Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (5) : 339-346    https://doi.org/10.1007/s11515-014-1328-9
REVIEW
Modeling murine yolk sac hematopoiesis with embryonic stem cell culture systems
Brandoch D. COOK()
Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
 Download: PDF(419 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The onset of hematopoiesis in mammals is defined by generation of primitive erythrocytes and macrophage progenitors in embryonic yolk sac. Laboratories have met the challenge of transient and swiftly changing specification events from ventral mesoderm through multipotent progenitors and maturing lineage-restricted hematopoietic subtypes, by developing powerful in vitro experimental models to interrogate hematopoietic ontogeny. Most importantly, studies of differentiating embryonic stem cell derivatives in embryoid body and stromal coculture systems have identified crucial roles for transcription factor networks (e.g. Gata1, Runx1, Scl) and signaling pathways (e.g. BMP, VEGF, WNT) in controlling stem and progenitor cell output. These and other relevant pathways have pleiotropic biological effects, and are often associated with early embryonic lethality in knockout mice. Further refinement in subsequent studies has allowed conditional expression of key regulatory genes, and isolation of progenitors via cell surface markers (e.g. FLK1) and reporter-tagged constructs, with the purpose of measuring their primitive and definitive hematopoietic potential. These observations continue to inform attempts to direct the differentiation, and augment the expansion, of progenitors in human cell culture systems that may prove useful in cell replacement therapies for hematopoietic deficiencies. The purpose of this review is to survey the extant literature on the use of differentiating murine embryonic stem cells in culture to model the developmental process of yolk sac hematopoiesis.

Keywords hematopoietic      progenitors      embryonic      stem cells      differentiation     
Corresponding Author(s): Brandoch D. COOK   
Just Accepted Date: 11 August 2014   Online First Date: 02 September 2014    Issue Date: 11 October 2014
 Cite this article:   
Brandoch D. COOK. Modeling murine yolk sac hematopoiesis with embryonic stem cell culture systems[J]. Front. Biol., 2014, 9(5): 339-346.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1328-9
https://academic.hep.com.cn/fib/EN/Y2014/V9/I5/339
Fig.1  Differentiating embryonic stem cells as a model system for embryonic hematopoiesis. (A) A schematic of hematopoietic transitions in the developing mouse embryo, showing the approximate embryonic developmental time frame associated with each site. Also shown are key cell types that arise at each site/time point, with the first events generating primitive erythroid progenitors and endothelium in the extra-embryonic yolk sac (YS) from ventral mesoderm-derived hemangioblast. Hemogenic endothelium generated in P-Sp and AGM begins the definitive wave that marks the transition to the fetal liver and finally the bone marrow as the site of hematopoietic renewal via adult HSCs. Abbreviations: Para-aortic splanchnopleura (P-Sp); aorta-gonad-mesonephros (AGM); endothelial cell (EC); primitive and definitive erythrocyte (EryP and EryD); hematopoietic stem cell (HSC). (B) Schematic of analogous hematopoietic progenitor development in murine ES/EB cultures, with timeline highlighted in yellow and mirrored to embryonic development. Specification of progenitors proceeds from mesoderm generated in early EBs stimulated to adopt hemato-vascular fate by Activin, VEGF, and BMP, resulting in a BL-CFC population that is FLK1+/BRY+ and equivalent to the hemangioblast, capable of generating hematopoietic colonies equivalent to progenitors from yolk sac. A second FLK1+ cell population co-expresses SOX17, and functions similarly to hemogenic endothelium, with potential for definitive hematopoietic lineages including lymphoid cells.
1 Baik J, Borges L, Magli A, Thatava T, Perlingeiro R C (2012). Effect of endoglin overexpression during embryoid body development. Exp Hematol, 40(10): 837–846
https://doi.org/10.1016/j.exphem.2012.06.007 pmid: 22728030
2 Bielinska M, Narita N, Heikinheimo M, Porter S B, Wilson D B (1996). Erythropoiesis and vasculogenesis in embryoid bodies lacking visceral yolk sac endoderm. Blood, 88(10): 3720–3730
pmid: 8916936
3 Boros K, Lacaud G, Kouskoff V (2011). The transcription factor Mxd4 controls the proliferation of the first blood precursors at?the onset of hematopoietic development in?vitro. Exp Hematol, 39(11): 1090–1100
https://doi.org/10.1016/j.exphem.2011.07.007 pmid: 21782766
4 Chan R J, Johnson S A, Li Y, Yoder M C, Feng G S (2003). A definitive role of Shp-2 tyrosine phosphatase in mediating embryonic stem cell differentiation and hematopoiesis. Blood, 102(6): 2074–2080
https://doi.org/10.1182/blood-2003-04-1171 pmid: 12791646
5 Chanda B, Ditadi A, Iscove N N, Keller G (2013). Retinoic acid signaling is essential for embryonic hematopoietic stem cell development. Cell, 155(1): 215–227
https://doi.org/10.1016/j.cell.2013.08.055 pmid: 24074870
6 Cheng X, Huber T L, Chen V C, Gadue P, Keller G M (2008). Numb mediates the interaction between Wnt and Notch to modulate primitive erythropoietic specification from the hemangioblast. Development, 135(20): 3447–3458
https://doi.org/10.1242/dev.025916 pmid: 18799543
7 Clarke D, Vegiopoulos A, Crawford A, Mucenski M, Bonifer C, Frampton J (2000). In vitro differentiation of c-myb-/- ES cells reveals that the colony forming capacity of unilineage macrophage precursors and myeloid progenitor commitment are c-Myb independent. Oncogene, 19(30): 3343–3351
https://doi.org/10.1038/sj.onc.1203661 pmid: 10918591
8 Clarke R L, Yzaguirre A D, Yashiro-Ohtani Y, Bondue A, Blanpain C, Pear W S, Speck N A, Keller G (2013). The expression of Sox17 identifies and regulates haemogenic endothelium. Nat Cell Biol, 15(5): 502–510
https://doi.org/10.1038/ncb2724 pmid: 23604320
9 Cook B D, Evans T (2014). BMP signaling balances murine myeloid potential through SMAD-independent p38MAPK and NOTCH pathways. Blood, 124(3): 393–402
https://doi.org/10.1182/blood-2014-02-556993 pmid: 24894772
10 Cook B D, Liu S, Evans T (2011). Smad1 signaling restricts hematopoietic potential after promoting hemangioblast commitment. Blood, 117(24): 6489–6497
https://doi.org/10.1182/blood-2010-10-312389 pmid: 21515822
11 Dahl L, Richter K, H?gglund A C, Carlsson L (2008). Lhx2 expression promotes self-renewal of a distinct multipotential hematopoietic progenitor cell in embryonic stem cell-derived embryoid bodies. PLoS ONE, 3(4): e2025
https://doi.org/10.1371/journal.pone.0002025 pmid: 18431502
12 Doetschman T C, Eistetter H, Katz M, Schmidt W, Kemler R (1985). The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol, 87: 27–45
pmid: 3897439
13 Era T, Izumi N, Hayashi M, Tada S, Nishikawa S, Nishikawa S (2008). Multiple mesoderm subsets give rise to endothelial cells, whereas hematopoietic cells are differentiated only from a restricted subset in embryonic stem cell differentiation culture. Stem Cells, 26(2): 401–411
https://doi.org/10.1634/stemcells.2006-0809 pmid: 17991917
14 Ferkowicz M J, Starr M, Xie X, Li W, Johnson S A, Shelley W C, Morrison P R, Yoder M C (2003). CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Development, 130(18): 4393–4403
https://doi.org/10.1242/dev.00632 pmid: 12900455
15 Fujimoto T T, Kohata S, Suzuki H, Miyazaki H, Fujimura K (2003). Production of functional platelets by differentiated embryonic stem (ES) cells in vitro. Blood, 102(12): 4044–4051
https://doi.org/10.1182/blood-2003-06-1773 pmid: 12920021
16 Gandillet A, Serrano A G, Pearson S, Lie-A-Ling M, Lacaud G, Kouskoff V (2009). Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification. Blood, 114(23): 4813–4822
https://doi.org/10.1182/blood-2009-06-226290 pmid: 19801444
17 Grigoriadis A E, Kennedy M, Bozec A, Brunton F, Stenbeck G, Park I H, Wagner E F, Keller G M (2010). Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood, 115(14): 2769–2776
https://doi.org/10.1182/blood-2009-07-234690 pmid: 20065292
18 Hadland B K, Huppert S S, Kanungo J, Xue Y, Jiang R, Gridley T, Conlon R A, Cheng A M, Kopan R, Longmore G D (2004). A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood, 104(10): 3097–3105
https://doi.org/10.1182/blood-2004-03-1224 pmid: 15251982
19 Helgason C D, Sauvageau G, Lawrence H J, Largman C, Humphries R K (1996). Overexpression of HOXB4 enhances the hematopoietic potential of embryonic stem cells differentiated in vitro. Blood, 87(7): 2740–2749
pmid: 8639890
20 Hidaka M, Stanford W L, Bernstein A (1999). Conditional requirement for the Flk-1 receptor in the in vitro generation of early hematopoietic cells. Proc Natl Acad Sci USA, 96(13): 7370–7375
https://doi.org/10.1073/pnas.96.13.7370 pmid: 10377421
21 Irion S, Clarke R L, Luche H, Kim I, Morrison S J, Fehling H J, Keller G M (2010). Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells. Development, 137(17): 2829–2839
https://doi.org/10.1242/dev.042119 pmid: 20659975
22 Jackson M, Axton R A, Taylor A H, Wilson J A, Gordon-Keylock S A, Kokkaliaris K D, Brickman J M, Schulz H, Hummel O, Hubner N, Forrester L M (2012). HOXB4 can enhance the differentiation of embryonic stem cells by modulating the hematopoietic niche. Stem Cells, 30(2): 150–160
https://doi.org/10.1002/stem.782 pmid: 22084016
23 Johansson B M, Wiles M V (1995). Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol, 15(1): 141–151
pmid: 7799920
24 Keller G, Kennedy M, Papayannopoulou T, Wiles M V (1993). Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol, 13(1): 473–486
pmid: 8417345
25 Keller G, Wall C, Fong A Z, Hawley T S, Hawley R G (1998). Overexpression of HOX11 leads to the immortalization of embryonic precursors with both primitive and definitive hematopoietic potential. Blood, 92(3): 877–887
pmid: 9680355
26 Kennedy M, D’Souza S L, Lynch-Kattman M, Schwantz S, Keller G (2007). Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood, 109(7): 2679–2687
pmid: 17148580
27 Kennedy M, Firpo M, Choi K, Wall C, Robertson S, Kabrun N, Keller G (1997). A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature, 386(6624): 488–493
https://doi.org/10.1038/386488a0 pmid: 9087406
28 Kingsley P D, Malik J, Fantauzzo K A, Palis J (2004). Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis. Blood, 104(1): 19–25
https://doi.org/10.1182/blood-2003-12-4162 pmid: 15031208
29 Kitajima K, Kojima M, Nakajima K, Kondo S, Hara T, Miyajima A, Takeuchi T (1999). Definitive but not primitive hematopoiesis is impaired in jumonji mutant mice. Blood, 93(1): 87–95
pmid: 9864150
30 Klimchenko O, Mori M, Distefano A, Langlois T, Larbret F, Lecluse Y, Feraud O, Vainchenker W, Norol F, Debili N (2009). A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis. Blood, 114(8): 1506–1517
https://doi.org/10.1182/blood-2008-09-178863 pmid: 19478046
31 Krause D S, Mucenski M L, Lawler A M, May W S (1998). CD34 expression by embryonic hematopoietic and endothelial cells does not require c-Myb. Exp Hematol, 26(11): 1086–1092
pmid: 9766450
32 Kyba M, Perlingeiro R C, Daley G Q (2002). HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell, 109(1): 29–37
https://doi.org/10.1016/S0092-8674(02)00680-3 pmid: 11955444
33 Kyba M, Perlingeiro R C, Hoover R R, Lu C W, Pierce J, Daley G Q (2003). Enhanced hematopoietic differentiation of embryonic stem cells conditionally expressing Stat5. Proc Natl Acad Sci USA, 100(Suppl 1): 11904–11910
https://doi.org/10.1073/pnas.1734140100 pmid: 12930895
34 Lacaud G, Gore L, Kennedy M, Kouskoff V, Kingsley P, Hogan C, Carlsson L, Speck N, Palis J, Keller G (2002). Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood, 100(2): 458–466
https://doi.org/10.1182/blood-2001-12-0321 pmid: 12091336
35 Laranjeiro R, Alcobia I, Neves H, Gomes A C, Saavedra P, Carvalho C C, Duarte A, Cidad?o A, Parreira L (2012). The notch ligand delta-like 4 regulates multiple stages of early hemato-vascular development. PLoS ONE, 7(4): e34553
https://doi.org/10.1371/journal.pone.0034553 pmid: 22514637
36 Lengerke C, McKinney-Freeman S, Naveiras O, Yates F, Wang Y, Bansal D, Daley G Q (2007). The cdx-hox pathway in hematopoietic stem cell formation from embryonic stem cells. Ann N Y Acad Sci, 1106(1): 197–208
https://doi.org/10.1196/annals.1392.006 pmid: 17303828
37 Li X, Xiong J W, Shelley C S, Park H, Arnaout M A (2006). The transcription factor ZBP-89 controls generation of the hematopoietic lineage in zebrafish and mouse embryonic stem cells. Development, 133(18): 3641–3650
https://doi.org/10.1242/dev.02540 pmid: 16914492
38 Lichanska A M, Browne C M, Henkel G W, Murphy K M, Ostrowski M C, McKercher S R, Maki R A, Hume D A (1999). Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. Blood, 94(1): 127–138
pmid: 10381505
39 Liu B, Sun Y, Jiang F, Zhang S, Wu Y, Lan Y, Yang X, Mao N (2003). Disruption of Smad5 gene leads to enhanced proliferation of high-proliferative potential precursors during embryonic hematopoiesis. Blood, 101(1): 124–133
https://doi.org/10.1182/blood-2002-02-0398 pmid: 12393578
40 Lu L S, Wang S J, Auerbach R (1996). In vitro and in vivo differentiation into B cells, T cells, and myeloid cells of primitive yolk sac hematopoietic precursor cells expanded>100-fold by coculture with a clonal yolk sac endothelial cell line. Proc Natl Acad Sci USA, 93(25): 14782–14787
https://doi.org/10.1073/pnas.93.25.14782 pmid: 8962132
41 Lux C T, Yoshimoto M, McGrath K, Conway S J, Palis J, Yoder M C (2008). All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood, 111(7): 3435–3438
https://doi.org/10.1182/blood-2007-08-107086 pmid: 17932251
42 Martin R, Lahlil R, Damert A, Miquerol L, Nagy A, Keller G, Hoang T (2004). SCL interacts with VEGF to suppress apoptosis at the onset of hematopoiesis. Development, 131(3): 693–702
https://doi.org/10.1242/dev.00968 pmid: 14729577
43 McLeod D L, Shreeve M M, Axelrad A A (1974). Improved plasma culture system for production of erythrocytic colonies in vitro: quantitative assay method for CFU-E. Blood, 44(4): 517–534
pmid: 4137721
44 McReynolds L J, Gupta S, Figueroa M E, Mullins M C, Evans T (2007). Smad1 and Smad5 differentially regulate embryonic hematopoiesis. Blood, 110(12): 3881–3890
https://doi.org/10.1182/blood-2007-04-085753 pmid: 17761518
45 Miller J D, Stacy T, Liu P P, Speck N A (2001). Core-binding factor β (CBFβ), but not CBFbeta-smooth muscle myosin heavy chain, rescues definitive hematopoiesis in CBFβ-deficient embryonic stem cells. Blood, 97(8): 2248–2256
https://doi.org/10.1182/blood.V97.8.2248 pmid: 11290585
46 Nakano T, Kodama H, Honjo T (1996). In vitro development of primitive and definitive erythrocytes from different precursors. Science, 272(5262): 722–724
https://doi.org/10.1126/science.272.5262.722 pmid: 8614833
47 Nogueira M M, Mitjavila-Garcia M T, Le Pesteur F, Filippi M D, Vainchenker W, Dubart Kupperschmitt A, Sainteny F (2000). Regulation of Id gene expression during embryonic stem cell-derived hematopoietic differentiation. Biochem Biophys Res Commun, 276(2): 803–812
https://doi.org/10.1006/bbrc.2000.3543 pmid: 11027551
48 Nostro M C, Cheng X, Keller G M, Gadue P (2008). Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell, 2(1): 60–71
https://doi.org/10.1016/j.stem.2007.10.011 pmid: 18371422
49 Okuda T, van Deursen J, Hiebert S W, Grosveld G, Downing J R (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell, 84(2): 321–330
https://doi.org/10.1016/S0092-8674(00)80986-1 pmid: 8565077
50 Otani T, Inoue T, Tsuji-Takayama K, Ijiri Y, Nakamura S, Motoda R, Orita K (2005). Progenitor analysis of primitive erythropoiesis generated from in vitro culture of embryonic stem cells. Exp Hematol, 33(6): 632–640
https://doi.org/10.1016/j.exphem.2005.03.006 pmid: 15911087
51 Otani T, Nakamura S, Inoue T, Ijiri Y, Tsuji-Takayama K, Motoda R, Orita K (2004). Erythroblasts derived in vitro from embryonic stem cells in the presence of erythropoietin do not express the TER-119 antigen. Exp Hematol, 32(7): 607–613
https://doi.org/10.1016/j.exphem.2004.04.007 pmid: 15246156
52 Palis J, Robertson S, Kennedy M, Wall C, Keller G (1999). Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development, 126(22): 5073–5084
pmid: 10529424
53 Pearson S, Lancrin C, Lacaud G, Kouskoff V (2010). The sequential expression of CD40 and Icam2 defines progressive steps in the formation of blood precursors from the mesoderm germ layer. Stem Cells, 28(6): 1089–1098
https://doi.org/10.1002/stem.434 pmid: 20506544
54 Pereira C F, Chang B, Qiu J, Niu X, Papatsenko D, Hendry C E, Clark N R, Nomura-Kitabayashi A, Kovacic J C, Ma’ayan A, Schaniel C, Lemischka I R, Moore K (2013). Induction of a hemogenic program in mouse fibroblasts. Cell Stem Cell, 13(2): 205–218
https://doi.org/10.1016/j.stem.2013.05.024 pmid: 23770078
55 Perlingeiro R C, Kyba M, Bodie S, Daley G Q (2003). A role for thrombopoietin in hemangioblast development. Stem Cells, 21(3): 272–280
https://doi.org/10.1634/stemcells.21-3-272 pmid: 12743322
56 Perlingeiro R C, Kyba M, Daley G Q (2001). Clonal analysis of differentiating embryonic stem cells reveals a hematopoietic progenitor with primitive erythroid and adult lymphoid-myeloid potential. Development, 128(22): 4597–4604
pmid: 11714684
57 Pick M, Azzola L, Mossman A, Stanley E G, Elefanty A G (2007). Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells, 25(9): 2206–2214
https://doi.org/10.1634/stemcells.2006-0713 pmid: 17556598
58 Pineault N, Helgason C D, Lawrence H J, Humphries R K (2002). Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol, 30(1): 49–57
https://doi.org/10.1016/S0301-472X(01)00757-3 pmid: 11823037
59 Robb L, Elwood N J, Elefanty A G, K?ntgen F, Li R, Barnett L D, Begley C G (1996). The scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J, 15(16): 4123–4129
pmid: 8861941
60 Robb L, Lyons I, Li R, Hartley L, K?ntgen F, Harvey R P, Metcalf D, Begley C G (1995). Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci USA, 92(15): 7075–7079
https://doi.org/10.1073/pnas.92.15.7075 pmid: 7624372
61 Saleque S, Cameron S, Orkin S H (2002). The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev, 16(3): 301–306
https://doi.org/10.1101/gad.959102 pmid: 11825872
62 Sandler V M, Lis R, Liu Y, Kedem A, James D, Elemento O, Butler J M, Scandura J M, Rafii S (2014). Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature, 511(7509): 312–318
https://doi.org/10.1038/nature13547 pmid: 25030167
63 Sauvageau G, Thorsteinsdottir U, Eaves C J, Lawrence H J, Largman C, Lansdorp P M, Humphries R K (1995). Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev, 9(14): 1753–1765
https://doi.org/10.1101/gad.9.14.1753 pmid: 7622039
64 Shalaby F, Ho J, Stanford W L, Fischer K D, Schuh A C, Schwartz L, Bernstein A, Rossant J (1997). A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell, 89(6): 981–990
https://doi.org/10.1016/S0092-8674(00)80283-4 pmid: 9200616
65 Shivdasani R A, Mayer E L, Orkin S H (1995). Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature, 373(6513): 432–434
https://doi.org/10.1038/373432a0 pmid: 7830794
66 Simon M C, Pevny L, Wiles M V, Keller G, Costantini F, Orkin S H (1992). Rescue of erythroid development in gene targeted GATA-1- mouse embryonic stem cells. Nat Genet, 1(2): 92–98
https://doi.org/10.1038/ng0592-92 pmid: 1302015
67 Southwood C M, Downs K M, Bieker J J (1996). Erythroid Kruppel-like factor exhibits an early and sequentially localized pattern of expression during mammalian erythroid ontogeny. Dev Dyn, 20: 248–259
68 Stephenson J R, Axelrad A A, McLeod D L, Shreeve M M (1971). Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci USA, 68(7): 1542–1546
https://doi.org/10.1073/pnas.68.7.1542 pmid: 4104431
69 Sturgeon C M, Chicha L, Ditadi A, Zhou Q, McGrath K E, Palis J, Hammond S M, Wang S, Olson E N, Keller G (2012). Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells. Dev Cell, 23(1): 45–57
https://doi.org/10.1016/j.devcel.2012.05.021 pmid: 22749417
70 Sturgeon C M, Ditadi A, Awong G, Kennedy M, Keller G (2014). Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat Biotechnol, 32(6): 554–561
https://doi.org/10.1038/nbt.2915 pmid: 24837661
71 Suwabe N, Takahashi S, Nakano T, Yamamoto M (1998). GATA-1 regulates growth and differentiation of definitive erythroid lineage cells during in vitro ES cell differentiation. Blood, 92(11): 4108–4118
pmid: 9834216
72 Tober J, Koniski A, McGrath K E, Vemishetti R, Emerson R, de Mesy-Bentley K K, Waugh R, Palis J (2007). The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. Blood, 109(4): 1433–1441
https://doi.org/10.1182/blood-2006-06-031898 pmid: 17062726
73 Tsai F Y, Keller G, Kuo F C, Weiss M, Chen J, Rosenblatt M, Alt F W, Orkin S H (1994). An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature, 371(6494): 221–226
https://doi.org/10.1038/371221a0 pmid: 8078582
74 Walker L, Carlson A, Tan-Pertel H T, Weinmaster G, Gasson J (2001). The notch receptor and its ligands are selectively expressed during hematopoietic development in the mouse. Stem Cells, 19(6): 543–552
https://doi.org/10.1634/stemcells.19-6-543 pmid: 11713346
75 Wang L, Li L, Menendez P, Cerdan C, Bhatia M (2005). Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood, 105(12): 4598–4603
https://doi.org/10.1182/blood-2004-10-4065 pmid: 15718421
76 Wang L, Li L, Shojaei F, Levac K, Cerdan C, Menendez P, Martin T, Rouleau A, Bhatia M (2004). Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity, 21(1): 31–41
https://doi.org/10.1016/j.immuni.2004.06.006 pmid: 15345218
77 Wareing S, Eliades A, Lacaud G, Kouskoff V (2012). ETV2 expression marks blood and endothelium precursors, including hemogenic endothelium, at the onset of blood development. Dev Dyn, 241: 1454–1464
78 Warren A J, Colledge W H, Carlton M B, Evans M J, Smith A J, Rabbitts T H (1994). The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell, 78(1): 45–57
https://doi.org/10.1016/0092-8674(94)90571-1 pmid: 8033210
79 Weisel K C, Gao Y, Shieh J H, Moore M A (2006). Stromal cell lines from the aorta-gonado-mesonephros region are potent supporters of murine and human hematopoiesis. Exp Hematol, 34(11): 1505–1516
https://doi.org/10.1016/j.exphem.2006.06.013 pmid: 17046570
80 Weiss M J, Keller G, Orkin S H (1994). Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev, 8(10): 1184–1197
https://doi.org/10.1101/gad.8.10.1184 pmid: 7926723
81 Wiles M V, Johansson B M (1997). Analysis of factors controlling primary germ layer formation and early hematopoiesis using embryonic stem cell in vitro differentiation. Leukemia, 11(Suppl 3): 454–456
pmid: 9209423
82 Wiles M V, Keller G (1991). Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development, 111(2): 259–267
pmid: 1893864
83 Wu H, Liu X, Jaenisch R, Lodish H F (1995). Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell, 83(1): 59–67
https://doi.org/10.1016/0092-8674(95)90234-1 pmid: 7553874
84 Zafonte B T, Liu S, Lynch-Kattman M, Torregroza I, Benvenuto L, Kennedy M, Keller G, Evans T (2007). Smad1 expands the hemangioblast population within a limited developmental window. Blood, 109(2): 516–523
https://doi.org/10.1182/blood-2006-02-004564 pmid: 16990609
85 Zambidis E T, Peault B, Park T S, Bunz F, Civin C I (2005). Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood, 106(3): 860–870
https://doi.org/10.1182/blood-2004-11-4522 pmid: 15831705
86 Zhang H, Nieves J L, Fraser S T, Isern J, Douvaras P, Papatsenko D, D’Souza S L, Lemischka I R, Dyer M A, Baron M H (2014). Expression of podocalyxin separates the hematopoietic and vascular potentials of mouse embryonic stem cell-derived mesoderm. Stem Cells, 32(1): 191–203
https://doi.org/10.1002/stem.1536 pmid: 24022884
87 Zhang L, Magli A, Catanese J, Xu Z, Kyba M, Perlingeiro R C (2011). Modulation of TGF-β signaling by endoglin in murine hemangioblast development and primitive hematopoiesis. Blood, 118(1): 88–97
https://doi.org/10.1182/blood-2010-12-325019 pmid: 21602526
88 Zhang W J, Park C, Arentson E, Choi K (2005). Modulation of hematopoietic and endothelial cell differentiation from mouse embryonic stem cells by different culture conditions. Blood, 105(1): 111–114
https://doi.org/10.1182/blood-2004-04-1306 pmid: 15231577
89 Zheng J, Kitajima K, Sakai E, Kimura T, Minegishi N, Yamamoto M, Nakano T (2006). Differential effects of GATA-1 on proliferation and differentiation of erythroid lineage cells. Blood, 107(2): 520–527
https://doi.org/10.1182/blood-2005-04-1385 pmid: 16174764
90 Zou G M, Chan R J, Shelley W C, Yoder M C (2006). Reduction of Shp-2 expression by small interfering RNA reduces murine embryonic stem cell-derived in vitro hematopoietic differentiation. Stem Cells, 24(3): 587–594
https://doi.org/10.1634/stemcells.2005-0272 pmid: 16269528
91 Zou G M, Luo M H, Reed A, Kelley M R, Yoder M C (2007). Ape1 regulates hematopoietic differentiation of embryonic stem cells through its redox functional domain. Blood, 109(5): 1917–1922
https://doi.org/10.1182/blood-2006-08-044172 pmid: 17053053
[1] Tyler Harvey, Chen-Ming Fan. Origin of tendon stem cells in situ[J]. Front. Biol., 2018, 13(4): 263-276.
[2] Thai Q. Dao, Jennifer C. Fletcher. CLE peptide-mediated signaling in shoot and vascular meristem development[J]. Front. Biol., 2017, 12(6): 406-420.
[3] Yujie Deng, Caixia Lin, Huanjiao Jenny Zhou, Wang Min. Smooth muscle cell differentiation: Mechanisms and models for vascular diseases[J]. Front. Biol., 2017, 12(6): 392-405.
[4] Jun Sun. Intestinal organoid as an in vitromodel in studying host-microbial interactions[J]. Front. Biol., 2017, 12(2): 94-102.
[5] Liang Hu,Edward Trope,Qi-Long Ying. Metabolism of pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 355-365.
[6] Kyle R. Denton,Chongchong Xu,Harsh Shah,Xue-Jun Li. Modeling axonal defects in hereditary spastic paraplegia with human pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 339-354.
[7] Gabrielle Rushing,Rebecca A. Ihrie. Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone[J]. Front. Biol., 2016, 11(4): 261-284.
[8] Ying-Tao Zhao,Maria Fasolino,Zhaolan Zhou. Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals[J]. Front. Biol., 2016, 11(4): 311-322.
[9] Paul J. Lucassen,Charlotte A. Oomen. Stress, hippocampal neurogenesis and cognition: functional correlations[J]. Front. Biol., 2016, 11(3): 182-192.
[10] Fatih Semerci,Mirjana Maletic-Savatic. Transgenic mouse models for studying adult neurogenesis[J]. Front. Biol., 2016, 11(3): 151-167.
[11] Jin He. Function of Polycomb repressive complexes in stem cells[J]. Front. Biol., 2016, 11(2): 65-74.
[12] Stuart J. Grice,Ji-Long Liu. A SteMNess perspective of survival motor neuron function: splicing factors in stem cell biology and disease[J]. Front. Biol., 2015, 10(4): 297-309.
[13] Massimo Bonora,Paolo Pinton,Keisuke Ito. Mitochondrial control of hematopoietic stem cell balance and hematopoiesis[J]. Front. Biol., 2015, 10(2): 117-124.
[14] Marlen Knobloch,Sebastian Jessberger. Metabolic control of adult neural stem cell behavior[J]. Front. Biol., 2015, 10(2): 100-106.
[15] Gary R. HIME,Nicole SIDDALL,Katja HORVAY,Helen E. ABUD. Analyzing stem cell dynamics: use of cutting edge genetic approaches in model organisms[J]. Front. Biol., 2015, 10(1): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed