Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (2) : 100-106    https://doi.org/10.1007/s11515-015-1349-z
MINI-REVIEW
Metabolic control of adult neural stem cell behavior
Marlen Knobloch(),Sebastian Jessberger()
Brain Research Institute, Faculty of Medicine and Science, University of Zurich, 8057 Zurich, Switzerland
 Download: PDF(834 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Neural stem cells generate new neurons throughout life in distinct regions of the mammalian brain. This process, called adult neurogenesis, is important for tissue homeostasis and physiological brain function. In addition, failing or altered neurogenesis has been associated with a number of diseases such as major depression and epilepsy. Thus, understanding the molecular mechanisms governing the neurogenic process in the adult brain may enable future therapeutic approaches to target neural stem/progenitor cells (NSPCs) and their progeny to ameliorate disease symptoms and/or disease progression. Recently, the control of cellular metabolism has emerged as a regulator of NSPC activity in the adult brain. Here we review recent findings that attempt to describe stage-specific modulations of metabolism to ensure proper neurogenesis and suggest future avenues of research aiming to understand how metabolism affects NSPC behavior.

Keywords adult neurogenesis      metabolic switch      quiescence      proliferation      differentiation     
Corresponding Author(s): Marlen Knobloch,Sebastian Jessberger   
Just Accepted Date: 11 February 2015   Issue Date: 06 May 2015
 Cite this article:   
Marlen Knobloch,Sebastian Jessberger. Metabolic control of adult neural stem cell behavior[J]. Front. Biol., 2015, 10(2): 100-106.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1349-z
https://academic.hep.com.cn/fib/EN/Y2015/V10/I2/100
Fig.1  Schematic representation of metabolic pathways active in adult NSPCs and their progeny. Question marks indicate putative active pathways that need to be confirmed. SGZ, subgranular zone; DGC, dentate granule cell layer.
1 Ables J L, Decarolis N A, Johnson M A, Rivera P D, Gao Z, Cooper D C, Radtke F, Hsieh J, Eisch A J (2010). Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci, 30(31): 10484–10492
https://doi.org/10.1523/JNEUROSCI.4721-09.2010 pmid: 20685991
2 Altman J, Das G D (1964). Autoradiographic examination of the effects of enriched environment on the rate of glial multiplication in the adult rat brain. Nature, 204(4964): 1161–1163
https://doi.org/10.1038/2041161a0 pmid: 14264369
3 Ben Abdallah N M B, Slomianka L, Vyssotski A L, Lipp H P (2010). Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging, 31(1): 151–161
https://doi.org/10.1016/j.neurobiolaging.2008.03.002 pmid: 18455269
4 Bergmann O, Liebl J, Bernard S, Alkass K, Yeung M S Y, Steier P, Kutschera W, Johnson L, Landén M, Druid H, Spalding K L, Frisén J (2012). The age of olfactory bulb neurons in humans. Neuron, 74(4): 634–639
https://doi.org/10.1016/j.neuron.2012.03.030 pmid: 22632721
5 Boitard C, Etchamendy N, Sauvant J, Aubert A, Tronel S, Marighetto A, Layé S, Ferreira G (2012). Juvenile, but not adult exposure to high-fat diet impairs relational memory and hippocampal neurogenesis in mice. Hippocampus, 22(11): 2095–2100
https://doi.org/10.1002/hipo.22032 pmid: 22593080
6 Bonaguidi M A, Song J, Ming G L, Song H (2012). A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol, 22(5): 754–761
https://doi.org/10.1016/j.conb.2012.03.013 pmid: 22503352
7 Braun S M G, Jessberger S (2014). Adult neurogenesis and its role in neuropsychiatric disease, brain repair and normal brain function. Neuropathol Appl Neurobiol, 40(1): 3–12
https://doi.org/10.1111/nan.12107 pmid: 24308291
8 Candelario K M, Shuttleworth C W, Cunningham L A (2013). Neural stem/progenitor cells display a low requirement for oxidative metabolism independent of hypoxia inducible factor-1alpha expression. J Neurochem, 125(3): 420–429
https://doi.org/10.1111/jnc.12204 pmid: 23410250
9 Chorna N E, Santos-Soto I J, Carballeira N M, Morales J L, de la Nuez J, Cátala-Valentin A, Chornyy A P, Vázquez-Montes A, De Ortiz S P (2013). Fatty acid synthase as a factor required for exercise-induced cognitive enhancement and dentate gyrus cellular proliferation. PLoS ONE, 8(11): e77845
https://doi.org/10.1371/journal.pone.0077845 pmid: 24223732
10 Christian K M, Song H, Ming G L (2014). Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci, 37(1): 243–262
https://doi.org/10.1146/annurev-neuro-071013-014134 pmid: 24905596
11 Costa M R, Ortega F, Brill M S, Beckervordersandforth R, Petrone C, Schroeder T, G?tz M, Berninger B (2011). Continuous live imaging of adult neural stem cell division and lineage progression in vitro. Development, 138(6): 1057–1068
https://doi.org/10.1242/dev.061663 pmid: 21343361
12 Deng W, Aimone J B, Gage F H (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci, 11(5): 339–350
13 Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 17(13): 5046–5061
pmid: 9185542
14 Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1999). Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA, 96(20): 11619–11624
https://doi.org/10.1073/pnas.96.20.11619 pmid: 10500226
15 Eijkelenboom A, Burgering B M T (2013). FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol, 14(2): 83–97
https://doi.org/10.1038/nrm3507 pmid: 23325358
16 Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566–579
https://doi.org/10.1016/j.stem.2011.03.010 pmid: 21549330
17 Eriksson P S, Perfilieva E, Bj?rk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
https://doi.org/10.1038/3305 pmid: 9809557
18 Favaro R, Valotta M, Ferri A L M, Latorre E, Mariani J, Giachino C, Lancini C, Tosetti V, Ottolenghi S, Taylor V, Nicolis S K (2009). Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci, 12(10): 1248–1256
https://doi.org/10.1038/nn.2397 pmid: 19734891
19 Folmes C D L, Dzeja P P, Nelson T J, Terzic A (2012). Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell, 11(5): 596–606
https://doi.org/10.1016/j.stem.2012.10.002 pmid: 23122287
20 Folmes C D L, Nelson T J, Martinez-Fernandez A, Arrell D K, Lindor J Z, Dzeja P P, Ikeda Y, Perez-Terzic C, Terzic A (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab, 14(2): 264–271
https://doi.org/10.1016/j.cmet.2011.06.011 pmid: 21803296
21 Fukata Y, Fukata M (2010). Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci, 11(3): 161–75
22 Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, Fletcher-Sananikone E, Colla S, Wang Y A, Chin L, Depinho R A (2010). Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature, 468(7324): 701–704
https://doi.org/10.1038/nature09595 pmid: 21124456
23 Ge S, Goh E L K, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589–593
https://doi.org/10.1038/nature04404 pmid: 16341203
24 Gurumurthy S, Xie S Z, Alagesan B, Kim J, Yusuf R Z, Saez B, Tzatsos A, Ozsolak F, Milos P, Ferrari F, Park P J, Shirihai O S, Scadden D T, Bardeesy N (2010). The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature, 468(7324): 659–663
https://doi.org/10.1038/nature09572 pmid: 21124451
25 Homem C C F, Steinmann V, Burkard T R, Jais A, Esterbauer H, Knoblich J A (2014). Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell, 158(4): 874–888
https://doi.org/10.1016/j.cell.2014.06.024 pmid: 25126791
26 Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan D E, Schafer Z T, Evans R M, Suda T, Lee C H, Pandolfi P P (2012). A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med, 18(9): 1350–1358
https://doi.org/10.1038/nm.2882 pmid: 22902876
27 Ito K, Suda T (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol, 15(4): 243–256
https://doi.org/10.1038/nrm3772 pmid: 24651542
28 Iwanaga T, Tsutsumi R, Noritake J, Fukata Y, Fukata M (2009). Progress in lipid research. Prog Lipid Res, 48: 117–127
https://doi.org/10.1016/j.plipres.2009.02.001 pmid: 19233228
29 Kheirbek M A, Klemenhagen K C, Sahay A, Hen R (2012). Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci, 15(12): 1613–1620
https://doi.org/10.1038/nn.3262 pmid: 23187693
30 Kim D Y, Rhee I, Paik J (2014). Metabolic circuits in neural stem cells. Cell Mol Life Sci, 71(21): 4221–4241
https://doi.org/10.1007/s00018-014-1686-0 pmid: 25037158
31 Kim J Y, Liu C Y, Zhang F, Duan X, Wen Z, Song J, Feighery E, Lu B, Rujescu D, St Clair D, Christian K, Callicott J H, Weinberger D R, Song H, Ming G L (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell, 148(5): 1051–1064
https://doi.org/10.1016/j.cell.2011.12.037 pmid: 22385968
32 Knobloch M, Von Schoultz C, Zurkirchen L, Braun S M G, Vidmar M, Jessberger S (2014) Spot14-positive neural stem/progenitor cells in the hippocampus respond dynamically to neurogenic regulators. Stem Cell Rep, 3: 1–8
33 Knobloch M, Braun S M G, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493(7431): 226–230
https://doi.org/10.1038/nature11689 pmid: 23201681
34 Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer R P, Horvat V, Volk B, Kempermann G (2010). Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS ONE, 5(1): e8809
https://doi.org/10.1371/journal.pone.0008809 pmid: 20126454
35 Kokoeva M V, Yin H, Flier J S (2005). Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science, 310(5748): 679–683
https://doi.org/10.1126/science.1115360 pmid: 16254185
36 Kuhn H G, Dickinson-Anson H, Gage F H (1996). Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci, 16(6): 2027–2033
pmid: 8604047
37 Lee D A, Bedont J L, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012). Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci, 15(5): 700–702
https://doi.org/10.1038/nn.3079 pmid: 22446882
38 Lee D A, Blackshaw S (2012). Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int J Dev Neurosci, 30(8): 615–621
https://doi.org/10.1016/j.ijdevneu.2012.07.003 pmid: 22867732
39 Lee J, Duan W, Long J M, Ingram D K, Mattson M P (2000). Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci, 15(2): 99–108
https://doi.org/10.1385/JMN:15:2:99 pmid: 11220789
40 Lee J, Seroogy K B, Mattson M P (2002). Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem, 80(3): 539–547
https://doi.org/10.1046/j.0022-3042.2001.00747.x pmid: 11905999
41 Li J, Tang Y, Cai D (2012). IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol, 14(10): 999–1012
https://doi.org/10.1038/ncb2562 pmid: 22940906
42 Lie D C, Colamarino S A, Song H J, Désiré L, Mira H, Consiglio A, Lein E S, Jessberger S, Lansford H, Dearie A R, Gage F H (2005). Wnt signalling regulates adult hippocampal neurogenesis. Nature, 437(7063): 1370–1375
https://doi.org/10.1038/nature04108 pmid: 16251967
43 Lindqvist A, Mohapel P, Bouter B, Frielingsdorf H, Pizzo D, Brundin P, Erlanson-Albertsson C (2006). High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol, 13(12): 1385–1388
https://doi.org/10.1111/j.1468-1331.2006.01500.x pmid: 17116226
44 Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, G?tz M, Haas C A, Kempermann G, Taylor V, Giachino C (2010). Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell, 6(5): 445–456
https://doi.org/10.1016/j.stem.2010.03.017 pmid: 20452319
45 Ma D K, Kim W R, Ming G L, Song H (2009). Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann N Y Acad Sci, 1170(1): 664–673
https://doi.org/10.1111/j.1749-6632.2009.04373.x pmid: 19686209
46 Menendez J A, Lupu R (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer, 7(10): 763–777
https://doi.org/10.1038/nrc2222 pmid: 17882277
47 Mira H, Andreu Z, Suh H, Lie D C, Jessberger S, Consiglio A, San Emeterio J, Hortigüela R, Marqués-Torrejón M á, Nakashima K, Colak D, G?tz M, Fari?as I, Gage F H (2010). Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell, 7(1): 78–89
https://doi.org/10.1016/j.stem.2010.04.016 pmid: 20621052
48 Morton G J, Cummings D E, Baskin D G, Barsh G S, Schwartz M W (2006). Central nervous system control of food intake and body weight. Nature, 443(7109): 289–295
https://doi.org/10.1038/nature05026 pmid: 16988703
49 Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini S S, Chen W, Hosseini M, Behjati F, Haas S, Jamali P, Zecha A, Mohseni M, Püttmann L, Vahid L N, Jensen C, Moheb L A, Bienek M, Larti F, Mueller I, Weissmann R, Darvish H, Wrogemann K, Hadavi V, Lipkowitz B, Esmaeeli-Nieh S, Wieczorek D, Kariminejad R, Firouzabadi S G, Cohen M, Fattahi Z, Rost I, Mojahedi F, Hertzberg C, Dehghan A, Rajab A, Banavandi M J, Hoffer J, Falah M, Musante L, Kalscheuer V, Ullmann R, Kuss A W, Tzschach A, Kahrizi K, Ropers H H (2011). Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature, 478(7367): 57–63
https://doi.org/10.1038/nature10423 pmid: 21937992
50 Nakada D, Saunders T L, Morrison S J (2010). Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature, 468(7324): 653–658
https://doi.org/10.1038/nature09571 pmid: 21124450
51 Orford K W, Scadden D T (2008). Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet, 9(2): 115–128
https://doi.org/10.1038/nrg2269 pmid: 18202695
52 Paik J H, Ding Z, Narurkar R, Ramkissoon S, Muller F, Kamoun W S, Chae S S, Zheng H, Ying H, Mahoney J, Hiller D, Jiang S, Protopopov A, Wong W H, Chin L, Ligon K L, DePinho R A (2009). FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell, 5(5): 540–553
https://doi.org/10.1016/j.stem.2009.09.013 pmid: 19896444
53 Park H R, Park M, Choi J, Park K Y, Chung H Y, Lee J (2010). Neuroscience Letters. Neurosci Lett, 482: 235–239
https://doi.org/10.1016/j.neulet.2010.07.046 pmid: 20670674
54 Renault V M, Rafalski V A, Morgan A A, Salih D A M, Brett J O, Webb A E, Villeda S A, Thekkat P U, Guillerey C, Denko N C, Palmer T D, Butte A J, Brunet A (2009). FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell, 5(5): 527–539
https://doi.org/10.1016/j.stem.2009.09.014 pmid: 19896443
55 Schulz T J, Huang P, Huang T L, Xue R, McDougall L E, Townsend K L, Cypess A M, Mishina Y, Gussoni E, Tseng Y H (2013). Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature, 495(7441): 379–383
https://doi.org/10.1038/nature11943 pmid: 23485971
56 Schulz T J, Tseng Y H (2009). Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev, 20(5–6): 523–531
https://doi.org/10.1016/j.cytogfr.2009.10.019 pmid: 19896888
57 Sims J K, Manteiga S, Lee K (2013). Towards high resolution analysis of metabolic flux in cells and tissues. Curr Opin Biotechnol, 24(5): 933–939
https://doi.org/10.1016/j.copbio.2013.07.001 pmid: 23906926
58 Song J, Zhong C, Bonaguidi M A, Sun G J, Hsu D, Gu Y, Meletis K, Huang Z J, Ge S, Enikolopov G, Deisseroth K, Luscher B, Christian K M, Ming G L, Song H (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature, 489(7414): 150–154
https://doi.org/10.1038/nature11306 pmid: 22842902
59 Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Bostr?m E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
https://doi.org/10.1016/j.cell.2013.05.002 pmid: 23746839
60 Steib K, Sch?ffner I, Jagasia R, Ebert B, Lie D C (2014). Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J Neurosci, 34(19): 6624–6633
https://doi.org/10.1523/JNEUROSCI.4972-13.2014 pmid: 24806687
61 Stein L R, Imai S (2014). Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J, 33(12): 1321–1340
pmid: 24811750
62 Stoll E A, Cheung W, Mikheev A M, Sweet I R, Bielas J H, Zhang J, Rostomily R C, Horner P J (2011). Aging neural progenitor cells have decreased mitochondrial content and lower oxidative metabolism. J Biol Chem, 286(44): 38592–38601
https://doi.org/10.1074/jbc.M111.252171 pmid: 21900249
63 Suda T, Takubo K, Semenza G L (2011). Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell, 9(4): 298–310
https://doi.org/10.1016/j.stem.2011.09.010 pmid: 21982230
64 Suh H, Deng W, Gage F H (2009). Signaling in adult neurogenesis. Annu Rev Cell Dev Biol, 25(1): 253–275
https://doi.org/10.1146/annurev.cellbio.042308.113256 pmid: 19575663
65 Teperino R, Amann S, Bayer M, McGee S L, Loipetzberger A, Connor T, Jaeger C, Kammerer B, Winter L, Wiche G, Dalgaard K, Selvaraj M, Gaster M, Lee-Young R S, Febbraio M A, Knauf C, Cani P D, Aberger F, Penninger J M, Pospisilik J A, Esterbauer H (2012). Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat. Cell, 151(2): 414–426
https://doi.org/10.1016/j.cell.2012.09.021 pmid: 23063129
66 Teperino R, Schoonjans K, Auwerx J (2010). Perspective. Cell Metab, 12: 321–327
https://doi.org/10.1016/j.cmet.2010.09.004 pmid: 20889125
67 Vander Heiden M G, Cantley L C, Thompson C B (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930): 1029–1033
https://doi.org/10.1126/science.1160809 pmid: 19460998
68 Varum S, Rodrigues A S, Moura M B, Momcilovic O, Easley C A 4th, Ramalho-Santos J, Van Houten B, Schatten G (2011). Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS ONE, 6(6): e20914
https://doi.org/10.1371/journal.pone.0020914 pmid: 21698063
69 Villeda S A, Luo J, Mosher K I, Zou B, Britschgi M, Bieri G, Stan T M, Fainberg N, Ding Z, Eggel A, Lucin K M, Czirr E, Park J S, Couillard-Després S, Aigner L, Li G, Peskind E R, Kaye J A, Quinn J F, Galasko D R, Xie X S, Rando T A, Wyss-Coray T (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 477(7362): 90–94
https://doi.org/10.1038/nature10357 pmid: 21886162
70 Zhang J, Nuebel E, Daley G Q, Koehler C M, Teitell M A (2012). Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell, 11(5): 589–595
https://doi.org/10.1016/j.stem.2012.10.005 pmid: 23122286
71 Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660
https://doi.org/10.1016/j.cell.2008.01.033 pmid: 18295581
[1] Yujie Deng, Caixia Lin, Huanjiao Jenny Zhou, Wang Min. Smooth muscle cell differentiation: Mechanisms and models for vascular diseases[J]. Front. Biol., 2017, 12(6): 392-405.
[2] Jun Sun. Intestinal organoid as an in vitromodel in studying host-microbial interactions[J]. Front. Biol., 2017, 12(2): 94-102.
[3] Ying-Tao Zhao,Maria Fasolino,Zhaolan Zhou. Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals[J]. Front. Biol., 2016, 11(4): 311-322.
[4] Paul J. Lucassen,Charlotte A. Oomen. Stress, hippocampal neurogenesis and cognition: functional correlations[J]. Front. Biol., 2016, 11(3): 182-192.
[5] Fatih Semerci,Mirjana Maletic-Savatic. Transgenic mouse models for studying adult neurogenesis[J]. Front. Biol., 2016, 11(3): 151-167.
[6] Martha Hvoslef-Eide,Charlotte A. Oomen. Adult neurogenesis and pattern separation in rodents: A critical evaluation of data, tasks and interpretation[J]. Front. Biol., 2016, 11(3): 168-181.
[7] Desiree F. Leach,Mitzi Nagarkatti,Prakash Nagarkatti,Taixing Cui. Functional states of resident vascular stem cells and vascular remodeling[J]. Front. Biol., 2015, 10(5): 387-397.
[8] Cristina V. Dieni,Adam J. Wieckert,Linda Overstreet-Wadiche. Development of glutamatergic innervation during maturation of adult-born neurons[J]. Front. Biol., 2015, 10(4): 310-320.
[9] Daniel A. Berg,Ki-Jun Yoon,Brett Will,Alex Y. Xiao,Nam-Shik Kim,Kimberly M. Christian,Hongjun Song,Guo-li Ming. Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis[J]. Front. Biol., 2015, 10(3): 262-271.
[10] Ruth Beckervordersandforth,Benjamin M. Häberle,D. Chichung Lie. Metabolic regulation of adult stem cell-derived neurons[J]. Front. Biol., 2015, 10(2): 107-116.
[11] Claudia A. BERTUCCIO,Daniel C. DEVOR. Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases[J]. Front. Biol., 2015, 10(1): 52-60.
[12] Diana GUALLAR,Jianlong WANG. RNA-binding proteins in pluripotency, differentiation, and reprogramming[J]. Front. Biol., 2014, 9(5): 389-409.
[13] Brandoch D. COOK. Modeling murine yolk sac hematopoiesis with embryonic stem cell culture systems[J]. Front. Biol., 2014, 9(5): 339-346.
[14] Jong-In PARK. Growth arrest signaling of the Raf/MEK/ERK pathway in cancer[J]. Front. Biol., 2014, 9(2): 95-103.
[15] Simon M.G. BRAUN, Sebastian JESSBERGER. Adult neurogenesis in the mammalian brain[J]. Front Biol, 2013, 8(3): 295-304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed