Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (3) : 262-271    https://doi.org/10.1007/s11515-015-1364-0
RESEARCH ARTICLE
Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis
Daniel A. Berg1,2,3,Ki-Jun Yoon1,2,Brett Will1,Alex Y. Xiao1,Nam-Shik Kim1,2,Kimberly M. Christian1,2,Hongjun Song1,2,4,Guo-li Ming1,2,4,*()
1. Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
2. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
3. Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheelev?g 2, 17 117 Stockholm, Sweden
4. The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
 Download: PDF(1517 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Neurogenesis persists in two locations of the adult mammalian brain, the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus in the hippocampus. In the adult subgranular zone, radial glial-like cells (RGLs) are multipotent stem cells that can give rise to both astrocytes and neurons. In the process of generating neurons, RGLs divide asymmetrically to give rise to one RGL and one intermediate progenitor cell (IPC). IPCs are considered to be a population of transit amplifying cells that proliferate and eventually give rise to mature granule neurons. The properties of individual IPCs at the clonal level are not well understood. Furthermore, it is not clear whether IPCs can generate astrocytes or revert back to RGLs, besides generating neurons. Here we developed a genetic marking strategy for clonal analysis and lineage-tracing of individual Tbr2-expressing IPCs in the adult hippocampus in vivo using Tbr2-CreERT2 mice. Using this technique we identified Tbr2-CreERT2 labeled IPCs as unipotent neuronal precursors that do not generate astrocytes or RGLs under homeostasis. Additionally, we showed that these labeled IPCs rapidly generate immature neurons in a synchronous manner and do not undergo a significant amount of amplification under homeostasis, in animals subjected to an enriched environment/running, or in animals with different age. In summary, our study suggests that Tbr2-expressing IPCs in the adult mouse hippocampus are unipotent precursors and rapidly give rise to immature neurons without major amplification.

Keywords adult neurogenesis      Tbr2      clonal analysis      lineage tracing      enriched environment     
Corresponding Author(s): Guo-li Ming   
Online First Date: 09 June 2015    Issue Date: 23 June 2015
 Cite this article:   
Daniel A. Berg,Ki-Jun Yoon,Brett Will, et al. Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis[J]. Front. Biol., 2015, 10(3): 262-271.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1364-0
https://academic.hep.com.cn/fib/EN/Y2015/V10/I3/262
Fig.1  Tbr2-CreERT2 mouse line as a genetic tool to specifically target individual Tbr2+ IPCs in the adult mouse dentate gyrus. (A) A schematic diagram illustrating the lineage relationships during adult neurogenesis in the mouse hippocampus and the expression of markers used in this study. (B) An illustration of the genetic approach used to label individual Tbr2+ IPCs. (C–G) Lineage tracing of Tbr2-expressing IPCs at the clonal level. Adult mice were given a single injection of tamoxifen and examined at different time points. Shown in C is a sample confocal image of GFP+ precursors and DAPI in the adult dentate gyrus at 1 dpi (Scale bar: 100 μm). Magnification of boxed area in C is shown in C’ (Scale bar: 10 μm). Shown in D is a sample confocal image of a Tbr2+GFP+ precursor at 1 dpi (Scale bar: 10 μm). Images of Tbr2 immunostaining and DAPI are shown in D’. Arrows point to GFP+ cells. Shown in E is a sample confocal image of a DCX+GFP+ precursor at 1 dpi (Scale bar: 10 μm). Images of DCX immunostaining and DAPI are shown in D’. Shown in F are percentages of GFP+ progenitor cells expressing Tbr2 and DCX at 1 dpi. Values represent mean±SEM (n = 3 dentate gyri). Shown in G is a summary of quantification of the number of GFP+ clones per dentate gyrus at different time points. Values represent mean±SEM (n = 5–8 dentate gyri).
Fig.2  Clonally labeled Tbr2+ IPCs rapidly change morphology and differentiate into immature neurons in the adult mouse dentate gyrus. (A–B) Time course of Tbr2 expression in GFP+ cells in the dentate gyrus of adult Tbr2-CreERT2 mice upon a single injection of tamoxifen. Shown in A are sample confocal images of GFP, Tbr2 immunostaining and DAPI. Scale bar: 10 μm. Shown in B is a summary of percentages of GFP+ cells expressing Tbr2 at different time points. Values represent mean±SEM (n = 3–4 dentate gyri; ***p<0.001; One way ANOVA, Tukey’s multiple comparisons test). (C–D) Development of GFP+ cells in the dentate gyrus of adult Tbr2-CreERT2 mice upon a single injection of tamoxifen. Shown in C are sample confocal images of GFP and DAPI. Scale bar: 20 μm. Shown in D is a summary of quantitative comparison of different cell types at different time points. Values represent mean±SEM (n = 6–8 dentate gyri).
Fig.3  Proliferative capacity of Tbr2+ IPCs in the adult mouse dentate gyrus. (A–B) Sample confocal image of GFP+ clones containing multiple cells at 1 dpi (A) and 15 dpi (B). Scale bars: 10 μm. (C) Distribution of the clone size at different time points after a single tamoxifen injection. Pie charts indicate percentages of clones of different size and bars indicates mean (1 dpi: n = 67; 2 dpi: n = 70; 4 dpi: n = 102; 6 dpi: n = 58; 15 dpi: n = 79 clones, 5–8 dentate gyri per time point; ***p<0.001; One way ANOVA, Tukey’s multiple comparisons test ). (D) A sample confocal image of an MCM2+ GFP+ cell at 1 dpi. Shown in D’ are images of GFP, MCM2 immunostaining and DAPI. Scale bar: 10 μm. (E) Summary of percentages of MCM2+ GFP+ cells at different time points after a single tamoxifen injection. Values represent mean±SEM (n = 3 dentate gyri; ***p<0.001; One way ANOVA, Turkeys multiple comparisons test).
Fig.4  Paradigm of enriched environment and running accelerates the differentiation of Tbr2+ IPCs in the adult mouse dentate gyrus. (A) A schematic illustration of the experimental paradigm used. (B–C) Sample confocal images of MCM2+ GFP+ cells in control animals (B) or animal subjected to enriched environment (EE, C) at 4 dpi. Scale bars: 20 μm. Shown in B’ and C’ are sample confocal images of GFP, MCM2 immunostaining and DAPI. Scale bars: 10 μm. (D) Summary of quantitative comparison of the clonal size at 4 dpi. Values represent mean±SEM (n = 6-8 dentate gyri). (E) Summary of quantitative comparison of percentages of MCM2+ cells among all GFP+ precursors. Values represent mean±SEM (n = 3 dentate gyri; *p<0.05; **p<0.01; Student?s t-test). (F) Summary of quantitative comparison of percentages of cell types observed in GFP+ clones at 4 dpi. Values represent mean±SEM (n = 6-8 dentate gyri; ***p<0.005; Student’s t-test).
Fig.5  Slower differentiation tempo of Tbr2+ IPCs in the dentate gyrus in older adult mice. (A–B) Sample confocal images of GFP+ immature neurons at 6 dpi from a 2 month-old mouse (A) and GFP+ neuroblasts at 6 dpi from a 6 month-old mouse (B). Scale bars: 20 μm. (C) Quantitative comparison of clonal size at 4 dpi. Values represent mean±SEM (n = 6 dentate gyri). (D) Quantitative comparison of percentages of cell types observed in GFP+ clones at 6 dpi. Values represent mean±SEM (n = 6 dentate gyri; **p<0.05; Student’s t-test).
1 Andersen J, Urbán N, Achimastou A, Ito A, Simic M, Ullom K, Martynoga B, Lebel M, G?ritz C, Frisén J, Nakafuku M, Guillemot F (2014). A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells. Neuron, 83(5): 1085-1097
https://doi.org/10.1016/j.neuron.2014.08.004 pmid: 25189209
2 Bonaguidi M A, Wheeler M A, Shapiro J S, Stadel R P, Sun G J, Ming G L, Song H (2011). In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 145(7): 1142-1155
https://doi.org/10.1016/j.cell.2011.05.024 pmid: 21664664
3 Braun S M G, Jessberger S (2013). Adult neurogenesis in the mammalian brain. Front Biol, 8(3): 295-304
https://doi.org/10.1007/s11515-013-1263-1
4 Brown J P, Couillard-Després S, Cooper-Kuhn C M, Winkler J, Aigner L, Kuhn H G (2003). Transient expression of doublecortin during adult neurogenesis. J Comp Neurol, 467(1): 1-10
https://doi.org/10.1002/cne.10874 pmid: 14574675
5 Calzolari F, Michel J, Baumgart E V, Theis F, G?tz M, Ninkovic J (2015). Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nat Neurosci, 18(4): 490-492
https://doi.org/10.1038/nn.3963 pmid: 25730673
6 Cameron H A, McKay R D (2001). Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol, 435(4): 406-417
https://doi.org/10.1002/cne.1040 pmid: 11406822
7 DeCarolis N A, Mechanic M, Petrik D, Carlton A, Ables J L, Malhotra S, Bachoo R, G?tz M, Lagace D C, Eisch A J (2013). <?Pub Caret?>In vivo contribution of nestin- and GLAST-lineage cells to adult hippocampal neurogenesis. Hippocampus, 23(8): 708-719
https://doi.org/10.1002/hipo.22130 pmid: 23554226
8 Doetsch F, Petreanu L, Caille I, Garcia-Verdugo J M, Alvarez-Buylla A (2002). EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron, 36(6): 1021-1034
https://doi.org/10.1016/S0896-6273(02)01133-9 pmid: 12495619
9 Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566-579
https://doi.org/10.1016/j.stem.2011.03.010 pmid: 21549330
10 Encinas J M, Vaahtokari A, Enikolopov G (2006). Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA, 103(21): 8233-8238
https://doi.org/10.1073/pnas.0601992103 pmid: 16702546
11 Englund C, Fink A, Lau C, Pham D, Daza R A, Bulfone A, Kowalczyk T, Hevner R F (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci, 25(1): 247-251
https://doi.org/10.1523/JNEUROSCI.2899-04.2005 pmid: 15634788
12 Ernst A, Frisén J (2015). Adult neurogenesis in humans- common and unique traits in mammals. PLoS Biol, 13(1): e1002045
https://doi.org/10.1371/journal.pbio.1002045 pmid: 25621867
13 Faulkner R L, Jang M H, Liu X B, Duan X, Sailor K A, Kim J Y, Ge S, Jones E G, Ming G L, Song H, Cheng H J (2008). Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci USA, 105(37): 14157-14162
https://doi.org/10.1073/pnas.0806658105 pmid: 18780780
14 Gao P, Postiglione M P, Krieger T G, Hernandez L, Wang C, Han Z, Streicher C, Papusheva E, Insolera R, Chugh K, Kodish O, Huang K, Simons B D, Luo L, Hippenmeyer S, Shi S H (2014). Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell, 159(4): 775-788
https://doi.org/10.1016/j.cell.2014.10.027 pmid: 25417155
15 Ge S, Goh E L, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589-593
https://doi.org/10.1038/nature04404 pmid: 16341203
16 Hodge R D, Garcia A J 3rd, Elsen G E, Nelson B R, Mussar K E, Reiner S L, Ramirez J M, Hevner R F (2013). Tbr2 expression in Cajal-Retzius cells and intermediate neuronal progenitors is required for morphogenesis of the dentate gyrus. J Neurosci, 33(9): 4165-4180
https://doi.org/10.1523/JNEUROSCI.4185-12.2013 pmid: 23447624
17 Hodge R D, Kowalczyk T D, Wolf S A, Encinas J M, Rippey C, Enikolopov G, Kempermann G, Hevner R F (2008). Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J Neurosci, 28(14): 3707-3717
https://doi.org/10.1523/JNEUROSCI.4280-07.2008 pmid: 18385329
18 Hodge R D, Nelson B R, Kahoud R J, Yang R, Mussar K E, Reiner S L, Hevner R F (2012). Tbr2 is essential for hippocampal lineage progression from neural stem cells to intermediate progenitors and neurons. J Neurosci, 32(18): 6275-6287
https://doi.org/10.1523/JNEUROSCI.0532-12.2012 pmid: 22553033
19 Jang M H, Bonaguidi M A, Kitabatake Y, Sun J, Song J, Kang E, Jun H, Zhong C, Su Y, Guo J U, Wang M X, Sailor K A, Kim J Y, Gao Y, Christian K M, Ming G L, Song H (2013). Secreted frizzled-related protein 3 regulates activity-dependent adult hippocampal neurogenesis. Cell Stem Cell, 12(2): 215-223
https://doi.org/10.1016/j.stem.2012.11.021 pmid: 23395446
20 Jiruska P, Shtaya A B, Bodansky D M, Chang W C, Gray W P, Jefferys J G (2013). Dentate gyrus progenitor cell proliferation after the onset of spontaneous seizures in the tetanus toxin model of temporal lobe epilepsy. Neurobiol Dis, 54: 492-498
https://doi.org/10.1016/j.nbd.2013.02.001 pmid: 23439313
21 Kahoud R J, Elsen G E, Hevner R F, Hodge R D (2014). Conditional ablation of Tbr2 results in abnormal development of the olfactory bulbs and subventricular zone-rostral migratory stream. Dev Dyn, 243(3): 440-450
https://doi.org/10.1002/dvdy.24090 pmid: 24550175
22 Kempermann G, Kuhn H G, Gage F H (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386(6624): 493-495
https://doi.org/10.1038/386493a0 pmid: 9087407
23 Kim E J, Ables J L, Dickel L K, Eisch A J, Johnson J E (2011). Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS ONE, 6(3): e18472
https://doi.org/10.1371/journal.pone.0018472 pmid: 21483754
24 Kim J Y, Liu C Y, Zhang F, Duan X, Wen Z, Song J, Feighery E, Lu B, Rujescu D, St Clair D, Christian K, Callicott J H, Weinberger D R, Song H, Ming G L (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell, 148(5): 1051-1064
https://doi.org/10.1016/j.cell.2011.12.037 pmid: 22385968
25 Kronenberg G, Reuter K, Steiner B, Brandt M D, Jessberger S, Yamaguchi M, Kempermann G (2003). Subpopulations of proliferating cells of the adult hippocampus respond differently to physiological neurogenic stimuli. J Comp Neurol, 467(4): 455-463
https://doi.org/10.1002/cne.10945 pmid: 14624480
26 Kuhn H G, Dickinson-Anson H, Gage F H (1996). Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci, 16(6): 2027-2033
pmid: 8604047
27 Liu P, Jenkins N A, Copeland N G (2003). A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res, 13(3): 476-484
https://doi.org/10.1101/gr.749203 pmid: 12618378
28 Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, G?tz M, Haas C A, Kempermann G, Taylor V, Giachino C (2010). Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell, 6(5): 445-456
https://doi.org/10.1016/j.stem.2010.03.017 pmid: 20452319
29 Lugert S, Vogt M, Tchorz J S, Müller M, Giachino C, Taylor V (2012). Homeostatic neurogenesis in the adult hippocampus does not involve amplification of Ascl1(high) intermediate progenitors. Nat Commun, 3: 670
https://doi.org/10.1038/ncomms1670 pmid: 22334073
30 Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4): 687-702
https://doi.org/10.1016/j.neuron.2011.05.001 pmid: 21609825
31 Muzumdar M D, Tasic B, Miyamichi K, Li L, Luo L (2007). A global double-fluorescent Cre reporter mouse. Genesis, 45(9): 593-605
https://doi.org/10.1002/dvg.20335 pmid: 17868096
32 Olariu A, Cleaver K M, Cameron H A (2007). Decreased neurogenesis in aged rats results from loss of granule cell precursors without lengthening of the cell cycle. J Comp Neurol, 501(4): 659-667
https://doi.org/10.1002/cne.21268 pmid: 17278139
33 Piatti V C, Davies-Sala M G, Espósito M S, Mongiat L A, Trinchero M F, Schinder A F (2011). The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J Neurosci, 31(21): 7715-7728
https://doi.org/10.1523/JNEUROSCI.1380-11.2011 pmid: 21613484
34 Pimeisl I M, Tanriver Y, Daza R A, Vauti F, Hevner R F, Arnold H H, Arnold S J (2013). Generation and characterization of a tamoxifen-inducible Eomes(CreER) mouse line. Genesis, 51(10): 725-733
https://doi.org/10.1002/dvg.22417 pmid: 23897762
35 Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, Alvarez-Buylla A (2013). Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. Proc Natl Acad Sci USA, 110(11): E1045-E1054
https://doi.org/10.1073/pnas.1219563110 pmid: 23431204
36 Seri B, García-Verdugo J M, McEwen B S, Alvarez-Buylla A (2001). Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci, 21(18): 7153-7160
pmid: 11549726
37 Sessa A, Mao C A, Hadjantonakis A K, Klein W H, Broccoli V (2008). Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron, 60(1): 56-69
https://doi.org/10.1016/j.neuron.2008.09.028 pmid: 18940588
38 Sierra A, Encinas J M, Deudero J J, Chancey J H, Enikolopov G, Overstreet-Wadiche L S, Tsirka S E, Maletic-Savatic M (2010). Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell, 7(4): 483-495
https://doi.org/10.1016/j.stem.2010.08.014 pmid: 20887954
39 Song J, Sun J, Moss J, Wen Z, Sun G J, Hsu D, Zhong C, Davoudi H, Christian K M, Toni N, Ming G L, Song H (2013). Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nat Neurosci, 16(12): 1728-1730
https://doi.org/10.1038/nn.3572 pmid: 24212671
40 Song J, Zhong C, Bonaguidi M A, Sun G J, Hsu D, Gu Y, Meletis K, Huang Z J, Ge S, Enikolopov G, Deisseroth K, Luscher B, Christian K M, Ming G L, Song H (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature, 489(7414): 150-154
https://doi.org/10.1038/nature11306 pmid: 22842902
41 Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Bostr?m E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219-1227
https://doi.org/10.1016/j.cell.2013.05.002 pmid: 23746839
42 Srinivas S, Watanabe T, Lin C S, William C M, Tanabe Y, Jessell T M, Costantini F (2001). Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol, 1(1): 4
https://doi.org/10.1186/1471-213X-1-4 pmid: 11299042
43 Steiner B, Zurborg S, H?rster H, Fabel K, Kempermann G (2008). Differential 24 h responsiveness of Prox1-expressing precursor cells in adult hippocampal neurogenesis to physical activity, environmental enrichment, and kainic acid-induced seizures. Neuroscience, 154(2): 521-529
https://doi.org/10.1016/j.neuroscience.2008.04.023 pmid: 18502050
44 Sun G J, Sailor K A, Mahmood Q A, Chavali N, Christian K M, Song H, Ming G L (2013). Seamless reconstruction of intact adult-born neurons by serial end-block imaging reveals complex axonal guidance and development in the adult hippocampus. J Neurosci, 33(28): 11400-11411
https://doi.org/10.1523/JNEUROSCI.1374-13.2013 pmid: 23843512
45 Toni N, Laplagne D A, Zhao C, Lombardi G, Ribak C E, Gage F H, Schinder A F (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11(8): 901-907
https://doi.org/10.1038/nn.2156 pmid: 18622400
46 van Praag H, Kempermann G, Gage F H (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci, 2(3): 266-270
https://doi.org/10.1038/6368 pmid: 10195220
47 van Praag H, Schinder A F, Christie B R, Toni N, Palmer T D, Gage F H (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(6875): 1030-1034
https://doi.org/10.1038/4151030a pmid: 11875571
48 Vasistha N A, Garcia-Moreno F, Arora S, Cheung A F, Arnold S J, Robertson E J, Molnar Z (2014). Cortical and clonal contribution of Tbr2 expressing progenitors in the developing mouse brain. Cereb Cortex, pii: bhu125. [Epub ahead of print]
49 Villeda S A, Luo J, Mosher K I, Zou B, Britschgi M, Bieri G, Stan T M, Fainberg N, Ding Z, Eggel A, Lucin K M, Czirr E, Park J S, Couillard-Després S, Aigner L, Li G, Peskind E R, Kaye J A, Quinn J F, Galasko D R, Xie X S, Rando T A, Wyss-Coray T (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 477(7362): 90-94
https://doi.org/10.1038/nature10357 pmid: 21886162
[1] Paul J. Lucassen,Charlotte A. Oomen. Stress, hippocampal neurogenesis and cognition: functional correlations[J]. Front. Biol., 2016, 11(3): 182-192.
[2] Fatih Semerci,Mirjana Maletic-Savatic. Transgenic mouse models for studying adult neurogenesis[J]. Front. Biol., 2016, 11(3): 151-167.
[3] Martha Hvoslef-Eide,Charlotte A. Oomen. Adult neurogenesis and pattern separation in rodents: A critical evaluation of data, tasks and interpretation[J]. Front. Biol., 2016, 11(3): 168-181.
[4] Cristina V. Dieni,Adam J. Wieckert,Linda Overstreet-Wadiche. Development of glutamatergic innervation during maturation of adult-born neurons[J]. Front. Biol., 2015, 10(4): 310-320.
[5] Ruth Beckervordersandforth,Benjamin M. Häberle,D. Chichung Lie. Metabolic regulation of adult stem cell-derived neurons[J]. Front. Biol., 2015, 10(2): 107-116.
[6] Marlen Knobloch,Sebastian Jessberger. Metabolic control of adult neural stem cell behavior[J]. Front. Biol., 2015, 10(2): 100-106.
[7] Gary R. HIME,Nicole SIDDALL,Katja HORVAY,Helen E. ABUD. Analyzing stem cell dynamics: use of cutting edge genetic approaches in model organisms[J]. Front. Biol., 2015, 10(1): 1-10.
[8] Simon HIPPENMEYER. Dissection of gene function at clonal level using mosaic analysis with double markers[J]. Front Biol, 2013, 8(6): 557-568.
[9] Simon M.G. BRAUN, Sebastian JESSBERGER. Adult neurogenesis in the mammalian brain[J]. Front Biol, 2013, 8(3): 295-304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed