Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2018, Vol. 13 Issue (2) : 103-122    https://doi.org/10.1007/s11515-018-1488-0
REVIEW
Clastogenic ROS and biophotonics in precancerous diagnosis
Muhammad Naveed1(), Mohammad Raees2, Irfan Liaqat2, Mohammad Kashif2
1. Department of Biotechnology, Faculty of Life Sciences, University Central Punjab, Lahore 54000, Pakistan
2. Department of Biochemistry and Biotechnology, University of Gujrat, Pakistan 50700, Pakistan
 Download: PDF(1671 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Cancer is the leading cause of death worldwide. The application of biophotonics for diagnosing precancerous lesions is a major breakthrough in oncology and is associated with the expression of clastogenic bio-markers, such as reactive oxygen species (ROS), namely, superoxide anion radicals, hydrogen peroxide, hydroxyl radicals, and lipid peroxidation products. These ROS are the major sources of ultra-weak biophotons emission; in addition, biophotons are emitted from other biomolecules, which are not associated with ROS. The precancerous phase is diagnosed on the basis of biophoton emission from biomarkers. The type of biophotons emitted depends on the structure of the clastogenic ROS.

METHODS: ROS-based emission of ultra-weak photons can be detected using charge coupled device (CCD) cameras and photomultiplier tubes. Furthermore, spectroscopic and microscopic analysis can yield more advanced and definite results.

RESULTS: The frequency and intensity of biophoton emission associated with each ROS provides information regarding the precancerous phase. Previous have attempted to show an association between precancerous growth and biophoton emission; however, their results were not conclusive. In this review, we have addressed multiple aspects of the molecular environment, especially light- matter interactions, to derive a successful theoretical relationship which may have the ability to diaganose the tumor at precancerous stage and to give the solutions of previous failures. This can be a major quantum leap toward precancerous diagnosis therapy.

CONCLUSION: Biophotonics provides an advanced framework, for easily diagnosing cancer at its preliminary stage. The relationship between biophotons, clastogenic factors, and biochemical reactions in the cellular microenvironment can be understood successfully. The advancement in precancerous diagnosis will improve human health worldwide. The versatility of biophotonics can be used further for novel applications in biology, biochemistry, chemistry and social fields.

Keywords biophotons      CCD camera      molecular environment      oncology      precancerous      photomultiplier      ROS     
Corresponding Author(s): Muhammad Naveed   
Online First Date: 09 May 2018    Issue Date: 28 May 2018
 Cite this article:   
Muhammad Naveed,Mohammad Raees,Irfan Liaqat, et al. Clastogenic ROS and biophotonics in precancerous diagnosis[J]. Front. Biol., 2018, 13(2): 103-122.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-018-1488-0
https://academic.hep.com.cn/fib/EN/Y2018/V13/I2/103
Fig.1  Major signs of cancer cells. The emerging hallmarks of cancerous cells can provide detailed information about specific stages of cancer.
Fig.2  Major signs of cancer cells. The emerging hallmarks of cancerous cells can provide detailed information about specific stages of cancer.
Fig.3  Different ROS-dependent pathways that mutate DNA.
Fig.4  (A) Atomic structure of a hydrogen atom described by Bohr’s model. The electron (e) can travel in a discrete set of circular orbits around the positively charged nucleus. The electron can gain or lose its energy to occupy different orbits (n = 1, 2, 3 ...) depending upon its energy. The more energetic the electron, the more distant it is from the nucleus. (B) Energy diagram of the hydrogen atom. (C) The orbitals of the electron of the hydrogen atom. Note that energy level n = 1 has only one type of orbital (called s orbital). In contrast, higher energy levels have more than one orbital with the same energy. For example, s and p orbitals for n = 2; s, p, and d orbitals for n = 3). This can be explained by the fact that there is more than one possible solution (wave function) to the Schrodinger equation for n>2 (source (Tsia, 2015).
Fig.5  Formation of singlet oxygen by combination of two peroxyl radicals in lipids (A), proteins (B), and DNA (C). The combination of two peroxyl radicals (ROO) results in the formation of the highly unstable tetroxide (ROOOOR). Subsequent decomposition of ROOOOR leads to the formation of organic hydroxide (ROH), ground carbonyl (R= O), and singlet oxygen (1O2).
Fig.6  Basic apparatus for measuring ultra-weak biophoton emission from a precancerous micro-environment using CCD cameras, which produce a two-dimensional image. (Source: Rastogi and Pospisil, 2013)
Fig.7  Instrumentation of a photomultiplier for obtaining one-dimensional image of ultra-weak biophoton emission. (Source: Rastogi and Pospisil, 2013)
Tab.1  Fluorescence dyes such as Hoechest 33342 and 2Cl-DAPI can be used to determine ROS-induced position-specific or non-specific mutations in DNA.
Fig.9  Basic instrumentation (principle) of infrared spectroscopy.
Tab.2  Determination of biomarkers on the basis of vibrational frequencies of functional types.
Fig.11  Graph 1: Biophoton emission in four anatomical sites with respect to wavelength and intensity of biophotons. The legends above the graph explain the meaning of each line (source: 102Tafur et al., 2010)
1 Alarcon E, Henriquez C, Aspee A, Lissi E A (2007). Chemiluminescence associated with singlet oxygen reactions with amino acids, peptides and proteins. Photochem Photobiol, 83(3): 475–480
https://doi.org/10.1562/2006-07-25-RA-983
2 Alipour A (2015). Demystifying the Biophoton-Induced Cellular Growth: A Simple Mode. JAMSAT
3 Anwijk R V (2001). Bio-photons and Bio-communication. J Sci Explor, 15: 183–197
4 Ballardin M, Barsacchi R, Bodei L, Caraccio N, Cristofani R, DiMrtino F, Ferdeghini M, Kusmic C, Madeddu G, Monzani F, Rossi A M, Sbrana I, Spanu A, Traino C (2004). Oxidative and genotoxic damage after radio-iodine therapy of Graves’ hyperthyroidism. Int J Radiat Biol, 80(3): 209–216
https://doi.org/10.1080/0955300042000205555
5 Beckman K B, Saljoughi S, Mashiyama S T, Ames B N (2000). A simpler, more robust method for the analysis of 8-oxoguanine in DNA. Free Radic Biol Med, 29(3-4): 357–367
https://doi.org/10.1016/S0891-5849(00)00316-6
6 Benhar M, Engelberg D, Levitzki A (2002). ROS, stress activated kinases and stress signaling in cancer. EMBO Rep, 3(5): 420–425
https://doi.org/10.1093/embo-reports/kvf094
7 Birtic S, Ksas B, Genty B, Mueller M J, Triantaphylides C, Havaux M (2011). Using spontaneous photon emission to image lipid peroxidation pattern in plant tissues. Plant J, 67(6): 1103–1115
https://doi.org/10.1111/j.1365-313X.2011.04646.x
8 Bischof M (2005). Biophotons – The Light in our cells. J Opt Phototh, 1–5
9 Blake T D , Buckner C A, Cameron D, Lafrenie R M, Persinger M A (2011). Biophoton emissions from cell cultures: biochemical evidence for the plasma membrane as the primary source. Gen Physiol Biophys, 30: 301–309
10 Bozzone D M (2007). Cancer genetics; Moon Children. Chelsea house, 132 west 31st street, New York
60 Brizhik L. (2008). Nonlinear mechanism for weak photon emission from biosystems. Indian journal of experimental biology, 46, 353–357
11 Burhans W, Heintz N (2009). The Cell Cycle is a Redox Cycle: Linking phase-specific targets to cell fate. Free Radic Biol Med, 47(9): 1282–1294
https://doi.org/10.1016/j.freeradbiomed.2009.05.026
12 Cao Y (2010). Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov, 9(2): 107– 115
https://doi.org/10.1038/nrd3055
13 Chalmers J M, Griffiths P R (2002). Handbook of Vibrational Spectroscopy. Wiley Milan, Italy
14 Chen P, Zhang L, Zhang F, Liu J T, Bai H, Tang G Q, Lin L (2012). Spectral discrimination between normal and leukemic human sera using delayed luminescence. Biomed Opt Express, 3(8): 1787– 1792
https://doi.org/10.1364/BOE.3.001787
15 Cheng N, Chytil A, Shyr Y, Joly A, Moses H L (2008). Transforming growth factor-beta signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion. Molecular cancer research. MCR, 6: 1521–1533
https://doi.org/10.1158/1541-7786.MCR-07-2203
16 Chiarugi P (2003) Reactive oxygen species as mediators of cell adhesion. Ital J Biochem, 52: 28–32
17 Ciccia A, Elledge S J (2010). The DNA damage response: making it safe to play with knives. Mol Cell, 40(2): 179–204
https://doi.org/10.1016/j.molcel.2010.09.019
18 Cifra M, Pokornč J, Havelka D, Kučera O (2010). Electric field generated by axial longitudinal vibration modes of microtubule. Biosystems, 100(2): 122–131
https://doi.org/10.1016/j.biosystems.2010.02.007
19 Cifra M, Pospisil P (2014). Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J Photochem Photobiol B, 139: 2–10
https://doi.org/10.1016/j.jphotobiol.2014.02.009
20 Coghlin C, Murray G I (2010). Current and emerging concepts in tumour metastasis. J Pathol, 222(1): 1–15
https://doi.org/10.1002/path.2727
21 Cohen S, Popp F A (2003). Biophoton emission of human body. Indian J Exp Biol, 41: 440–445
22 Cooke M S, Evans M D, Dizdaroglu M, Lunec J (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 17(10): 1195–1214
https://doi.org/10.1096/fj.02-0752rev
23 Cooke M S, Evans M D, Dizdaroglu M, Lunec J (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 17(10): 1195–1214
https://doi.org/10.1096/fj.02-0752rev
24 Creath K, Schwartz G E (2004). Biophoton images of plants: revealing the light within. J Altern Complement Med, 10(1): 23–26
https://doi.org/10.1089/107555304322848922
25 Feig D I, Reid T M, Loeb L A (1994). Reactive oxygen species in tumorigenesis. Cancer Res, 54 (7 Suppl): 1890s
26 Davies K J A (2001). Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life, 50(4): 279–289
https://doi.org/10.1080/713803728
27 Day B J, Batinic-Haberle I, Crapo J D (1999). Metalloporphyrins are potent inhibitors of lipid peroxidation. Free Radic Biol Med, 26(5-6): 730–736
https://doi.org/10.1016/S0891-5849(98)00261-5
28 Da y B J, Fridovich I, Crapo J D (1997). Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxide-mediated injury. Arch Biochem Biophys, 347(2): 256–262
https://doi.org/10.1006/abbi.1997.0341
29 Degan P, Bonassi S, De Caterina M, Korkina L G, Pinto L, Scopacasa F, Zatterale A, Calzone R, Pagano G (1995). In vivo accumulation of 8-hydroxy-2′-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi’s anaemia families. Carcinogenesis, 16(4): 735–741
https://doi.org/10.1093/carcin/16.4.735
30 Deriu M A, Soncini M, Orsi M, Patel M, Essex J W, Montevecchi F M, Redaelli A (2010). Anisotropic Elastic Network Modeling of Entire Microtubules. Biophys J, 99(7): 2190–2199
https://doi.org/10.1016/j.bpj.2010.06.070
31 Deshpande N N, Sorescu D, Seshiah P, Ushio-Fukai M, Akers M, Yin Q, Griendling K K (2002). Mechanism of hydrogen peroxide-induced cell cycle arrest in vascular smooth muscle. Antioxid Redox Signal, 4(5): 845–854
https://doi.org/10.1089/152308602760599007
32 Dinh T V (2010). Biomedical Photonics Handbook. CRC Press
33 Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002). Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med, 32(11): 1102–1115
https://doi.org/10.1016/S0891-5849(02)00826-2
34 Dotta B T, Buckner C A, Cameron D, Lafrenie R F, Persinger M A (2011). Biophoton emissions from cell cultures: biochemical evidence for the plasma membrane as the primary source. Gen Physiol Biophys, 30: 301–309
35 Emerit I (1994). Reactive oxygen species, chromosome mutation, and cancer: possible role of clastogenic factors in carcinogenesis. F ree Radic Biol Med, 16(1): 99–109
https://doi.org/10.1016/0891-5849(94)90246-1
36 Emerit I (2007). Clastogenic factors as potential biomarkers of increased superoxide production. B iomark Insights, 2: 429–438
https://doi.org/10.1177/117727190700200010
37 Ferrari M, Quaresima V (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage, 63(2): 921–935
https://doi.org/10.1016/j.neuroimage.2012.03.049
38 Ferraro P, Wax A, Zalevsky Z (2011). Coherent Light Microscopy: Imaging and Quantitative Phase Analysis. Springer
39 Floryszak-Wieczorek J, Go’rski Z, Arasimowicz-Jelonek M (2011). Functional imaging of biophoton responses of plants to fungal infection. Eur J Plant Pathol, 130(2): 249–258
https://doi.org/10.1007/s10658-011-9750-1
40 Gartel A L, Radhakrishnan S K (2005). Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res, 65(10): 3980–3985
https://doi.org/10.1158/0008-5472.CAN-04-3995
41 Griendling K K, FitzGerald G A (2003). Oxidative stress and cardiovascular injury: Part I: basic mechanisms and in vivo monitoring of ROS. Circulation, 108(16): 1912–1916
https://doi.org/10.1161/01.CIR.0000093660.86242.BB
42 Guo Y, Tan J (2013). A biophotonic sensing method for plant drought stress. Sens Actuators B Chem, 188: 519–524
https://doi.org/10.1016/j.snb.2013.07.020
43 Halliwell B, Gutteridge J M C (1985). Free radicals in biology and medicine. J Free Rad Biol Med, 1 (4) :331–332
44 Hanahan D, Weinberg R A (2011). Hallmarks of cancer: the next generation. Cell, 144 (5): 646
45 Held P (2015). An Introduction to Reactive Oxygen Species; Measurement of ROS in Cells White papers
46 Hideg E (1993). On the spontaneous ultraweak light emission of plants. J Photochem Photobiol B, 18(2-3): 239–244
https://doi.org/10.1016/1011-1344(93)80070-P
47 Hossu M, Ma L, Zou X, Chen W (2013). Enhancement of biophoton emission of prostate cancer cells by Ag nanoparticles. Cancer Nanotechnol, 4(1-3): 21–26
https://doi.org/10.1007/s12645-013-0034-7
48 Inoue M, Sato E F, Nishikawa M, Park A M, Kira Y, Imada I, Utsumi K (2003). Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem, 10(23): 2495–2505
https://doi.org/10.2174/0929867033456477
49 Kai S (2012). Biophoton: collection of photon-images. Forma, 27: S45–S48
50 Kamal A H, Komatsu S (2015). Involvement of reactive oxygen species and mitochondrial proteins in biophoton emission in roots of soybean plants under flooding stress. J Proteome Res, 14(5): 2219–2236
https://doi.org/10.1021/acs.jproteome.5b00007
51 Kamal A H, Komatsu S (2016). Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions. Mol Biol Rep, 43(2): 73–89
https://doi.org/10.1007/s11033-015-3940-4
52 Kanofsky J R (2011). Measurement of singlet-oxygen in vivo: progress and pitfalls. Photochem Photobiol, 87(1): 14–17
https://doi.org/10.1111/j.1751-1097.2010.00855.x
53 Kasprzak K S (2002). Oxidative DNA and protein damage in metal-induced toxicity and carcinogenesis. Free Radic Biol Med, 32(10): 958–967
https://doi.org/10.1016/S0891-5849(02)00809-2
54 Kataoka Y, Cui Y, Yamagata A, Niigaki M, Hirohata T, Oishi N, Watanabe Y (2001). Activity-dependent neural tissue oxidation emits intrinsic ultraweak photons. Biochem Biophys Res Commun, 285(4): 1007–1011
https://doi.org/10.1006/bbrc.2001.5285
55 Klaunig J E, Xu Y, Bachowski S, Jiang J (1997). Free-radical oxygen-induced changes in chemical carcinogenesis. Free Radical Toxicology, 375–400
56 Klotter J (2010). Light, Cancer and Fritz-Albert Popp
69 Kobayashi K. (2003). Spontaneous ultraweak photon emission of living organisms—biophotons—phenomena and detection techniques for extracting biological information. Trends in Photohchem. Photobiol, 10: 111–135
57 Kobayashi M, Kikuchi D, Okamura H (2009). Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm. PLoS One, 4(7): e6256
https://doi.org/10.1371/journal.pone.0006256
58 Komatsu S, Kamal A H, Makino T, Hossain Z (2014). Ultraweak photon emission and proteomics analyses in soybean under abiotic stress. Biochim Biophys Acta, 1844(7): 1208–1218
https://doi.org/10.1016/j.bbapap.2014.04.002
59 Kops G J, Dansen T B, Polderman P E, Saarloos I, Wirtz K W, Coffer P J, Huang T T, Bos J L, Medema R H, Burgering B M (2002). Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature, 419(6904): 316–321
https://doi.org/10.1038/nature01036
61 Larason T C, Bruce S S, Parr A C (1998). NIST Measurement Services: Spectroradiometric Detector Measurements: Part I-Ultraviolet Detectors and Part II- Visible to Near-Infrared Detectors. National Institute of Standards and Technology (USA) Special Publication
62 Lau A T, Wang Y, Chiu J F (2008). Reactive oxygen species: current knowledge and applications in cancer research and therapeutic. J Cell Biochem, 104(2): 657–667
https://doi.org/10.1002/jcb.21655
63 Liebel F, Kaur S, Ruvolo E, Kollias N, Southall M D (2012). Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. J Invest Dermatol, 132(7): 1901–1907
https://doi.org/10.1038/jid.2011.476
64 Lindholm C, Acheva A, Salomaa S (2010). Clastogenic plasma factors: a short overview. Radiat Environ Biophys, 49(2): 133–138
https://doi.org/10.1007/s00411-009-0259-3
65 Liu J, Yeo H C, Overvik-Douki E, Hagen T, Doniger S J, Chu D W, Brooks G A, Ames B N (2002). Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol B, 89(1): 21–28
https://doi.org/10.1152/jappl.2000.89.1.21
66 Liu Y W, Sakaeda T, Takara K, Nakamura T, Ohmoto N, Komoto C, Kobayashi H, Yagami T, Okamura N, Okumura K (2003). Effects of Reactive oxygen species on cell proliferation and death in HeLa Cells and its MDR1-overexpressing derivative cell line. Biol Pharm Bull, 26(2): 278–281
https://doi.org/10.1248/bpb.26.278
67 Lorch S, Lightfoot R, Ohshima H, Virag L, Chen Q, Hertkorn C, Weiss M, Souza J, Ischiropoulos H, Yermilov V, Pignatelli B, Masuda M, Szabo C (2002). Detection of peroxynitrite-induced protein and DNA modifications. Methods Mol Biol, 196: 247–275
68 Lozneanu E, Sanduloviciu M (2008). Physical Basis Of Biophoton Emission And Intercellular Communication. Rom Rep Phys, 60(3): 885–898
70 Maitland K, Wang T D (2013). “Endoscopy,”in Biomedical Technology and Devices Handbook. Taylor and Francis, New York
71 Marnett L J (2000a). Oxyradicals and DNA damage. Carcinegensis, 21(3): 361–370
https://doi.org/10.1093/carcin/21.3.361
72 Mason W T (1999). Fluorescent and Luminescent Probes for Biological Activity, Massachusetts.
73 Montillet J L, Chamnongpol S, Rusterucci C, Dat J, van de Cotte B, Agnel J P, Battesti C, Inze D, Van Breusegem F, Triantaphylides C (2005). Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol, 138(3): 1516–1526
https://doi.org/10.1104/pp.105.059907
74 Morgan W F (2003). Non-targeted and delayed eVects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res, 159(5): 567–580
https://doi.org/10.1667/0033-7587(2003)159[0567:NADEOE]2.0.CO;2
75 Muhammad N, Mohammad R, Kashif M, Liaqat I (2017). The Darkness Brings Light in the Field of Bio-Communication Through Melatonin Production. Advances in Applied Science Research, 8: 50–61
76 Nelson K K, Melendez J A (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med, 37(6): 768–784
https://doi.org/10.1016/j.freeradbiomed.2004.06.008
77 Norppa H, Bonassi S, Hansteen I L, Hagmar L, Stromberg U, Rossner P, Boffetta P, Lindholm C, Gundy S, Lazutka J, Cebulska-Wasilewska A, Fabianova E, Sram R J, Knudsen L E, Barale R, Fucic A (2006). Chromosomal aberrations and SCEs as biomarkers of cancer risk. Mutat Res, 600(1-2): 37–45
https://doi.org/10.1016/j.mrfmmm.2006.05.030
78 Ogilby P R (2010). Singlet oxygen: there is indeed something new under the sun. Chem Soc Rev, 39(8): 3181–3209
https://doi.org/10.1039/b926014p
79 Owrutsky J C, Li M, Locke B, Hochstrasser R M (1995). Vibrational relaxation of the CO stretch vibration in hemoglobin-CO, myoglobin-CO, and pro- toheme-CO. J Phys Chem, 99(13): 4842–4846
https://doi.org/10.1021/j100013a064
80 Atkius P, Paula JD. (2002). Physical Chemistry. W.H. Freeman, New York
81 Chiarugi P (2008) Src redox regulation: there is more than meets the eye. Mol Cell, 26: 329–337
82 Pang X F (2012). The mechanism and properties of bio-photon emission and absorption in protein molecules in living systems. J Appl Phys, 111 (9) :117–134
83 Pang X F (1995). A molecular dynamic theory of ultraweak bio-photon emission in the living systems and its properties. Chin J At Mol Phys, 12: 411–420
84 Popp F A (2009). Cancer growth and its inhibition in terms of coherence. Electromagn Biol Med, 28(1): 53–60
https://doi.org/10.1080/15368370802711805
85 Pospisil P, Prasad A, Rac M (2014). Role of reactive oxygen species in ultra-weak photon emission in biological systems. J Photochem Photobiol B, 139: 11–23
https://doi.org/10.1016/j.jphotobiol.2014.02.008
86 Practico D, Lawson J A, Rokach J, Fitzgerald G A (2002). The isoprostanes in biology and medicine. Trends Endocrinol Metab, 12: 243–247
https://doi.org/10.1016/S1043-2760(01)00411-8
87 Prasad A, Pospisil P (2011). Two-dimensional imaging of spontaneous ultra-weak photon emission from the human skin: role of reactive oxygen species. J Biophotonics, 4(11-12): 840–849
https://doi.org/10.1002/jbio.201100073
88 Prasad A, Pospisil P (2012). Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging. J Biomed Opt, 17(8): 085004
https://doi.org/10.1117/1.JBO.17.8.085004
89 Rahnama M, Tuszynski J A, Bókkon I, Cifra M, Sardar P, Salari V, Majid R (2011). Emission of mitochondrial biophotons and their effect on electrical activity of membrane via microtubules. J Integr Neurosci, 10(01): 65–88
https://doi.org/10.1142/S0219635211002622
90 RastogiA, Pospisil P (2010). Ultra-weak photon emission as a non-invasive tool for monitoring of oxidative processes in the epidermal cells of human skin: comparative study on the dorsal and the palm side of the hand. Skin Res Tech, 16: 365–370
91 Rastogi A, Pospisil P (2011). Spontaneous ultraweak photon emission imaging of oxidative metabolic processes in human skin: effect of molecular oxygen and antioxidant defense system. J Biomed Opt, 16(9): 096005
https://doi.org/10.1117/1.3616135
92 Rastogi A, Pospisil P (2013). Ultra-weak photon emission as a non-invasive tool for the measurement of oxidative stress induced by UVA radiation in Arabidopsis thaliana. J Photochem Photobiol B, 123: 59–64
https://doi.org/10.1016/j.jphotobiol.2013.03.012
93 Saar B G, Freudiger C W, Reichman J, Stanley C M, Holtom G R, Xie X S (2010). Video-rate molecular imaging in vivo with stimulated Raman scattering. Science, 330(6009): 1368–1370
https://doi.org/10.1126/science.1197236
94 Saleh B,Teich M C, Slusher R E (1992). Fundamentals of Photonics. Physics Today, 45 (11) : 87–88
95 Sauermann G, Mei W P, Hoppe U, Stab F (1999). Ultraweak photon emission of human skin in vivo: influence of topically applied antioxidants on human skin. Methods Enzymol, 300: 419–428
https://doi.org/10.1016/S0076-6879(99)00147-0
96 Savage L M (2006). On the path toward more useful fluorophores. Biophoton Int, 2: 34–37
97 Shen X, Bei L, HuT H, Aryal B (2000). The possible role played by biophotons in the long-range interaction between neutrophil leukocytes
98 Shukla A, Gulumian M, Hei T K, Kamp D, Rahman Q M B, Mossman B T (2003). Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radic Biol Med, 34(9): 1117–1129
https://doi.org/10.1016/S0891-5849(03)00060-1
99 Solli D R, Chou J, Jalali B (2008). Amplified wavelength–time transformation for real-time spectroscopy. Nat Photonics, 2(1): 48–51
https://doi.org/10.1038/nphoton.2007.253
100 Storz P(2005) Reactive oxygen species in tumor progression. Front Biosc, 10, 1881–1896
101 Suhalim J L, Boik J C, Tromberg B J, Potma E O (2012). The need for speed. J Biophotonics, 5(5-6): 387–395
https://doi.org/10.1002/jbio.201200002
102 Tafur J, Van Wijk E P, Van Wijk R, Mills P J (2010). Biophoton detection and low-intensity light therapy: a potential clinical partnership. Photomed Laser Surg, 28(1): 23–30
https://doi.org/10.1089/pho.2008.2373
103 Takedaa M, Tanno Y, Kobayashi M, Usa M, Ohuchib N, Satomi S (1998). A novel method of assessing carcinoma cell proliferation by biophoton emission. Cancer Lett, 127(1-2): 155–160
https://doi.org/10.1016/S0304-3835(98)00064-0
104 Tennenbaum, J (1998–1999). Beyond Molecular Biology The Biophoton Revolution
105 Tsia K K (2015) Fundamentals, Advances and Applications. CRC Press, Taylor & Francis Group. Understanding of Biophotonics.
106 Tulah A S, Birch-Machin M A (2013). Stressed out mitochondria: the role of mitochondria in ageing and cancer focussing on strategies and opportunities in human skin. Mitochondrion, 13(5): 444–453
https://doi.org/10.1016/j.mito.2012.11.007
107 Vafa O, Wade M, Kern S, Beeche M, Pandita T K, Hampton G M, Wahl G M (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell, 9(5): 1031–1044
https://doi.org/10.1016/S1097-2765(02)00520-8
108 Valko M, Izakovic M, Mazur M, Rhodes C J, Telser J (2004). Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem, 266(1/2): 37–56
https://doi.org/10.1023/B:MCBI.0000049134.69131.89
109 Valkoa M, Rhodes C J, Moncol J, Izakovic M, Mazur M (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact, 160(1): 1–40
https://doi.org/10.1016/j.cbi.2005.12.009
110 Van Wijk R, Kobayashi M, Van Wijk E P (2006a). Anatomic characterization of human ultra-weak photon emission with a moveable photomultiplier and CCD imaging. J Photochem Photobiol B, 83(1): 69–76
https://doi.org/10.1016/j.jphotobiol.2005.12.005
111 Van Wijk R, Van Wijk E P, Bajpai R P (2006b). Photocount distribution of photons emitted from three sites of a human body. J Photochem Photobiol B, 84(1): 46–55
https://doi.org/10.1016/j.jphotobiol.2006.01.010
112 Van Wijk R, Van Wijk E P, Wiegant F A, Ives J (2008). Free radicals and low-level photon emission in human pathogenesis: state of the art. Indian J Exp Biol, 46: 273–309
113 Vladimirov Y A, Proskurnina V (2009). Free radicals and cell chemiluminescence. Biochemistry (Mosc), 74(13): 1545–1566
https://doi.org/10.1134/S0006297909130082
114 Wang L V, Wu H (2007). Biomedical Optics: Principles and Imaging. Wiley-Interscience
115 Watts B P, Barnard M, Turrens J F (1995). Peroxynitrite-dependent chemiluminescence of amino acids, proteins, and intact cells. Arch Biochem Biophys, 317(2): 324–330
https://doi.org/10.1006/abbi.1995.1170
116 Winkler R, Guttenberger H, Klima H (2009). Ultraweak and induced photon emission after wounding of plants. Photochem Photobiol, 85(4): 962–965
https://doi.org/10.1111/j.1751-1097.2009.00537.x
117 Wiseman H, Halliwell B (1996b). Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J, 313(Pt 1): 17–29
https://doi.org/10.1042/bj3130017
118 Wiseman H, Halliwell B, and the WISEMAN (1996a). Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J, 313(1): 17–29
https://doi.org/10.1042/bj3130017
119 Wright J R, Rumbaugh R C, Colby H D, Miles P R (1979). The relationship between chemiluminescence and lipid peroxidation in rat hepatic microsomes. Arch Biochem Biophys, 192(2): 344–351
https://doi.org/10.1016/0003-9861(79)90102-4
[1] Volodymyr Padalko, Viktoriya Dzyuba, Olena Kozlova, Hanna Sheremet, Olena Protsenko. Zingiber officinale extends Drosophila melanogaster life span in xenobiotic-induced oxidative stress conditions[J]. Front. Biol., 2018, 13(2): 130-136.
[2] Clare H. Scott Chialvo, Thomas Werner. Drosophila, destroying angels, and deathcaps! Oh my! A review of mycotoxin tolerance in the genus Drosophila[J]. Front. Biol., 2018, 13(2): 91-102.
[3] Vadim V. Davydov, Alexander V. Shestopalov, Evgenya R. Grabovetskaya. Physiological significance of oxidative stress and its role in adaptation of the human body to deleterious factors[J]. Front. Biol., 2018, 13(1): 19-27.
[4] Shipeng Shao, Lei Chang, Yingping Hou, Yujie Sun. Illuminating the structure and dynamics of chromatin by fluorescence labeling[J]. Front. Biol., 2017, 12(4): 241-257.
[5] Anatoliy I. Bozhkov, Eugeniy G. Ivanov, Yuliya A. Kuznetsova, Svetlana L. Ohiienko, Anastasiya Yu. Bondar’. Copper-induced liver fibrosis affects the behavior of bone marrow cells in primary culture[J]. Front. Biol., 2017, 12(4): 271-279.
[6] Anatoly I. Bozhkov,Natalia G. Menzyanova,Vadim V. Davydov,Natalia I. Kurguzova,Vadim I. Sidorov,Anastasia S. Vasilieva. Liver regeneration is associated with lipid reorganization in membranes of the endoplasmic reticulum[J]. Front. Biol., 2016, 11(5): 396-403.
[7] Chunqiang Zhang,Fan Zhang,Ping Zhou,Caiguo Zhang. Functional role of metalloproteins in genome stability[J]. Front. Biol., 2016, 11(2): 119-131.
[8] Arunesh Saras,Laura E. Simon,Harlan J. Brawer,Richard E. Price,Mark A. Tanouye. Drosophila seizure disorders: genetic suppression of seizure susceptibility[J]. Front. Biol., 2016, 11(2): 96-108.
[9] Nina K. Latcheva,Rupa Ghosh,Daniel R. Marenda. The epigenetics of CHARGE syndrome[J]. Front. Biol., 2016, 11(2): 85-95.
[10] Gahana Advani,Anderly C. Chueh,Ya Chee Lim,Amardeep Dhillon,Heung-Chin Cheng. Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression[J]. Front. Biol., 2015, 10(3): 195-202.
[11] Shuxia Wang. Role of upstream stimulatory factor 2 in diabetic nephropathy[J]. Front. Biol., 2015, 10(3): 221-229.
[12] Claudia A. BERTUCCIO,Daniel C. DEVOR. Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases[J]. Front. Biol., 2015, 10(1): 52-60.
[13] Gary R. HIME,Nicole SIDDALL,Katja HORVAY,Helen E. ABUD. Analyzing stem cell dynamics: use of cutting edge genetic approaches in model organisms[J]. Front. Biol., 2015, 10(1): 1-10.
[14] Young Bong CHOI,Edward William HARHAJ. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses[J]. Front. Biol., 2014, 9(6): 423-436.
[15] Suki ROY,Ishita DAS,Minki MUNJAL,Loganathan KARTHIK,Gaurav KUMAR,Sathish KUMAR,Kokati Venkata Bhaskara RAO. Isolation and characterization of tyrosinase produced by marine actinobacteria and its application in the removal of phenol from aqueous environment[J]. Front. Biol., 2014, 9(4): 306-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed