|
|
Transgenic mouse models for studying adult neurogenesis |
Fatih Semerci1,2,Mirjana Maletic-Savatic1,2,3,*( ) |
1. Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA 2. Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA 3. Department of Pediatrics-Neurology, Department of Neuroscience, and Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA |
|
|
Abstract The mammalian hippocampus shows a remarkable capacity for continued neurogenesis throughout life. Newborn neurons, generated by the radial neural stem cells (NSCs), are important for learning and memory as well as mood control. During aging, the number and responses of NSCs to neurogenic stimuli diminish, leading to decreased neurogenesis and age-associated cognitive decline and psychiatric disorders. Thus, adult hippocampal neurogenesis has garnered significant interest because targeting it could be a novel potential therapeutic strategy for these disorders. However, if we are to use neurogenesis to halt or reverse hippocampal-related pathology, we need to understand better the core molecular machinery that governs NSC and their progeny. In this review, we summarize a wide variety of mouse models used in adult neurogenesis field, present their advantages and disadvantages based on specificity and efficiency of labeling of different cell types, and review their contribution to our understanding of the biology and the heterogeneity of different cell types found in adult neurogenic niches.
|
Keywords
adult neurogenesis
mouse models
neural stem cells
neuroprogenitors
lineage tracing
|
Corresponding Author(s):
Mirjana Maletic-Savatic
|
Just Accepted Date: 25 May 2016
Online First Date: 23 June 2016
Issue Date: 05 July 2016
|
|
1a |
Abiega O, Beccari S, Diaz-Aparicio I, Nadjar A, Layé S, Leyrolle Q, Gómez-Nicola D, Domercq M, Pérez-Samartín A, Sánchez-Zafra V, Paris I, Valero J, Savage JC, Hui CW, Tremblay MÈ, Deudero JJ, Brewster AL, Anderson AE, Zaldumbide L, Galbarriatu L, Marinas A, Vivanco M D, Matute C, Maletic-Savatic M, Encinas JM, Sierra A (2016). Neuronal hyperactivity disturbs ATP microgradients, impairs microglial motility, and reduces phagocytic receptor expression triggering apoptosis/microglial phagocytosis uncoupling. PLoS Biol, 14(5): e1002466
https://doi.org/10.1186/1477-5956-11-18
pmid: 23621913
|
1 |
Abraham A B, Bronstein R, Chen E I, Koller A, Ronfani L, Maletic-Savatic M, Tsirka S E (2013a). Members of the high mobility group B protein family are dynamically expressed in embryonic neural stem cells. Proteome Sci, 11(1): 18
https://doi.org/10.1186/1477-5956-11-18
pmid: 23621913
|
2 |
Abraham A B, Bronstein R, Reddy A S, Maletic-Savatic M, Aguirre A, Tsirka S E (2013b). Aberrant neural stem cell proliferation and increased adult neurogenesis in mice lacking chromatin protein HMGB2. PLoS ONE, 8(12): e84838
https://doi.org/10.1371/journal.pone.0084838
pmid: 24391977
|
3 |
Ahn S, Joyner A L (2004). Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell, 118(4): 505–516
https://doi.org/10.1016/j.cell.2004.07.023
pmid: 15315762
|
4 |
Ahn S, Joyner A L (2005). In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature, 437(7060): 894–897
https://doi.org/10.1038/nature03994
pmid: 16208373
|
5 |
Aimone J B, Deng W, Gage F H (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron, 70(4): 589–596
https://doi.org/10.1016/j.neuron.2011.05.010
pmid: 21609818
|
6 |
Akazawa C, Sasai Y, Nakanishi S, Kageyama R (1992). Molecular characterization of a rat negative regulator with a basic helix-loop-helix structure predominantly expressed in the developing nervous system. J Biol Chem, 267(30): 21879–21885
pmid: 1400497
|
7 |
Allen G I, Maletić-Savatić M (2011). Sparse non-negative generalized PCA with applications to metabolomics. Bioinformatics, 27(21): 3029–3035
https://doi.org/10.1093/bioinformatics/btr522
pmid: 21930672
|
8 |
Allen G I, Peterson C, Vannucci M, Maletić-Savatić M (2013). Regularized partial least squares with an application to NMR spectroscopy. Stat Anal Data Min, 6(4): 302–314
https://doi.org/10.1002/sam.11169
pmid: 24511361
|
9 |
Altman J (1962). Are new neurons formed in the brains of adult mammals? Science, 135(3509): 1127–1128
https://doi.org/10.1126/science.135.3509.1127
pmid: 13860748
|
10 |
Alunni A, Krecsmarik M, Bosco A, Galant S, Pan L, Moens C B, Bally-Cuif L (2013). Notch3 signaling gates cell cycle entry and limits neural stem cell amplification in the adult pallium. Development, 140(16): 3335–3347
https://doi.org/10.1242/dev.095018
pmid: 23863484
|
11 |
Alvarez-Buylla A, Kohwi M, Nguyen T M, Merkle F T (2008). The heterogeneity of adult neural stem cells and the emerging complexity of their niche. Cold Spring Harb Symp Quant Biol, 73(0): 357–365
https://doi.org/10.1101/sqb.2008.73.019
pmid: 19022766
|
12 |
Andersson E R, Sandberg R, Lendahl U (2011). Notch signaling: simplicity in design, versatility in function. Development, 138(17): 3593–3612
https://doi.org/10.1242/dev.063610
pmid: 21828089
|
13 |
Anthony T E, Klein C, Fishell G, Heintz N (2004). Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron, 41(6): 881–890
https://doi.org/10.1016/S0896-6273(04)00140-0
pmid: 15046721
|
14 |
Arnold J M, Choi W T, Sreekumar A, Maletić-Savatić M (2015). Analytical strategies for studying stem cell metabolism. Front Biol (Beijing), 10(2): 141–153
https://doi.org/10.1007/s11515-015-1357-z
pmid: 26213533
|
15 |
Arnold K, Sarkar A, Yram M A, Polo J M, Bronson R, Sengupta S, Seandel M, Geijsen N, Hochedlinger K (2011). Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell, 9(4): 317–329
https://doi.org/10.1016/j.stem.2011.09.001
pmid: 21982232
|
16 |
Aubert J, Stavridis M P, Tweedie S, O’Reilly M, Vierlinger K, Li M, Ghazal P, Pratt T, Mason J O, Roy D, Smith A (2003). Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knock-in mice. Proc Natl Acad Sci USA, 100(Suppl 1): 11836–11841
https://doi.org/10.1073/pnas.1734197100
pmid: 12923295
|
17 |
Balordi F, Fishell G (2007). Mosaic removal of hedgehog signaling in the adult SVZ reveals that the residual wild-type stem cells have a limited capacity for self-renewal. J Neurosci, 27(52): 14248–14259
https://doi.org/10.1523/JNEUROSCI.4531-07.2007
pmid: 18160632
|
18 |
Balthasar N, Coppari R, McMinn J, Liu S M, Lee C E, Tang V, Kenny C D, McGovern R A, Chua S C Jr, Elmquist J K, Lowell B B (2004). Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron, 42(6): 983–991
https://doi.org/10.1016/j.neuron.2004.06.004
pmid: 15207242
|
19 |
Basak O, Giachino C, Fiorini E, Macdonald H R, Taylor V (2012). Neurogenic subventricular zone stem/progenitor cells are Notch1-dependent in their active but not quiescent state. J Neurosci, 32(16): 5654–5666
https://doi.org/10.1523/JNEUROSCI.0455-12.2012
pmid: 22514327
|
20 |
Basak O, Taylor V (2007). Identification of self-replicating multipotent progenitors in the embryonic nervous system by high Notch activity and Hes5 expression. Eur J Neurosci, 25(4): 1006–1022
https://doi.org/10.1111/j.1460-9568.2007.05370.x
pmid: 17331197
|
21 |
Beckervordersandforth R, Deshpande A, Schäffner I, Huttner H B, Lepier A, Lie D C, Götz M (2014). In vivo targeting of adult neural stem cells in the dentate gyrus by a split-cre approach. Stem Cell Rep, 2(2): 153–162
https://doi.org/10.1016/j.stemcr.2014.01.004
pmid: 24527389
|
22 |
Beech R D, Cleary M A, Treloar H B, Eisch A J, Harrist A V, Zhong W, Greer C A, Duman R S, Picciotto M R (2004). Nestin promoter/enhancer directs transgene expression to precursors of adult generated periglomerular neurons. J Comp Neurol, 475(1): 128–141
https://doi.org/10.1002/cne.20179
pmid: 15176089
|
23 |
Berg D A, Yoon K J, Will B, Xiao A Y, Kim N S, Christian K M, Song H, Ming G (2015). Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis. Frontiers in Biology, 10(3): 262–271
https://doi.org/10.1007/s11515-015-1364-0
|
24 |
Berninger B, Costa M R, Koch U, Schroeder T, Sutor B, Grothe B, Götz M (2007). Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci, 27(32): 8654–8664
https://doi.org/10.1523/JNEUROSCI.1615-07.2007
pmid: 17687043
|
25 |
Bertrand N, Castro D S, Guillemot F (2002). Proneural genes and the specification of neural cell types. Nat Rev Neurosci, 3(7): 517–530
https://doi.org/10.1038/nrn874
pmid: 12094208
|
26 |
Betz U A, Vosshenrich C A, Rajewsky K, Müller W (1996). Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination. Curr Biol, 6(10): 1307–1316
https://doi.org/10.1016/S0960-9822(02)70717-3
pmid: 8939573
|
27 |
Bonaguidi M A, Song J, Ming G L, Song H (2012). A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol, 22(5): 754–761
https://doi.org/10.1016/j.conb.2012.03.013
pmid: 22503352
|
28 |
Bonaguidi M A, Wheeler M A, Shapiro J S, Stadel R P, Sun G J, Ming G L, Song H (2011). In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 145(7): 1142–1155
https://doi.org/10.1016/j.cell.2011.05.024
pmid: 21664664
|
29 |
Bond A M, Ming G L, Song H (2015). Adult mammalian neural stem cells and neurogenesis: Five Decades Later. Cell Stem Cell, 17(4): 385–395
https://doi.org/10.1016/j.stem.2015.09.003
pmid: 26431181
|
30 |
Bracko O, Singer T, Aigner S, Knobloch M, Winner B, Ray J, Clemenson G D Jr, Suh H, Couillard-Despres S, Aigner L, Gage F H, Jessberger S (2012). Gene expression profiling of neural stem cells and their neuronal progeny reveals IGF2 as a regulator of adult hippocampal neurogenesis. J Neurosci, 32(10): 3376–3387
https://doi.org/10.1523/JNEUROSCI.4248-11.2012
pmid: 22399759
|
31 |
Breunig J J, Silbereis J, Vaccarino F M, Sestan N, Rakic P (2007). Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc Natl Acad Sci USA, 104(51): 20558–20563
https://doi.org/10.1073/pnas.0710156104
pmid: 18077357
|
32 |
Brill M S, Ninkovic J, Winpenny E, Hodge R D, Ozen I, Yang R, Lepier A, Gascón S, Erdelyi F, Szabo G, Parras C, Guillemot F, Frotscher M, Berninger B, Hevner R F, Raineteau O, Götz M (2009). Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci, 12(12): 1524–1533
https://doi.org/10.1038/nn.2416
pmid: 19881504
|
33 |
Cameron H A, Woolley C S, McEwen B S, Gould E (1993). Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience, 56(2): 337–344
https://doi.org/10.1016/0306-4522(93)90335-D
pmid: 8247264
|
34 |
Casper K B, McCarthy K D (2006). GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Mol Cell Neurosci, 31(4): 676–684
https://doi.org/10.1016/j.mcn.2005.12.006
pmid: 16458536
|
35 |
Chapouton P, Skupien P, Hesl B, Coolen M, Moore J C, Madelaine R, Kremmer E, Faus-Kessler T, Blader P, Lawson N D, Bally-Cuif L (2010). Notch activity levels control the balance between quiescence and recruitment of adult neural stem cells. J Neurosci, 30(23): 7961–7974
https://doi.org/10.1523/JNEUROSCI.6170-09.2010
pmid: 20534844
|
36 |
Chen J, Kelz M B, Zeng G, Sakai N, Steffen C, Shockett P E, Picciotto M R, Duman R S, Nestler E J (1998). Transgenic animals with inducible, targeted gene expression in brain. Mol Pharmacol, 54(3): 495–503
pmid: 9730908
|
37 |
Chojnacki A K, Mak G K, Weiss S (2009). Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat Rev Neurosci, 10(2): 153–163
https://doi.org/10.1038/nrn2571
pmid: 19153578
|
38 |
Chuang J Z, Milner T A, Sung C H (2001). Subunit heterogeneity of cytoplasmic dynein: Differential expression of 14 kDa dynein light chains in rat hippocampus. J Neurosci, 21(15): 5501–5512
pmid: 11466421
|
39 |
Clelland C D, Choi M, Romberg C, Clemenson G D Jr, Fragniere A, Tyers P, Jessberger S, Saksida L M, Barker R A, Gage F H, Bussey T J (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325(5937): 210–213
https://doi.org/10.1126/science.1173215
pmid: 19590004
|
40 |
Codega P, Silva-Vargas V, Paul A, Maldonado-Soto A R, Deleo A M, Pastrana E, Doetsch F (2014). Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron, 82(3): 545–559
https://doi.org/10.1016/j.neuron.2014.02.039
pmid: 24811379
|
41 |
Collignon J (1992). Study of a new family of genes related to the mammalian testis determining gene (Phd Thesis: CNAA London).
|
42 |
Couillard-Despres S, Winner B, Karl C, Lindemann G, Schmid P, Aigner R, Laemke J, Bogdahn U, Winkler J, Bischofberger J, Aigner L (2006). Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. Eur J Neurosci, 24(6): 1535–1545
https://doi.org/10.1111/j.1460-9568.2006.05039.x
pmid: 17004917
|
43 |
Cowley M A, Smart J L, Rubinstein M, Cerdán M G, Diano S, Horvath T L, Cone R D, Low M J (2001). Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature, 411(6836): 480–484
https://doi.org/10.1038/35078085
pmid: 11373681
|
44 |
D’Amour K A, Gage F H (2003). Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells. Proc Natl Acad Sci USA, 100(Suppl 1): 11866–11872
https://doi.org/10.1073/pnas.1834200100
pmid: 12923297
|
45 |
David D J, Wang J, Samuels B A, Rainer Q, David I, Gardier A M, Hen R (2010). Implications of the functional integration of adult-born hippocampal neurons in anxiety-depression disorders. Neuroscientist, 16(5): 578–591
https://doi.org/10.1177/1073858409360281
pmid: 20889967
|
46 |
Day K, Shefer G, Richardson J B, Enikolopov G, Yablonka-Reuveni Z (2007). Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol, 304(1): 246–259
https://doi.org/10.1016/j.ydbio.2006.12.026
pmid: 17239845
|
47 |
DeCarolis N A, Mechanic M, Petrik D, Carlton A, Ables J L, Malhotra S, Bachoo R, Götz M, Lagace D C, Eisch A J (2013). In vivo contribution of nestin- and GLAST-lineage cells to adult hippocampal neurogenesis. Hippocampus, 23(8): 708–719
https://doi.org/10.1002/hipo.22130
pmid: 23554226
|
48 |
Dedesma C, Chuang J Z, Alfinito P D, Sung C H (2006). Dynein light chain Tctex-1 identifies neural progenitors in adult brain. J Comp Neurol, 496(6): 773–786
https://doi.org/10.1002/cne.20958
pmid: 16628620
|
49 |
Deng W, Saxe M D, Gallina I S, Gage F H (2009). Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci, 29(43): 13532–13542
https://doi.org/10.1523/JNEUROSCI.3362-09.2009
pmid: 19864566
|
50 |
Djuric P M, Wagshul M E, Henn F B, Enikolopov G, Maletic-Savatic M ( (2008). Singular Value Decomposition algorithm for detection of neural progenitor cells in the live human brain. Science, 321: 640
https://doi.org/10.1126/science.1156889
pmid: 26380846
|
51 |
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 17(13): 5046–5061
pmid: 9185542
|
52 |
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1999). Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA, 96(20): 11619–11624
https://doi.org/10.1073/pnas.96.20.11619
pmid: 10500226
|
53 |
Dranovsky A, Picchini A M, Moadel T, Sisti A C, Yamada A, Kimura S, Leonardo E D, Hen R (2011). Experience dictates stem cell fate in the adult hippocampus. Neuron, 70(5): 908–923
https://doi.org/10.1016/j.neuron.2011.05.022
pmid: 21658584
|
54 |
Dupret D, Revest J M, Koehl M, Ichas F, De Giorgi F, Costet P, Abrous D N, Piazza P V (2008). Spatial relational memory requires hippocampal adult neurogenesis. PLoS One, 3: e1959
|
55 |
Ellis P, Fagan B M, Magness S T, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004). SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci, 26(2-4): 148–165
https://doi.org/10.1159/000082134
pmid: 15711057
|
56 |
Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566–579
https://doi.org/10.1016/j.stem.2011.03.010
pmid: 21549330
|
57 |
Encinas J M, Vaahtokari A, Enikolopov G (2006). Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA, 103(21): 8233–8238
https://doi.org/10.1073/pnas.0601992103
pmid: 16702546
|
58 |
Englund C, Fink A, Lau C, Pham D, Daza R A, Bulfone A, Kowalczyk T, Hevner R F (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci, 25(1): 247–251
https://doi.org/10.1523/JNEUROSCI.2899-04.2005
pmid: 15634788
|
59 |
Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
https://doi.org/10.1038/3305
pmid: 9809557
|
60 |
Farioli-Vecchioli S, Saraulli D, Costanzi M, Pacioni S, Cinà I, Aceti M, Micheli L, Bacci A, Cestari V, Tirone F (2008). The timing of differentiation of adult hippocampal neurons is crucial for spatial memory. PLoS Biol, 6(10): e246
https://doi.org/10.1371/journal.pbio.0060246
pmid: 18842068
|
61 |
Farnsworth D R, Bayraktar O A, Doe C Q (2015). Aging Neural Progenitors Lose Competence to Respond to Mitogenic Notch Signaling. Curr Biol, 25(23): 3058–3068
https://doi.org/10.1016/j.cub.2015.10.027
pmid: 26585279
|
62 |
Favaro R, Valotta M, Ferri A L, Latorre E, Mariani J, Giachino C, Lancini C, Tosetti V, Ottolenghi S, Taylor V, Nicolis S K (2009). Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci, 12(10): 1248–1256
https://doi.org/10.1038/nn.2397
pmid: 19734891
|
63 |
Ferri A L, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A, Ottolenghi S, Pandolfi P P, Sala M, DeBiasi S, Nicolis S K (2004). Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 131(15): 3805–3819
https://doi.org/10.1242/dev.01204
pmid: 15240551
|
64 |
Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang L P, Yamaguchi M, Kettenmann H, Kempermann G (2003). Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci, 23(3): 373–382
https://doi.org/10.1016/S1044-7431(03)00060-5
pmid: 12837622
|
65 |
Gama-Norton L, Ferrando E, Ruiz-Herguido C, Liu Z, Guiu J, Islam A B, Lee S U, Yan M, Guidos C J, López-Bigas N, Maeda T, Espinosa L, Kopan R, Bigas A (2015). Notch signal strength controls cell fate in the haemogenic endothelium. Nat Commun, 6: 8510
https://doi.org/10.1038/ncomms9510
pmid: 26465397
|
66 |
Ganat Y M, Silbereis J, Cave C, Ngu H, Anderson G M, Ohkubo Y, Ment L R, Vaccarino F M (2006). Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. J Neurosci, 26(33): 8609–8621
https://doi.org/10.1523/JNEUROSCI.2532-06.2006
pmid: 16914687
|
67 |
Garcia A D, Doan N B, Imura T, Bush T G, Sofroniew M V (2004). GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci, 7(11): 1233–1241
https://doi.org/10.1038/nn1340
pmid: 15494728
|
68 |
Gheusi G, Cremer H, McLean H, Chazal G, Vincent J D, Lledo P M (2000). Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc Natl Acad Sci USA, 97(4): 1823–1828
https://doi.org/10.1073/pnas.97.4.1823
pmid: 10677540
|
69 |
Giachino C, Basak O, Lugert S, Knuckles P, Obernier K, Fiorelli R, Frank S, Raineteau O, Alvarez-Buylla A, Taylor V (2014). Molecular diversity subdivides the adult forebrain neural stem cell population. Stem Cells, 32(1): 70–84
https://doi.org/10.1002/stem.1520
pmid: 23964022
|
70 |
Giachino C, Taylor V (2014). Notching up neural stem cell homogeneity in homeostasis and disease. Front Neurosci, 8: 32
https://doi.org/10.3389/fnins.2014.00032
pmid: 24611040
|
71 |
Glowatzki E, Cheng N, Hiel H, Yi E, Tanaka K, Ellis-Davies G C, Rothstein J D, Bergles D E (2006). The glutamate-aspartate transporter GLAST mediates glutamate uptake at inner hair cell afferent synapses in the mammalian cochlea. J Neurosci, 26(29): 7659–7664
https://doi.org/10.1523/JNEUROSCI.1545-06.2006
pmid: 16855093
|
72 |
Gong S, Zheng C, Doughty M L, Losos K, Didkovsky N, Schambra U B, Nowak N J, Joyner A, Leblanc G, Hatten M E, Heintz N (2003). A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature, 425(6961): 917–925
https://doi.org/10.1038/nature02033
pmid: 14586460
|
73 |
Hartfuss E, Galli R, Heins N, Götz M (2001). Characterization of CNS precursor subtypes and radial glia. Dev Biol, 229(1): 15–30
https://doi.org/10.1006/dbio.2000.9962
pmid: 11133151
|
74 |
Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R (2004). Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development, 131(22): 5539–5550
https://doi.org/10.1242/dev.01436
pmid: 15496443
|
75 |
Hayashi A, Koob J W, Liu D Z, Tong A Y, Hunter D A, Parsadanian A, Mackinnon S E, Myckatyn T M (2007). A double-transgenic mouse used to track migrating Schwann cells and regenerating axons following engraftment of injured nerves. Exp Neurol, 207(1): 128–138
https://doi.org/10.1016/j.expneurol.2007.06.004
pmid: 17628544
|
76 |
Hegedus B, Dasgupta B, Shin J E, Emnett R J, Hart-Mahon E K, Elghazi L, Bernal-Mizrachi E, Gutmann D H (2007). Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell, 1(4): 443–457
https://doi.org/10.1016/j.stem.2007.07.008
pmid: 18371380
|
77 |
Heine V M, Zareno J, Maslam S, Joëls M, Lucassen P J (2005). Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur J Neurosci, 21(5): 1304–1314
https://doi.org/10.1111/j.1460-9568.2005.03951.x
pmid: 15813940
|
78 |
Hirrlinger P G, Scheller A, Braun C, Quintela-Schneider M, Fuss B, Hirrlinger J, Kirchhoff F (2005). Expression of reef coral fluorescent proteins in the central nervous system of transgenic mice. Mol Cell Neurosci, 30(3): 291–303
https://doi.org/10.1016/j.mcn.2005.08.011
pmid: 16169246
|
79 |
Hockfield S, McKay R D (1985). Identification of major cell classes in the developing mammalian nervous system. J Neurosci, 5(12): 3310–3328
pmid: 4078630
|
80 |
Hodge R D, Kowalczyk T D, Wolf S A, Encinas J M, Rippey C, Enikolopov G, Kempermann G, Hevner R F (2008). Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J Neurosci, 28(14): 3707–3717
https://doi.org/10.1523/JNEUROSCI.4280-07.2008
pmid: 18385329
|
81 |
Hunt R F, Dinday M T, Hindle-Katel W, Baraban S C (2012). LIS1 deficiency promotes dysfunctional synaptic integration of granule cells generated in the developing and adult dentate gyrus. J Neurosci, 32(37): 12862–12875
https://doi.org/10.1523/JNEUROSCI.1286-12.2012
pmid: 22973010
|
82 |
Imayoshi I, Ohtsuka T, Metzger D, Chambon P, Kageyama R (2006). Temporal regulation of Cre recombinase activity in neural stem cells. Genesis, 44(5): 233–238
https://doi.org/10.1002/dvg.20212
pmid: 16652364
|
83 |
Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008). Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci, 11(10): 1153–1161
https://doi.org/10.1038/nn.2185
pmid: 18758458
|
84 |
Jacobs B L, van Praag H, Gage F H (2000). Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry, 5(3): 262–269
https://doi.org/10.1038/sj.mp.4000712
pmid: 10889528
|
85 |
Jessberger S, Toni N, Clemenson G D Jr, Ray J, Gage F H (2008). Directed differentiation of hippocampal stem/progenitor cells in the adult brain. Nat Neurosci, 11(8): 888–893
https://doi.org/10.1038/nn.2148
pmid: 18587391
|
86 |
Joëls M, Karst H, Krugers H J, Lucassen P J (2007). Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol, 28(2-3): 72–96
https://doi.org/10.1016/j.yfrne.2007.04.001
pmid: 17544065
|
87 |
Johansson C B, Lothian C, Molin M, Okano H, Lendahl U (2002). Nestin enhancer requirements for expression in normal and injured adult CNS. J Neurosci Res, 69(6): 784–794
https://doi.org/10.1002/jnr.10376
pmid: 12205672
|
88 |
Josephson R, Müller T, Pickel J, Okabe S, Reynolds K, Turner P A, Zimmer A, McKay R D (1998). POU transcription factors control expression of CNS stem cell-specific genes. Development, 125(16): 3087–3100
pmid: 9671582
|
89 |
Jourdon A, Gresset A, Spassky N, Charnay P, Topilko P, Santos R (2015). Prss56, a novel marker of adult neurogenesis in the mouse brain. Brain Struct Funct, doi: 10.1007/s00429-015-1171-z
|
90 |
Jump D B, Oppenheimer J H (1985). High basal expression and 3,5,3′-triiodothyronine regulation of messenger ribonucleic acid S14 in lipogenic tissues. Endocrinology, 117(6): 2259–2266
https://doi.org/10.1210/endo-117-6-2259
pmid: 4065033
|
91 |
Kageyama R, Ohtsuka T (1999). The Notch-Hes pathway in mammalian neural development. Cell Res, 9(3): 179–188
https://doi.org/10.1038/sj.cr.7290016
pmid: 10520600
|
92 |
Kamachi Y, Kondoh H (2013). Sox proteins: regulators of cell fate specification and differentiation. Development, 140(20): 4129–4144
https://doi.org/10.1242/dev.091793
pmid: 24086078
|
93 |
Kang W, Hébert J M (2012). A Sox2 BAC transgenic approach for targeting adult neural stem cells. PLoS ONE, 7(11): e49038
https://doi.org/10.1371/journal.pone.0049038
pmid: 23145058
|
94 |
Karow M, Sánchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, Gascón S, Khan M A, Lie D C, Dellavalle A, Cossu G, Goldbrunner R, Götz M, Berninger B (2012). Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell, 11(4): 471–476
https://doi.org/10.1016/j.stem.2012.07.007
pmid: 23040476
|
95 |
Kawaguchi A, Miyata T, Sawamoto K, Takashita N, Murayama A, Akamatsu W, Ogawa M, Okabe M, Tano Y, Goldman S A, Okano H (2001). Nestin-EGFP transgenic mice: visualization of the self-renewal and multipotency of CNS stem cells. Mol Cell Neurosci, 17(2): 259–273
https://doi.org/10.1006/mcne.2000.0925
pmid: 11178865
|
96 |
Kim E J, Ables J L, Dickel L K, Eisch A J, Johnson J E (2011). Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS ONE, 6(3): e18472
https://doi.org/10.1371/journal.pone.0018472
pmid: 21483754
|
97 |
Kim E J, Leung C T, Reed R R, Johnson J E (2007). In vivo analysis of Ascl1 defined progenitors reveals distinct developmental dynamics during adult neurogenesis and gliogenesis. J Neurosci, 27(47): 12764–12774
https://doi.org/10.1523/JNEUROSCI.3178-07.2007
pmid: 18032648
|
98 |
Kitamura T, Saitoh Y, Takashima N, Murayama A, Niibori Y, Ageta H, Sekiguchi M, Sugiyama H, Inokuchi K (2009). Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell, 139(4): 814–827
https://doi.org/10.1016/j.cell.2009.10.020
pmid: 19914173
|
99 |
Knobloch M, Braun S M, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493(7431): 226–230
https://doi.org/10.1038/nature11689
pmid: 23201681
|
100 |
Knobloch M, von Schoultz C, Zurkirchen L, Braun S M, Vidmar M, Jessberger S (2014). SPOT14-positive neural stem/progenitor cells in the hippocampus respond dynamically to neurogenic regulators. Stem Cell Rep, 3(5): 735–742
https://doi.org/10.1016/j.stemcr.2014.08.013
pmid: 25418721
|
101 |
Kuo C T, Mirzadeh Z, Soriano-Navarro M, Rasin M, Wang D, Shen J, Sestan N, Garcia-Verdugo J, Alvarez-Buylla A, Jan L Y, Jan Y N (2006). Postnatal deletion of Numb/Numblike reveals repair and remodeling capacity in the subventricular neurogenic niche. Cell, 127(6): 1253–1264
https://doi.org/10.1016/j.cell.2006.10.041
pmid: 17174898
|
102 |
Kwon G S, Hadjantonakis A K (2007). Eomes: GFP-a tool for live imaging cells of the trophoblast, primitive streak, and telencephalon in the mouse embryo. Genesis, 45(4): 208–217
https://doi.org/10.1002/dvg.20293
pmid: 17417802
|
103 |
Lagace D C, Whitman M C, Noonan M A, Ables J L, DeCarolis N A, Arguello A A, Donovan M H, Fischer S J, Farnbauch L A, Beech R D, DiLeone R J, Greer C A, Mandyam C D, Eisch A J (2007). Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. J Neurosci, 27(46): 12623–12629
https://doi.org/10.1523/JNEUROSCI.3812-07.2007
pmid: 18003841
|
104 |
Lai K, Kaspar B K, Gage F H, Schaffer D V (2003). Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci, 6(1): 21–27
https://doi.org/10.1038/nn983
pmid: 12469128
|
105 |
Lendahl U, Zimmerman L B, McKay R D (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60(4): 585–595
https://doi.org/10.1016/0092-8674(90)90662-X
pmid: 1689217
|
106 |
Leung C T, Coulombe P A, Reed R R (2007). Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci, 10(6): 720–726
https://doi.org/10.1038/nn1882
pmid: 17468753
|
107 |
Li D, Takeda N, Jain R, Manderfield L J, Liu F, Li L, Anderson S A, Epstein J A (2015). Hopx distinguishes hippocampal from lateral ventricle neural stem cells. Stem Cell Res (Amst), 15(3): 522–529
https://doi.org/10.1016/j.scr.2015.09.015
pmid: 26451648
|
108 |
Li L, Mignone J, Yang M, Matic M, Penman S, Enikolopov G, Hoffman R M (2003). Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci USA, 100(17): 9958–9961
https://doi.org/10.1073/pnas.1733025100
pmid: 12904579
|
109 |
Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang C C, Kain S R (1998). Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem, 273(52): 34970–34975
https://doi.org/10.1074/jbc.273.52.34970
pmid: 9857028
|
110 |
Lobo M V, Arenas M I, Alonso F J, Gomez G, Bazán E, Paíno C L, Fernández E, Fraile B, Paniagua R, Moyano A, Caso E (2004). Nestin, a neuroectodermal stem cell marker molecule, is expressed in Leydig cells of the human testis and in some specific cell types from human testicular tumours. Cell Tissue Res, 316(3): 369–376
https://doi.org/10.1007/s00441-003-0848-4
pmid: 15127288
|
111 |
Lois C, Alvarez-Buylla A (1994). Long-distance neuronal migration in the adult mammalian brain. Science, 264(5162): 1145–1148
https://doi.org/10.1126/science.8178174
pmid: 8178174
|
112 |
Lothian C, Prakash N, Lendahl U, Wahlström G M (1999). Identification of both general and region-specific embryonic CNS enhancer elements in the nestin promoter. Exp Cell Res, 248(2): 509–519
https://doi.org/10.1006/excr.1999.4417
pmid: 10222142
|
113 |
Lucassen P J, Oomen C A, Naninck E F, Fitzsimons C P, van Dam A M, Czeh B, Korosi A (2015). Regulation of Adult Neurogenesis and Plasticity by (Early) Stress, Glucocorticoids, and Inflammation. Cold Spring Harb Perspect Biol, 7(9): a021303
https://doi.org/10.1101/cshperspect.a021303
pmid: 26330520
|
114 |
Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Götz M, Haas C A, Kempermann G, Taylor V, Giachino C (2010). Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell, 6(5): 445–456
https://doi.org/10.1016/j.stem.2010.03.017
pmid: 20452319
|
115 |
Lugert S, Vogt M, Tchorz J S, Müller M, Giachino C, Taylor V (2012). Homeostatic neurogenesis in the adult hippocampus does not involve amplification of Ascl1(high) intermediate progenitors. Nat Commun, 3: 670
https://doi.org/10.1038/ncomms1670
pmid: 22334073
|
116 |
Luskin M B (1993). Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron, 11(1): 173–189
https://doi.org/10.1016/0896-6273(93)90281-U
pmid: 8338665
|
117 |
Machold R, Hayashi S, Rutlin M, Muzumdar M D, Nery S, Corbin J G, Gritli-Linde A, Dellovade T, Porter J A, Rubin L L, Dudek H, McMahon A P, Fishell G (2003). Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron, 39(6): 937–950
https://doi.org/10.1016/S0896-6273(03)00561-0
pmid: 12971894
|
118a |
Mainen Z F, Maletic-Savatic M, Shi S H, Hayashi Y, Malinow R, Svoboda K (1999). Two-photon imaging in living brain slices. Methods, 18: 231–239
https://doi.org/10.1038/nn1928
pmid: 17603480
|
118 |
Mak G K, Enwere E K, Gregg C, Pakarainen T, Poutanen M, Huhtaniemi I, Weiss S (2007). Male pheromone-stimulated neurogenesis in the adult female brain: possible role in mating behavior. Nat Neurosci, 10(8): 1003–1011
https://doi.org/10.1038/nn1928
pmid: 17603480
|
119 |
Malberg J E, Eisch A J, Nestler E J, Duman R S (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci, 20(24): 9104–9110
pmid: 11124987
|
120 |
Maletić-Savatić M, Vingara L K, Manganas L N, Li Y, Zhang S, Sierra A, Hazel R, Smith D, Wagshul M E, Henn F, Krupp L, Enikolopov G, Benveniste H, Djurić P M, Pelczer I (2008). Metabolomics of neural progenitor cells: a novel approach to biomarker discovery. Cold Spring Harb Symp Quant Biol, 73(0): 389–401
https://doi.org/10.1101/sqb.2008.73.021
pmid: 19022759
|
121 |
Manganas L N, Maletic-Savatic M (2005). Stem cell therapy for central nervous system demyelinating disease. Curr Neurol Neurosci Rep, 5(3): 225–231
https://doi.org/10.1007/s11910-005-0050-z
pmid: 15865888
|
122 |
Manganas L N, Zhang X, Li Y, Hazel R D, Smith S D, Wagshul M E, Henn F, Benveniste H, Djuric P M, Enikolopov G, Maletic-Savatic M (2007). Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science, 318(5852): 980–985
https://doi.org/10.1126/science.1147851
pmid: 17991865
|
123 |
Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A (2000). Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev, 14(8): 994–1004
pmid: 10783170
|
124 |
Mayer E J, Hughes E H, Carter D A, Dick A D (2003). Nestin positive cells in adult human retina and in epiretinal membranes. Br J Ophthalmol, 87(9): 1154–1158
https://doi.org/10.1136/bjo.87.9.1154
pmid: 12928287
|
125 |
McConnell J, Petrie L, Stennard F, Ryan K, Nichols J (2005). Eomesodermin is expressed in mouse oocytes and pre-implantation embryos. Mol Reprod Dev, 71(4): 399–404
https://doi.org/10.1002/mrd.20318
pmid: 15880683
|
126 |
McHugh T J, Jones M W, Quinn J J, Balthasar N, Coppari R, Elmquist J K, Lowell B B, Fanselow M S, Wilson M A, Tonegawa S (2007). Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science, 317(5834): 94–99
https://doi.org/10.1126/science.1140263
pmid: 17556551
|
127 |
Mignone J L, Kukekov V, Chiang A S, Steindler D, Enikolopov G (2004). Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol, 469(3): 311–324
https://doi.org/10.1002/cne.10964
pmid: 14730584
|
128 |
Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4): 687–702
https://doi.org/10.1016/j.neuron.2011.05.001
pmid: 21609825
|
129 |
Mitsuhashi T, Aoki Y, Eksioglu Y Z, Takahashi T, Bhide P G, Reeves S A, Caviness V S Jr (2001). Overexpression of p27Kip1 lengthens the G1 phase in a mouse model that targets inducible gene expression to central nervous system progenitor cells. Proc Natl Acad Sci USA, 98(11): 6435–6440
https://doi.org/10.1073/pnas.111051398
pmid: 11371649
|
130 |
Miyagi S, Nishimoto M, Saito T, Ninomiya M, Sawamoto K, Okano H, Muramatsu M, Oguro H, Iwama A, Okuda A (2006). The Sox2 regulatory region 2 functions as a neural stem cell-specific enhancer in the telencephalon. J Biol Chem, 281(19): 13374–13381
https://doi.org/10.1074/jbc.M512669200
pmid: 16547000
|
131 |
Mori T, Tanaka K, Buffo A, Wurst W, Kühn R, Götz M (2006). Inducible gene deletion in astroglia and radial glia—a valuable tool for functional and lineage analysis. Glia, 54(1): 21–34
https://doi.org/10.1002/glia.20350
pmid: 16652340
|
132 |
Morshead C M, Reynolds B A, Craig C G, McBurney M W, Staines W A, Morassutti D, Weiss S, van der Kooy D (1994). Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron, 13(5): 1071–1082
https://doi.org/10.1016/0896-6273(94)90046-9
pmid: 7946346
|
133 |
Mouret A, Lepousez G, Gras J, Gabellec M M, Lledo P M (2009). Turnover of newborn olfactory bulb neurons optimizes olfaction. J Neurosci, 29(39): 12302–12314
https://doi.org/10.1523/JNEUROSCI.3383-09.2009
pmid: 19793989
|
134 |
Nakashiba T, Cushman J D, Pelkey K A, Renaudineau S, Buhl D L, McHugh T J, Rodriguez Barrera V, Chittajallu R, Iwamoto K S, McBain C J, Fanselow M S, Tonegawa S (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell, 149(1): 188–201
https://doi.org/10.1016/j.cell.2012.01.046
pmid: 22365813
|
135 |
Namba T, Mochizuki H, Onodera M, Mizuno Y, Namiki H, Seki T (2005). The fate of neural progenitor cells expressing astrocytic and radial glial markers in the postnatal rat dentate gyrus. Eur J Neurosci, 22(8): 1928–1941
https://doi.org/10.1111/j.1460-9568.2005.04396.x
pmid: 16262632
|
136 |
Ninov N, Borius M, Stainier D Y (2012). Different levels of Notch signaling regulate quiescence, renewal and differentiation in pancreatic endocrine progenitors. Development, 139(9): 1557–1567
https://doi.org/10.1242/dev.076000
pmid: 22492351
|
137 |
Nolte C, Matyash M, Pivneva T, Schipke C G, Ohlemeyer C, Hanisch U K, Kirchhoff F, Kettenmann H (2001). GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia, 33(1): 72–86
https://doi.org/10.1002/1098-1136(20010101)33:1<72::AID-GLIA1007>3.0.CO;2-A
pmid: 11169793
|
138 |
Ohtsuka T, Sakamoto M, Guillemot F, Kageyama R (2001). Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J Biol Chem, 276(32): 30467–30474
https://doi.org/10.1074/jbc.M102420200
pmid: 11399758
|
139 |
Palmer T D, Takahashi J, Gage F H (1997). The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci, 8(6): 389–404
https://doi.org/10.1006/mcne.1996.0595
pmid: 9143557
|
140a |
Pan Y W, Chan G C, Kuo C T, Storm D R, Xia Z (2012). Inhibition of adult neurogenesis by inducible and targeted deletion of ERK5 mitogen-activated protein kinase specifically in adult neurogenic regions impairs contextual fear extinction and remote fear memory.J Neurosci, 32: 6444–6455
https://doi.org/10.1073/pnas.0810407106
pmid: 19332781
|
140 |
Pastrana E, Cheng L C, Doetsch F (2009). Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci USA, 106(15): 6387–6392
https://doi.org/10.1073/pnas.0810407106
pmid: 19332781
|
141 |
Pereira A C, Huddleston D E, Brickman A M, Sosunov A A, Hen R, McKhann G M, Sloan R, Gage F H, Brown T R, Small S A (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA, 104(13): 5638–5643
https://doi.org/10.1073/pnas.0611721104
pmid: 17374720
|
142 |
Perl A K, Wert S E, Nagy A, Lobe C G, Whitsett J A (2002). Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc Natl Acad Sci USA, 99(16): 10482–10487
https://doi.org/10.1073/pnas.152238499
pmid: 12145322
|
143 |
Pevny L H, Sockanathan S, Placzek M, Lovell-Badge R (1998). A role for SOX1 in neural determination. Development, 125(10): 1967–1978
pmid: 9550729
|
144 |
Pimeisl I M, Tanriver Y, Daza R A, Vauti F, Hevner R F, Arnold H H, Arnold S J (2013). Generation and characterization of a tamoxifen-inducible Eomes(CreER) mouse line. Genesis, 51(10): 725–733
https://doi.org/10.1002/dvg.22417
pmid: 23897762
|
145 |
Platel J C, Gordon V, Heintz T, Bordey A (2009). GFAP-GFP neural progenitors are antigenically homogeneous and anchored in their enclosed mosaic niche. Glia, 57(1): 66–78
https://doi.org/10.1002/glia.20735
pmid: 18661547
|
146 |
Pollak J, Wilken M S, Ueki Y, Cox K E, Sullivan J M, Taylor R J, Levine E M, Reh T A (2013). ASCL1 reprograms mouse Muller glia into neurogenic retinal progenitors. Development, 140(12): 2619–2631
https://doi.org/10.1242/dev.091355
pmid: 23637330
|
147 |
Quiñones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S, Romero-Rodriguez R, Berger M S, Garcia-Verdugo J M, Alvarez-Buylla A (2006). Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol, 494(3): 415–434
https://doi.org/10.1002/cne.20798
pmid: 16320258
|
148 |
Raposo A A, Vasconcelos F F, Drechsel D, Marie C, Johnston C, Bithell A, Gillotin S, van den Berg D L, Ettwiller L, Flicek P, Crawford G E, Parras C M, Berninger B, Buckley N J, Guillemot F, Castro D S (2015). Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis. Cell Rep, 10(9): 1–13
|
149 |
Regan M R, Huang Y H, Kim Y S, Dykes-Hoberg M I, Jin L, Watkins A M, Bergles D E, Rothstein J D (2007). Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci, 27(25): 6607–6619
https://doi.org/10.1523/JNEUROSCI.0790-07.2007
pmid: 17581948
|
150 |
Sahay A, Hen R (2008). Hippocampal neurogenesis and depression. Novartis Found Symp 289, 152–160; discussion 160–154, 193–155
|
151a |
Sahay A, Scobie K N, Hill A S, O'Carroll C M, Kheirbek M A, Burghardt N S, Fenton A A, Dranovsky A, Hen R (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 472: 466–470
|
151 |
Sakamoto M, Ieki N, Miyoshi G, Mochimaru D, Miyachi H, Imura T, Yamaguchi M, Fishell G, Mori K, Kageyama R, Imayoshi I (2014). Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning. J Neurosci, 34(17): 5788–5799
https://doi.org/10.1523/JNEUROSCI.0674-14.2014
pmid: 24760839
|
152 |
Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301(5634): 805–809
https://doi.org/10.1126/science.1083328
pmid: 12907793
|
153 |
Saxe M D, Battaglia F, Wang J W, Malleret G, David D J, Monckton J E, Garcia A D, Sofroniew M V, Kandel E R, Santarelli L, Hen R, Drew M R (2006). Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA, 103(46): 17501–17506
https://doi.org/10.1073/pnas.0607207103
pmid: 17088541
|
154 |
Schmid R S, Yokota Y, Anton E S (2006). Generation and characterization of brain lipid-binding protein promoter-based transgenic mouse models for the study of radial glia. Glia, 53(4): 345–351
https://doi.org/10.1002/glia.20274
pmid: 16288463
|
155 |
Seri B, García-Verdugo J M, Collado-Morente L, McEwen B S, Alvarez-Buylla A (2004). Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol, 478(4): 359–378
https://doi.org/10.1002/cne.20288
pmid: 15384070
|
156 |
Seri B, García-Verdugo J M, McEwen B S, Alvarez-Buylla A (2001). Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci, 21(18): 7153–7160
pmid: 11549726
|
157 |
Shen Q, Wang Y, Kokovay E, Lin G, Chuang S M, Goderie S K, Roysam B, Temple S (2008). Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell, 3(3): 289–300
https://doi.org/10.1016/j.stem.2008.07.026
pmid: 18786416
|
158 |
Shibata T, Watanabe M, Tanaka K, Wada K, Inoue Y (1996). Dynamic changes in expression of glutamate transporter mRNAs in developing brain. Neuroreport, 7(3): 705–709
https://doi.org/10.1097/00001756-199602290-00006
pmid: 8733726
|
159 |
Shibata T, Yamada K, Watanabe M, Ikenaka K, Wada K, Tanaka K, Inoue Y (1997). Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J Neurosci, 17(23): 9212–9219
pmid: 9364068
|
160 |
Shimojo H, Ohtsuka T, Kageyama R (2008). Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron, 58(1): 52–64
https://doi.org/10.1016/j.neuron.2008.02.014
pmid: 18400163
|
161 |
Shin J, Berg D A, Zhu Y, Shin J Y, Song J, Bonaguidi M A, Enikolopov G, Nauen D W, Christian K M, Ming G L, Song H (2015). Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell, 17(3): 360–372
https://doi.org/10.1016/j.stem.2015.07.013
pmid: 26299571
|
162 |
Shors T J, Townsend D A, Zhao M, Kozorovitskiy Y, Gould E (2002). Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 12(5): 578–584
https://doi.org/10.1002/hipo.10103
pmid: 12440573
|
163 |
Sierra A, Encinas J M, Maletic-Savatic M (2011). Adult human neurogenesis: from microscopy to magnetic resonance imaging. Front Neurosci, 5: 47
https://doi.org/10.3389/fnins.2011.00047
pmid: 21519376
|
164 |
Slezak M, Göritz C, Niemiec A, Frisén J, Chambon P, Metzger D, Pfrieger F W (2007). Transgenic mice for conditional gene manipulation in astroglial cells. Glia, 55(15): 1565–1576
https://doi.org/10.1002/glia.20570
pmid: 17823970
|
164a |
Snyder J S, Soumier A, Brewer M, Pickel J, Cameron H A (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature, 476: 458–461
|
165 |
Soriano P (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet, 21(1): 70–71
https://doi.org/10.1038/5007
pmid: 9916792
|
166 |
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
https://doi.org/10.1016/j.cell.2013.05.002
pmid: 23746839
|
167 |
Suh H, Consiglio A, Ray J, Sawai T, D’Amour K A, Gage F H (2007). In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell, 1(5): 515–528
https://doi.org/10.1016/j.stem.2007.09.002
pmid: 18371391
|
168 |
Sultan S, Gebara E, Toni N (2013). Doxycycline increases neurogenesis and reduces microglia in the adult hippocampus. Front Neurosci, 7: 131
pmid: 23898238
|
169 |
Sun M Y, Yetman M J, Lee T C, Chen Y, Jankowsky J L (2014). Specificity and efficiency of reporter expression in adult neural progenitors vary substantially among nestin-CreER(T2) lines. J Comp Neurol, 522(5): 1191–1208
https://doi.org/10.1002/cne.23497
pmid: 24519019
|
170a |
Surget A, Tant A, Leonardo E D, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, Belzung C (2011). Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry, 16: 1177–1188
pmid: 8601800
|
170 |
Sutherland M L, Delaney T A, Noebels J L (1996). Glutamate transporter mRNA expression in proliferative zones of the developing and adult murine CNS. J Neurosci, 16(7): 2191–2207
pmid: 8601800
|
171 |
Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663–676
https://doi.org/10.1016/j.cell.2006.07.024
pmid: 16904174
|
172 |
Takeda N, Jain R, Leboeuf M R, Padmanabhan A, Wang Q, Li L, Lu M M, Millar S E, Epstein J A (2013). Hopx expression defines a subset of multipotent hair follicle stem cells and a progenitor population primed to give rise to K6+ niche cells. Development, 140(8): 1655–1664
https://doi.org/10.1242/dev.093005
pmid: 23487314
|
173 |
Takeda N, Jain R, LeBoeuf M R, Wang Q, Lu M M, Epstein J A (2011). Interconversion between intestinal stem cell populations in distinct niches. Science, 334(6061): 1420–1424
https://doi.org/10.1126/science.1213214
pmid: 22075725
|
174 |
Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo J M, Doetsch F (2008). A specialized vascular niche for adult neural stem cells. Cell Stem Cell, 3(3): 279–288
https://doi.org/10.1016/j.stem.2008.07.025
pmid: 18786415
|
175 |
Tseng Y Y, Gruzdeva N, Li A, Chuang J Z, Sung C H (2010). Identification of the Tctex-1 regulatory element that directs expression to neural stem/progenitor cells in developing and adult brain. J Comp Neurol, 518(16): 3327–3342
https://doi.org/10.1002/cne.22402
pmid: 20575070
|
176 |
Uwanogho D, Rex M, Cartwright E J, Pearl G, Healy C, Scotting P J, Sharpe P T (1995). Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech Dev, 49(1-2): 23–36
https://doi.org/10.1016/0925-4773(94)00299-3
pmid: 7748786
|
177 |
Venere M, Han Y G, Bell R, Song J S, Alvarez-Buylla A, Blelloch R (2012). Sox1 marks an activated neural stem/progenitor cell in the hippocampus. Development, 139(21): 3938–3949
https://doi.org/10.1242/dev.081133
pmid: 22992951
|
178 |
Vierbuchen T, Ostermeier A, Pang Z P, Kokubu Y, Südhof T C, Wernig M (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284): 1035–1041
https://doi.org/10.1038/nature08797
pmid: 20107439
|
179 |
Walker T L, Overall R W, Vogler S, Sykes A M, Ruhwald S, Lasse D, Ichwan M, Fabel K, Kempermann G (2016). Lysophosphatidic acid receptor is a functional marker of adult hippocampal precursor cells. Stem Cell Rep, 6(4): 552–565
https://doi.org/10.1016/j.stemcr.2016.03.002
pmid: 27050949
|
180 |
Walker T L, Yasuda T, Adams D J, Bartlett P F (2007). The doublecortin-expressing population in the developing and adult brain contains multipotential precursors in addition to neuronal-lineage cells. J Neurosci, 27(14): 3734–3742
https://doi.org/10.1523/JNEUROSCI.5060-06.2007
pmid: 17409237
|
181 |
Wang X, Qiu R, Tsark W, Lu Q (2007). Rapid promoter analysis in developing mouse brain and genetic labeling of young neurons by doublecortin-DsRed-express. J Neurosci Res, 85(16): 3567–3573
https://doi.org/10.1002/jnr.21440
pmid: 17671991
|
182 |
Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov K V, Tarasova Y, Wersto R P, Boheler K R, Wobus A M (2004). Nestin expression—a property of multi-lineage progenitor cells? Cell Mol Life Sci, 61(19-20): 2510–2522
https://doi.org/10.1007/s00018-004-4144-6
pmid: 15526158
|
183 |
Williams S M, Sullivan R K, Scott H L, Finkelstein D I, Colditz P B, Lingwood B E, Dodd P R, Pow D V (2005). Glial glutamate transporter expression patterns in brains from multiple mammalian species. Glia, 49(4): 520–541
https://doi.org/10.1002/glia.20139
pmid: 15578656
|
183a |
Wojtowicz J M, Askew M L, Winocur G (2008). The effects of running and of inhibiting adult neurogenesis on learning and memory in rats. Eur J Neurosci, 27: 1494–1502
|
184 |
Yamaguchi M, Saito H, Suzuki M, Mori K (2000). Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. Neuroreport, 11(9): 1991–1996
https://doi.org/10.1097/00001756-200006260-00037
pmid: 10884058
|
185 |
Yang S M, Alvarez D D, Schinder A F (2015). Reliable Genetic Labeling of Adult-Born Dentate Granule Cells Using Ascl1 CreERT2 and Glast CreERT2 Murine Lines. J Neurosci, 35(46): 15379–15390
https://doi.org/10.1523/JNEUROSCI.2345-15.2015
pmid: 26586824
|
186 |
Yaworsky P J, Kappen C (1999). Heterogeneity of neural progenitor cells revealed by enhancers in the nestin gene. Dev Biol, 205(2): 309–321
https://doi.org/10.1006/dbio.1998.9035
pmid: 9917366
|
187 |
Yu T S, Dandekar M, Monteggia L M, Parada L F, Kernie S G (2005). Temporally regulated expression of Cre recombinase in neural stem cells. Genesis, 41(4): 147–153
https://doi.org/10.1002/gene.20110
pmid: 15789426
|
188 |
Zappone M V, Galli R, Catena R, Meani N, De Biasi S, Mattei E, Tiveron C, Vescovi A L, Lovell-Badge R, Ottolenghi S, Nicolis S K (2000). Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development, 127(11): 2367–2382
pmid: 10804179
|
189 |
Zecevic N (2004). Specific characteristic of radial glia in the human fetal telencephalon. Glia, 48(1): 27–35
https://doi.org/10.1002/glia.20044
pmid: 15326612
|
190 |
Zhang C L, Zou Y, He W, Gage F H, Evans R M (2008). A role for adult TLX-positive neural stem cells in learning and behaviour. Nature, 451(7181): 1004–1007
https://doi.org/10.1038/nature06562
pmid: 18235445
|
191 |
Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660
https://doi.org/10.1016/j.cell.2008.01.033
pmid: 18295581
|
192 |
Zhuo L, Sun B, Zhang C L, Fine A, Chiu S Y, Messing A (1997). Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev Biol, 187(1): 36–42
https://doi.org/10.1006/dbio.1997.8601
pmid: 9224672
|
193 |
Zimmerman L, Parr B, Lendahl U, Cunningham M, McKay R, Gavin B, Mann J, Vassileva G, McMahon A (1994). Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron, 12(1): 11–24
https://doi.org/10.1016/0896-6273(94)90148-1
pmid: 8292356
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|