulachev V P (2007). A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects. Biochemistry (Mosc), 72(12): 1385–1396
https://doi.org/10.1134/S0006297907120139
pmid: 18205623
|
67 |
Skulachev V P, Anisimov V N, Antonenko Y N, Bakeeva L E, Chernyak B V, Erichev V P, Filenko O F, Kalinina N I, Kapelko V I, Kolosova N G, Kopnin B P, Korshunova G A, Lichinitser M R, Obukhova L A, Pasyukova E G, Pisarenko O I, Roginsky V A, Ruuge E K, Senin I I, Severina I I, Skulachev M V, Spivak I M, Tashlitsky V N, Tkachuk V A, Vyssokikh M Y, Yaguzhinsky L S, Zorov D B (2009). An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta, 1787(5): 437–461
https://doi.org/10.1016/j.bbabio.2008.12.008
pmid: 19159610
|
68 |
Steinhubl S R (2008). Why have antioxidants failed in clinical trials? Am J Cardiol, 101(10 10A): 14D–19D
https://doi.org/10.1016/j.amjcard.2008.02.003
pmid: 18474268
|
69 |
Taverne Y J, Bogers A J, Duncker D J, Merkus D (2013). Reactive oxygen species and the cardiovascular system. Oxid Med Cell Longev, 2013: 862423
https://doi.org/10.1155/2013/862423
pmid: 23738043
|
70 |
Tell G, Quadrifoglio F, Tiribelli C, Kelley M R (2009). The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal, 11(3): 601–620
https://doi.org/10.1089/ars.2008.2194
pmid: 18976116
|
71 |
Uchida K (2000). Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med, 28(12): 1685–1696
https://doi.org/10.1016/S0891-5849(00)00226-4
pmid: 10946210
|
72 |
Uchida K (2003). 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res, 42(4): 318–343
https://doi.org/10.1016/S0163-7827(03)00014-6
pmid: 12689622
|
73 |
Valko M, Izakovic M, Mazur M (2004). Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem, 266 (1 – 2): 37 –56
|
74 |
Valko M, Leibfritz D, Moncol J, Cronin M T, Mazur M, Telser J (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 39(1): 44–84
https://doi.org/10.1016/j.biocel.2006.07.001
pmid: 16978905
|
75 |
Vivekananthan D P, Penn M S, Sapp S K, Hsu A, Topol E J (2003). Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet, 361(9374): 2017–2023
https://doi.org/10.1016/S0140-6736(03)13637-9
pmid: 12814711
|
76 |
Wang G, Kawakami K, Gick G (2007). Regulation of Na,K-ATPase alpha1 subunit gene transcription in response to low K(+): role of CRE/ATF- and GC box-binding proteins. J Cell Physiol, 213(1): 167–176
https://doi.org/10.1002/jcp.21107
pmid: 17477345
|
77 |
Welch K D, Davis T Z, Van Eden M E, Aust S D (2002). Deleterious iron-mediated oxidation of biomolecules. Free Radic Biol Med, 32(7): 577–583
https://doi.org/10.1016/S0891-5849(02)00760-8
pmid: 11909692
|
78 |
Wilson L A, Yamamoto H, Singh G (2004). Role of the transcription factor Ets-1 in cisplatin resistance. Mol Cancer Ther, 3(7): 823–832
pmid: 15252143
|
79 |
Winterbourn C C (2008). Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol, 4(5): 278–286
https://doi.org/10.1038/nchembio.85
pmid: 18421291
|
80 |
Winterbourn C C (2013). The biological chemistry of hydrogen peroxide. Methods Enzymol, 528: 3–25
https://doi.org/10.1016/B978-0-12-405881-1.00001-X
pmid: 23849856
|
81 |
Ye Y, Li J, Yuan Z (2013). Effect of antioxidant vitamin supplementation on cardiovascular outcomes: a meta-analysis of randomized controlled trials. PLoS One, 8(2): e56803
https://doi.org/10.1371/journal.pone.0056803
pmid: 23437244
|
82 |
Yuksel S, Asma D, Yesilada O (2008). Antioxidative and metabolic responses to extended cold exposure in rats. Acta Biol Hung, 59(1): 57–66
https://doi.org/10.1556/ABiol.59.2008.1.5
pmid: 18401945
|
83 |
Zabłocka A, Janusz M (2008). [The two faces of reactive oxygen species]. Postepy Hig Med Dosw (Online), 62: 118–124
pmid: 18388851
|
84 |
Zhang D X, Gutterman D D (2007). Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol, 292(5): H2023–H2031
https://doi.org/10.1152/ajpheart.01283.2006
pmid: 17237240
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|