Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2018, Vol. 13 Issue (1) : 19-27    https://doi.org/10.1007/s11515-018-1482-6
REVIEW
Physiological significance of oxidative stress and its role in adaptation of the human body to deleterious factors
Vadim V. Davydov1(), Alexander V. Shestopalov1, Evgenya R. Grabovetskaya2
1. Chair of biochemistry and molecular biology Pirogov Russian National Research Medical University, Moscow, 117997, Russia
2. Chair of biochemistry V.N. Karazin Kharkov National University, Ukraine, Kharkov, 61077, Ukraine
 Download: PDF(256 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Oxidative stress is an extremely widespread condition manifested in an increased rate of free-radical processes and accumulation of reactive oxygen species (ROS) in the tissues. It appears in different physiologic states and pathological processes accompanied by stimulation of the sympathetic adrenal system or tissue hypoxia or under stress. However, until now, there is still no clarity on the issue of the significance of oxidative stress in the development of adaptation processes in the organism.

OBJECTIVE: In the present work we will review the most recent finding about physiologic role of oxidative stress and its participation in adaptation of an organism to effect of different adverse factors.

METHODS: A systematic literature search was performed using the Pubmed search engine. Studies published over past 18 years, i.e. between 1998 and 2015 were considered for review. Followed keywords were used: “oxidative stress,” “free radical oxidation,” “ROS,” “endogenous aldehydes,” “adaptation.”

RESULTS: The article cites arguments supporting the notion that oxidative stress serves as a nonspecific link in the adaptation of the human body to the effects of injurious factors. Oxidative stress exerts regulatory effects by changing the redox state of the cell. Oxidative stress affects on various intracellular proteins containing cysteine ??residues, e.g., enzymes, chaperones, and transcription factors, etc. For this reason, the use of antioxidants for the treatment and prophylaxis of a wide range of diseases is not recommended.

CONCLUSION: Further investigation is needed in this field. The most attention should be paid to careful experimental verification aimed at quantitative assessment of the ROS level in tissues under oxidative stress, as well as at the study of possibility of enhancing the catabolism of free radical oxidation carbonyl products in order to prevent tissue damage under oxidative stress.

Keywords oxidative stress      free radical oxidation      ROS      adaptation      endogenous aldehydes     
Corresponding Author(s): Vadim V. Davydov   
Online First Date: 15 March 2018    Issue Date: 26 March 2018
 Cite this article:   
Vadim V. Davydov,Alexander V. Shestopalov,Evgenya R. Grabovetskaya. Physiological significance of oxidative stress and its role in adaptation of the human body to deleterious factors[J]. Front. Biol., 2018, 13(1): 19-27.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-018-1482-6
https://academic.hep.com.cn/fib/EN/Y2018/V13/I1/19
Fig.1  The mechanism of oxidation of cysteine ??residues under the influence of ROS (Chandel and Tuveson, 2014). Red: reduction.
Fig.2  Glutathionylation and S-alkylation of intracellular proteins. GSH: reduced glutathione; GRX: glutaredoxin; Red: reduction.
1 Afroze T, Sadi A M, Momen M A, Gu S, Heximer S, Husain M (2007). c-Myb-dependent inositol 1,4,5-trisphosphate receptor type-1 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 27(6): 1305–1311
https://doi.org/10.1161/ATVBAHA.107.142059 pmid: 17363689
2 Akhtar M, Wright J N (2015). Acyl-Carbon Bond Cleaving Cytochrome P450 Enzymes: CYP17A1, CYP19A1 and CYP51A1. Adv Exp Med Biol, 851: 107–130
https://doi.org/10.1007/978-3-319-16009-2_4 pmid: 26002733
3 Antelmann H, Helmann J D (2011). Thiol-based redox switches and gene regulation. Antioxid Redox Signal, 14(6): 1049–1063
https://doi.org/10.1089/ars.2010.3400 pmid: 20626317
4 Basse A L, Isidor M S, Winther S, Skjoldborg N B, Murholm M, Andersen E S, Pedersen S B, Wolfrum C, Quistorff B, Hansen J B (2017). Regulation of glycolysis in brown adipocytes by HIF-1a. Sci Rep, 7(1): 4052
https://doi.org/10.1038/s41598-017-04246-y pmid: 28642579
5 Baud O, Greene A E, Li J, Wang H, Volpe J J, Rosenberg P A (2004). Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci, 24(7): 1531–1540
https://doi.org/10.1523/JNEUROSCI.3989-03.2004 pmid: 14973232
6 Becker L B (2004). New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res, 6 1 (3): 461 –470
7 Betteridge D J (2000). What is oxidative stress? Metabolism, 49(2 Suppl 1): 3–8
https://doi.org/10.1016/S0026-0495(00)80077-3 pmid: 10693912
8 Bleier L, Wittig I, Heide H, Steger M, Brandt U, Dröse S (2015). Generator-specific targets of mitochondrial reactive oxygen species. Free Radic Biol Med, 78: 1–10
https://doi.org/10.1016/j.freeradbiomed.2014.10.511 pmid: 25451644
9 Brandes N, Schmitt S, Jakob U (2009). Thiol-based redox switches in eukaryotic proteins. Antioxid Redox Signal, 11(5): 997–1014
https://doi.org/10.1089/ars.2008.2285 pmid: 18999917
10 Brown D I, Griendling K K (2015). Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res, 116(3): 531–549
https://doi.org/10.1161/CIRCRESAHA.116.303584 pmid: 25634975
11 Chandel N S, Tuveson D A (2014). The promise and perils of antioxidants for cancer patients. N Engl J Med, 371(2): 177–178
https://doi.org/10.1056/NEJMcibr1405701 pmid: 25006725
12 Chen Y, Azad M B, Gibson S B (2009). Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ, 16(7): 1040–1052
https://doi.org/10.1038/cdd.2009.49 pmid: 19407826
13 Chen Y, Xu H, Liu J, Zhang C, Leutz A, Mo X (2007). The c-Myb functions as a downstream target of PDGF-mediated survival signal in vascular smooth muscle cells. Biochem Biophys Res Commun, 360(2): 433–436
https://doi.org/10.1016/j.bbrc.2007.06.078 pmid: 17599807
14 Chen Y R, Zweier J L (2014). Cardiac mitochondria and ROS generation. Circ Res, 114(3): 524–537
https://doi.org/10.1161/CIRCRESAHA.114.300559 pmid: 24481843
15 Cheng Y, Chen G, Hong L, Zhou L, Hu M, Li B, Huang J, Xia L, Li C (2013). How does hypoxia inducible factor-1a participate in enhancing the glycolysis activity in cervical cancer? Ann Diagn Pathol, 17(3): 305–311
https://doi.org/10.1016/j.anndiagpath.2012.12.002 pmid: 23375385
16 Collins Y, Chouchani E T, James A M, Menger K E, Cochemé H M, Murphy M P (2012). Mitochondrial redox signalling at a glance. J Cell Sci, 125(Pt 4): 801–806
https://doi.org/10.1242/jcs.098475 pmid: 22448036
17 Corre S, Galibert M D (2005). Upstream stimulating factors: highly versatile stress-responsive transcription factors. Pigment Cell Res, 18(5): 337–348
https://doi.org/10.1111/j.1600-0749.2005.00262.x pmid: 16162174
18 Corre S, Galibert M D (2006). [USF as a key regulatory element of gene expression]. Med Sci (Paris), 22(1): 62–67
https://doi.org/10.1051/medsci/200622162 pmid: 16386222
19 Cox A G, Winterbourn C C, Hampton M B (2009). Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J, 425(2): 313–325
https://doi.org/10.1042/BJ20091541 pmid: 20025614
20 D’Autréaux B, Toledano M B (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol, 8(10): 813–824
https://doi.org/10.1038/nrm2256 pmid: 17848967
21 Davydov V V (2014). Age-dependent change in aldo-keto reductases composition in the blood of rats. Am J Biomed Life Sci, 2(1): 1–4
22 Davydov V V, Bozhkov A I, Grabovetskaya E R (2014). Age-related peculiarities of change in content of free radical oxidation products in muscle during stress. Fron Biol, 9(4): 283–286
23 Davydov V V, Bozhkov A I, Kulchitskiy O K (2012). Physiological and pathophysiological role of endogenous aldehydes, Saarbrucken: Palmarium Academic Publishing, 240 (inRussian)
24 Davydov V V, Dobaeva N M, Bozhkov A I (2004). Possible role of alteration of aldehyde’s scavenger enzymes during aging. Exp Gerontol, 39(1): 11–16
https://doi.org/10.1016/j.exger.2003.08.009 pmid: 14724059
25 Davydov V V, Shvets V N (2001). Lipid peroxidation in the heart of adult and old rats during immobilization stress. Exp Gerontol, 36(7): 1155–1160
https://doi.org/10.1016/S0531-5565(01)00086-9 pmid: 11404056
26 Davydov V V, Shvets V N (2003). Age-dependent differences in the stimulation of lipid peroxidation in the heart of rats during immobilization stress. Exp Gerontol, 38(6): 693–698
https://doi.org/10.1016/S0531-5565(03)00063-9 pmid: 12814805
27 Dröge W (2002). Free radicals in the physiological control of cell function. Physiol Rev, 82(1): 47–95
https://doi.org/10.1152/physrev.00018.2001 pmid: 11773609
28 Dröse S, Brandt U, Wittig I (2014). Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation. Biochim Biophys Acta, 1844(8): 1344–1354
https://doi.org/10.1016/j.bbapap.2014.02.006 pmid: 24561273
29 Farrell K A, Withers S B, Holt C M (2011). C-Myb function in the vessel wall. Front Biosci (Elite Ed), 3: 968–977
pmid: 21622105
30 Finkel T (2011). Signal transduction by reactive oxygen species. J Cell Biol, 194(1): 7–15
https://doi.org/10.1083/jcb.201102095 pmid: 21746850
31 Fridovich I (1999). Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci, 893(1 OXIDATIVE/ENE): 13–18
https://doi.org/10.1111/j.1749-6632.1999.tb07814.x pmid: 10672226
32 Giles G I (2006). The redox regulation of thiol dependent signaling pathways in cancer. Curr Pharm Des, 12(34): 4427–4443
https://doi.org/10.2174/138161206779010549 pmid: 17168752
33 Groitl B, Jakob U (2014). Thiol-based redox switches. Biochim Biophys Acta, 1844(8): 1335–1343
https://doi.org/10.1016/j.bbapap.2014.03.007 pmid: 24657586
34 Halliwell B (2009). The wanderings of a free radical. Free Radic Biol Med, 46(5): 531–542
https://doi.org/10.1016/j.freeradbiomed.2008.11.008 pmid: 19111608
35 Halliwell B (2012). Free radicals and antioxidants: updating a personal view. Nutr Rev, 70(5): 257–265
https://doi.org/10.1111/j.1753-4887.2012.00476.x pmid: 22537212
36 Harman D (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol, 11(3): 298–300
https://doi.org/10.1093/geronj/11.3.298 pmid: 13332224
37 Hinerfeld D, Traini M D, Weinberger R P, Cochran B, Doctrow S R, Harry J, Melov S (2004). Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J Neurochem, 88(3): 657–667
https://doi.org/10.1046/j.1471-4159.2003.02195.x pmid: 14720215
38 Hirano F, Tanaka H, Hirano Y, Hiramoto M, Handa H, Makino I, Scheidereit C (1998). Functional interference of Sp1 and NF-kappaB through the same DNA binding site. Mol Cell Biol, 18(3): 1266–1274
https://doi.org/10.1128/MCB.18.3.1266 pmid: 9488441
39 Imlay J A (2008). Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem, 77(1): 755–776
https://doi.org/10.1146/annurev.biochem.77.061606.161055 pmid: 18173371
40 Jomova K, Valko M (2011). Advances in metal-induced oxidative stress and human disease. Toxicol, 283 (2 –3): 65–87
41 Kuntsevich N V (2010). The role of nuclear factor Nf-b in the rejection of transplatant. Vestnik transplantology and artifical organs, 1: 72–77 (in Russian)
42 Leonarduzzi G, Sottero B, Poli G (2010). Targeting tissue oxidative damage by means of cell signaling modulators: the antioxidant concept revisited. Pharmacol Ther, 128(2): 336–374
https://doi.org/10.1016/j.pharmthera.2010.08.003 pmid: 20732353
43 Leonarduzzi G, Sottero B, Testa G, Biasi F, Poli G (2011). New insights into redox-modulated cell signaling. Curr Pharm Des, 17(36): 3994–4006
https://doi.org/10.2174/138161211798764906 pmid: 22188450
44 Ma Q (2013). Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol, 53(1): 401–426
https://doi.org/10.1146/annurev-pharmtox-011112-140320 pmid: 23294312
45 Ma Q, and the MaQ (2008). Xenobiotic-activated receptors: from transcription to drug metabolism to disease. Chem Res Toxicol, 21(9): 1651–1671
https://doi.org/10.1021/tx800156s pmid: 18707139
46 Marín-Hernández A, Gallardo-Pérez J C, Ralph S J, Rodríguez-Enríquez S, Moreno-Sánchez R (2009). HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem, 9(9): 1084–1101
https://doi.org/10.2174/138955709788922610 pmid: 19689405
47 Meerson F Z (1984). Pathogenesis and prevention of stress and ischemic injures of heart. Moscow. Medicina (B Aires), 270 (in Russian)
48 Menshikova E B, Lankin V Z, Zenkov N K (2006). The oxidative stress. Antioxidants and prooxidants. Moscow: Slovo, 556 (in Russian)
49 Miki H, Funato Y (2012). Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. J Biochem, 151(3): 255–261
https://doi.org/10.1093/jb/mvs006 pmid: 22287686
50 Montuschi P, Barnes P, Roberts L J 2nd (2007). Insights into oxidative stress: the isoprostanes. Curr Med Chem, 14(6): 703–717
https://doi.org/10.2174/092986707780059607 pmid: 17346157
51 Morigasaki S, Shimada K, Ikner A, Yanagida M, Shiozaki K (2008). Glycolytic enzyme GAPDH promotes peroxide stress signaling through multistep phosphorelay to a MAPK cascade. Mol Cell, 30(1): 108–113
https://doi.org/10.1016/j.molcel.2008.01.017 pmid: 18406331
52 Muller F L, Lustgarten M S, Jang Y, Richardson A, Van Remmen H (2007). Trends in oxidative aging theories. Free Radic Biol Med, 43(4): 477–503
https://doi.org/10.1016/j.freeradbiomed.2007.03.034 pmid: 17640558
53 Myung S K, Ju W, Cho B, Oh S W, Park S M, Koo B K, Park B J, and the Korean Meta-Analysis Study Group (2013). Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ, 346(jan18 1): f10
https://doi.org/10.1136/bmj.f10 pmid: 23335472
54 Nayanatara A K, Nagaraja H S, Anupama B K (2005). The effect of repeated swimming stress on organ weights and lipid peroxidation in rats. Thai J Physiol Sci, 18(1): 3–9
55 Nietzel T, Mostertz J, Hochgräfe F, Schwarzländer M (2017). Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches. Mitochondrion, 33: 72–83
https://doi.org/10.1016/j.mito.2016.07.010 pmid: 27456428
56 O’Brein PJO, Siraki A G, Shangari N (2005). Aldehyde sources metabolism, molecular toxicity mechanisms,and possible effects on human health. Critical Reviews inToxicology, 35: 609–662
57 Piwowar A (2010). [Advanced oxidation protein products. Part I. Mechanism of the formation, characteristics and property]. Pol Merkur Lekarski, 28(164): 166–169
pmid: 20369749
58 Plotnikov E Y, Silachev D N, Jankauskas S S, Rokitskaya T I, Chupyrkina A A, Pevzner I B, Zorova L D, Isaev N K, Antonenko Y N, Skulachev V P, Zorov D B (2012). Mild uncoupling of respiration and phosphorylation as a mechanism providing nephro- and neuroprotective effects of penetrating cations of the SkQ family. Biochemistry (Mosc), 77(9): 1029–1037
https://doi.org/10.1134/S0006297912090106 pmid: 23157263
59 Poyton R O, Ball K A, Castello P R (2009). Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab, 20(7): 332–340
https://doi.org/10.1016/j.tem.2009.04.001 pmid: 19733481
60 Reczek C R, Chandel N S (2015). ROS-dependent signal transduction. Curr Opin Cell Biol, 33: 8–13
https://doi.org/10.1016/j.ceb.2014.09.010 pmid: 25305438
61 Roginsky V A, Tashlitsky V N, Skulachev V P (2009). Chain-breaking antioxidant activity of reduced forms of mitochondria-targeted quinones, a novel type of geroprotectors. Aging (Albany NY), 1(5): 481–489
https://doi.org/10.18632/aging.100049 pmid: 20195487
62 Russell E G, Cotter T G (2015). New Insight into the Role of Reactive Oxygen Species (ROS) in Cellular Signal-Transduction Processes, 319: 221 –254
63 Sahin E, Gumuslu S (2007). Immobilization stress in rat tissues: alteration of protein oxidation, lipid peroxidation and antioxidant defense system. Comp Biochem Physio. C. Toxicol Pharmacol, 144(4): 324–347
64 Schieber M, Chandel N S (2014). ROS function in redox signaling and oxidative stress. Curr Biol, 24(10): R453–R462
https://doi.org/10.1016/j.cub.2014.03.034 pmid: 24845678
65 Sena L A, Chandel N S (2012). Physiological roles of mitochondrial reactive oxygen species. Mol Cell, 48(2): 158–167
https://doi.org/10.1016/j.molcel.2012.09.025 pmid: 23102266
66 Skulachev V P (2007). A biochemical approach to the problem of aging: “megaproject” on membrane-penetrating ions. The first results and prospects. Biochemistry (Mosc), 72(12): 1385–1396
https://doi.org/10.1134/S0006297907120139 pmid: 18205623
67 Skulachev V P, Anisimov V N, Antonenko Y N, Bakeeva L E, Chernyak B V, Erichev V P, Filenko O F, Kalinina N I, Kapelko V I, Kolosova N G, Kopnin B P, Korshunova G A, Lichinitser M R, Obukhova L A, Pasyukova E G, Pisarenko O I, Roginsky V A, Ruuge E K, Senin I I, Severina I I, Skulachev M V, Spivak I M, Tashlitsky V N, Tkachuk V A, Vyssokikh M Y, Yaguzhinsky L S, Zorov D B (2009). An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta, 1787(5): 437–461
https://doi.org/10.1016/j.bbabio.2008.12.008 pmid: 19159610
68 Steinhubl S R (2008). Why have antioxidants failed in clinical trials? Am J Cardiol, 101(10 10A): 14D–19D
https://doi.org/10.1016/j.amjcard.2008.02.003 pmid: 18474268
69 Taverne Y J, Bogers A J, Duncker D J, Merkus D (2013). Reactive oxygen species and the cardiovascular system. Oxid Med Cell Longev, 2013: 862423
https://doi.org/10.1155/2013/862423 pmid: 23738043
70 Tell G, Quadrifoglio F, Tiribelli C, Kelley M R (2009). The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal, 11(3): 601–620
https://doi.org/10.1089/ars.2008.2194 pmid: 18976116
71 Uchida K (2000). Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med, 28(12): 1685–1696
https://doi.org/10.1016/S0891-5849(00)00226-4 pmid: 10946210
72 Uchida K (2003). 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res, 42(4): 318–343
https://doi.org/10.1016/S0163-7827(03)00014-6 pmid: 12689622
73 Valko M, Izakovic M, Mazur M (2004). Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem, 266 (1 – 2): 37 –56
74 Valko M, Leibfritz D, Moncol J, Cronin M T, Mazur M, Telser J (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 39(1): 44–84
https://doi.org/10.1016/j.biocel.2006.07.001 pmid: 16978905
75 Vivekananthan D P, Penn M S, Sapp S K, Hsu A, Topol E J (2003). Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet, 361(9374): 2017–2023
https://doi.org/10.1016/S0140-6736(03)13637-9 pmid: 12814711
76 Wang G, Kawakami K, Gick G (2007). Regulation of Na,K-ATPase alpha1 subunit gene transcription in response to low K(+): role of CRE/ATF- and GC box-binding proteins. J Cell Physiol, 213(1): 167–176
https://doi.org/10.1002/jcp.21107 pmid: 17477345
77 Welch K D, Davis T Z, Van Eden M E, Aust S D (2002). Deleterious iron-mediated oxidation of biomolecules. Free Radic Biol Med, 32(7): 577–583
https://doi.org/10.1016/S0891-5849(02)00760-8 pmid: 11909692
78 Wilson L A, Yamamoto H, Singh G (2004). Role of the transcription factor Ets-1 in cisplatin resistance. Mol Cancer Ther, 3(7): 823–832
pmid: 15252143
79 Winterbourn C C (2008). Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol, 4(5): 278–286
https://doi.org/10.1038/nchembio.85 pmid: 18421291
80 Winterbourn C C (2013). The biological chemistry of hydrogen peroxide. Methods Enzymol, 528: 3–25
https://doi.org/10.1016/B978-0-12-405881-1.00001-X pmid: 23849856
81 Ye Y, Li J, Yuan Z (2013). Effect of antioxidant vitamin supplementation on cardiovascular outcomes: a meta-analysis of randomized controlled trials. PLoS One, 8(2): e56803
https://doi.org/10.1371/journal.pone.0056803 pmid: 23437244
82 Yuksel S, Asma D, Yesilada O (2008). Antioxidative and metabolic responses to extended cold exposure in rats. Acta Biol Hung, 59(1): 57–66
https://doi.org/10.1556/ABiol.59.2008.1.5 pmid: 18401945
83 Zabłocka A, Janusz M (2008). [The two faces of reactive oxygen species]. Postepy Hig Med Dosw (Online), 62: 118–124
pmid: 18388851
84 Zhang D X, Gutterman D D (2007). Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol, 292(5): H2023–H2031
https://doi.org/10.1152/ajpheart.01283.2006 pmid: 17237240
[1] Hanane Gourine, Hadria Grar, Wafaa Dib, Nabila Mehedi, Ahmed Boualga, Djamel Saidi, Omar Kheroua. Effect of a normal protein diet on oxidative stress and organ damage in malnourished rats[J]. Front. Biol., 2018, 13(5): 366-375.
[2] Volodymyr Padalko, Viktoriya Dzyuba, Olena Kozlova, Hanna Sheremet, Olena Protsenko. Zingiber officinale extends Drosophila melanogaster life span in xenobiotic-induced oxidative stress conditions[J]. Front. Biol., 2018, 13(2): 130-136.
[3] Muhammad Naveed, Mohammad Raees, Irfan Liaqat, Mohammad Kashif. Clastogenic ROS and biophotonics in precancerous diagnosis[J]. Front. Biol., 2018, 13(2): 103-122.
[4] Clare H. Scott Chialvo, Thomas Werner. Drosophila, destroying angels, and deathcaps! Oh my! A review of mycotoxin tolerance in the genus Drosophila[J]. Front. Biol., 2018, 13(2): 91-102.
[5] Bharti Chaudhary, Sonam Agarwal, Renu Bist. Invulnerability of bromelain against oxidative degeneration and cholinergic deficits imposed by dichlorvos in mice brains[J]. Front. Biol., 2018, 13(1): 56-62.
[6] Shipeng Shao, Lei Chang, Yingping Hou, Yujie Sun. Illuminating the structure and dynamics of chromatin by fluorescence labeling[J]. Front. Biol., 2017, 12(4): 241-257.
[7] Anatoliy I. Bozhkov, Eugeniy G. Ivanov, Yuliya A. Kuznetsova, Svetlana L. Ohiienko, Anastasiya Yu. Bondar’. Copper-induced liver fibrosis affects the behavior of bone marrow cells in primary culture[J]. Front. Biol., 2017, 12(4): 271-279.
[8] Anatoly I. Bozhkov,Natalia G. Menzyanova,Vadim V. Davydov,Natalia I. Kurguzova,Vadim I. Sidorov,Anastasia S. Vasilieva. Liver regeneration is associated with lipid reorganization in membranes of the endoplasmic reticulum[J]. Front. Biol., 2016, 11(5): 396-403.
[9] Chunqiang Zhang,Fan Zhang,Ping Zhou,Caiguo Zhang. Functional role of metalloproteins in genome stability[J]. Front. Biol., 2016, 11(2): 119-131.
[10] Arunesh Saras,Laura E. Simon,Harlan J. Brawer,Richard E. Price,Mark A. Tanouye. Drosophila seizure disorders: genetic suppression of seizure susceptibility[J]. Front. Biol., 2016, 11(2): 96-108.
[11] Nina K. Latcheva,Rupa Ghosh,Daniel R. Marenda. The epigenetics of CHARGE syndrome[J]. Front. Biol., 2016, 11(2): 85-95.
[12] Jian Zou,Jinbo Yu,Yuqing Zhu,Jiali Zhu,Jing Du,Xu Yang. Application of glutathione to antagonize H2O2-induced oxidative stress in rat tracheal epithelial cells[J]. Front. Biol., 2016, 11(1): 59-63.
[13] Zhuo Wu,Jingquan Li,Ping Ma,Baizhan Li,Yang Xu. Long-term dermal exposure to diisononyl phthalate exacerbates atopic dermatitis through oxidative stress in an FITC-induced mouse model[J]. Front. Biol., 2015, 10(6): 537-545.
[14] Gahana Advani,Anderly C. Chueh,Ya Chee Lim,Amardeep Dhillon,Heung-Chin Cheng. Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression[J]. Front. Biol., 2015, 10(3): 195-202.
[15] Shuxia Wang. Role of upstream stimulatory factor 2 in diabetic nephropathy[J]. Front. Biol., 2015, 10(3): 221-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed