|
|
|
CLE peptide-mediated signaling in shoot and vascular meristem development |
Thai Q. Dao1,2, Jennifer C. Fletcher1,2( ) |
1. Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA 94710, USA 2. Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA |
|
|
|
|
Abstract BACKGROUND: Multicellular organisms rely on the transmission of information between cells to coordinate various biological processes during growth and development. Plants, like animals, utilize small peptide ligands as signaling molecules to transmit information between cells. These polypeptides typically act as extracellular messengers that are perceived by membrane-bound receptors, which then transduce the signal into the recipient cell to modify downstream gene transcription. The CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) proteins represent one of the largest and best understood families of small polypeptides in plants. Members of the CLE family play critical roles in mediating cell fate decisions during plant development, particularly within the unique meristem structures that contain stem cell reservoirs acting as sources of cells for continuous organ formation. OBJECTIVE: Here we review the roles of CLE family members in regulating the activity of the shoot apical meristems that generate the aerial parts of the plants, and of the vascular meristems that produce the sugar- and water-conducting tissues. METHODS: A systematic literature search was performed using the Google Scholar and PubMed search engines. The keywords “CLE”, “CLV3”, “TDIF”, “meristem”, and “plant stem cells” were used as search terms. The 95 retrieved articles, dating from 1992, were organized by topic and their key findings incorporated into the text. RESULTS: We summarize our current understanding of how the CLE peptide CLV3 orchestrates the activity of shoot apical meristems, describing its expression, processing and movement, as well as its intracellular signal transduction pathways, key target genes and downstream gene regulatory networks. We also discuss the roles of CLE peptide signaling in the vascular meristems to promote procambial cell proliferation and suppress xylem differentiation. CONCLUSIONS: Signaling pathways mediated by CLE peptides are critical for stem cell maintenance and differentiation in shoot apical and vascular meristems in plants, exposing CLE genes as potential targets for increasing yield and biomass production. While large numbers of CLE genes are being discovered in plants, only a few have been functionally characterized. We anticipate that future research will continue to elucidate the roles of the CLE family in plant development, and their potential impacts on agriculture and commerce.
|
| Keywords
CLE
CLV3
TDIF
WUS
stem cells
procambium
|
|
Corresponding Author(s):
Jennifer C. Fletcher
|
|
Just Accepted Date: 03 November 2017
Online First Date: 07 December 2017
Issue Date: 10 January 2018
|
|
| 1 |
Bedford M T, Clarke S G (2009). Protein arginine methylation in mammals: who, what, and why. Mol Cell, 33(1): 1–13
https://doi.org/10.1016/j.molcel.2008.12.013
pmid: 19150423
|
| 2 |
Bergeron J J M, Di Guglielmo G M, Dahan S, Dominguez M, Posner B I (2016). Spatial and temporal regulation of receptor tyrosine kinase activation and intracellular signal transduction. Annu Rev Biochem, 85(1): 573–597
https://doi.org/10.1146/annurev-biochem-060815-014659
pmid: 27023845
|
| 3 |
Betsuyaku S, Takahashi F, Kinoshita A, Miwa H, Shinozaki K, Fukuda H, Sawa S (2011). Mitogen-activated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis. Plant Cell Physiol, 52(1): 14–29
https://doi.org/10.1093/pcp/pcq157
pmid: 20965998
|
| 4 |
Blackwell T K, Kretzner L, Blackwood E M, Eisenman R N, Weintraub H (1990). Sequence-specific DNA binding by the c-Myc protein. Science, 250(4984): 1149–1151
https://doi.org/10.1126/science.2251503
pmid: 2251503
|
| 5 |
Bleckmann A, Weidtkamp-Peters S, Seidel C A M, Simon R (2010). Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol, 152(1): 166–176
https://doi.org/10.1104/pp.109.149930
pmid: 19933383
|
| 6 |
Bommert P, Nagasawa N S, Jackson D (2013). Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet, 45(3): 334–337
https://doi.org/10.1038/ng.2534
pmid: 23377180
|
| 7 |
Bowe L M, Coat G, dePamphilis C W (2000). Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA, 97(8): 4092–4097
https://doi.org/10.1073/pnas.97.8.4092
pmid: 10760278
|
| 8 |
Brand U, Fletcher J C, Hobe M, Meyerowitz E M, Simon R (2000). Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 289(5479): 617–619
https://doi.org/10.1126/science.289.5479.617
pmid: 10915624
|
| 9 |
Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T (2008). Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Dev Cell, 14(6): 867–876
https://doi.org/10.1016/j.devcel.2008.03.008
pmid: 18539115
|
| 10 |
Busch W, Miotk A, Ariel F D, Zhao Z, Forner J, Daum G, Suzaki T, Schuster C, Schultheiss S J, Leibfried A, Haubeiss S, Ha N, Chan R L, Lohmann J U (2010). Transcriptional control of a plant stem cell niche. Dev Cell, 18(5): 849–861
https://doi.org/10.1016/j.devcel.2010.03.012
pmid: 20493817
|
| 11 |
Cadigan K M, Fish M P, Rulifson E J, Nusse R (1998). Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell, 93(5): 767–777
https://doi.org/10.1016/S0092-8674(00)81438-5
pmid: 9630221
|
| 12 |
Caño-Delgado A, Yin Y, Yu C, Vafeados D, Mora-García S, Cheng J C, Nam K H, Li J, Chory J (2004). BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development, 131(21): 5341–5351
https://doi.org/10.1242/dev.01403
pmid: 15486337
|
| 13 |
Casamitjana-Martínez E, Hofhuis H F, Xu J, Liu C M, Heidstra R, Scheres B (2003). Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Curr Biol, 13(16): 1435–1441
https://doi.org/10.1016/S0960-9822(03)00533-5
pmid: 12932329
|
| 14 |
Chen M K, Wilson R L, Palme K, Ditengou F A, Shpak E D (2013). ERECTA family genes regulate auxin transport in the shoot apical meristem and forming leaf primordia. Plant Physiol, 162(4): 1978–1991
https://doi.org/10.1104/pp.113.218198
pmid: 23821653
|
| 15 |
Clark S E, Running M P, Meyerowitz E M (1993). CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development, 119(2): 397–418
pmid: 8287795
|
| 16 |
Clark S E, Running M P, Meyerowitz E M (1995). CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development, 121: 2057–2067
|
| 17 |
Clark S E, Williams R W, Meyerowitz E M (1997). The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 89(4): 575–585
https://doi.org/10.1016/S0092-8674(00)80239-1
pmid: 9160749
|
| 18 |
Cock J M, McCormick S (2001). A large family of genes that share homology with CLAVATA3. Plant Physiol, 126(3): 939–942
https://doi.org/10.1104/pp.126.3.939
pmid: 11457943
|
| 19 |
Daum G, Medzihradszky A, Suzaki T, Lohmann J U (2014). A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci USA, 111(40): 14619–14624
https://doi.org/10.1073/pnas.1406446111
pmid: 25246576
|
| 20 |
DeYoung B J, Bickle K L, Schrage K J, Muskett P, Patel K, Clark S E (2006). The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J, 45(1): 1–16
https://doi.org/10.1111/j.1365-313X.2005.02592.x
pmid: 16367950
|
| 21 |
DeYoung B J, Clark S E (2008). BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. Genetics, 180(2): 895–904
https://doi.org/10.1534/genetics.108.091108
pmid: 18780746
|
| 22 |
Diévart A, Dalal M, Tax F E, Lacey A D, Huttly A, Li J, Clark S E (2003). CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development. Plant Cell, 15(5): 1198–1211
https://doi.org/10.1105/tpc.010504
pmid: 12724544
|
| 23 |
Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C (2016). Tor signaling and nutrient sensing. Ann Rev Plant Biol, 67 (1): 261
|
| 24 |
Doebley J F, Gaut B S, Smith B D (2006). The molecular genetics of crop domestication. Cell, 127(7): 1309–1321
https://doi.org/10.1016/j.cell.2006.12.006
pmid: 17190597
|
| 25 |
Dolzblasz A, Nardmann J, Clerici E, Causier B, van der Graaff E, Chen J, Davies B, Werr W, Laux T (2016). Stem cell regulation by Arabidopsis WOX genes. Mol Plant, 9(7): 1028–1039
https://doi.org/10.1016/j.molp.2016.04.007
pmid: 27109605
|
| 26 |
Durbak A R, Tax F E (2011). CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well as in meristems. Genetics, 189(1): 177–194
https://doi.org/10.1534/genetics.111.130930
pmid: 21705761
|
| 27 |
Engstrom E M, Andersen C M, Gumulak-Smith J, Hu J, Orlova E, Sozzani R, Bowman J L (2011). Arabidopsis homologs of the petunia HAIRY MERISTEM gene are required for maintenance of shoot and root indeterminacy. Plant Physiol, 155(2): 735–750
https://doi.org/10.1104/pp.110.168757
pmid: 21173022
|
| 28 |
Etchells J P, Mishra L S, Kumar M, Campbell L, Turner S R (2015). Wood formation in trees is increased by manipulating PXY-regulated cell division. Curr Biol, 25(8): 1050–1055
https://doi.org/10.1016/j.cub.2015.02.023
pmid: 25866390
|
| 29 |
Etchells J P, Provost C M, Mishra L, Turner S R (2013). WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development, 140(10): 2224–2234
https://doi.org/10.1242/dev.091314
pmid: 23578929
|
| 30 |
Etchells J P, Turner S R (2010). The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development, 137(5): 767–774
https://doi.org/10.1242/dev.044941
pmid: 20147378
|
| 31 |
Fan C, Wu Y, Yang Q, Yang Y, Meng Q, Zhang K, Li J, Wang J, Zhou Y (2014). A novel single-nucleotide mutation in a CLAVATA3 gene homolog controls a multilocular silique trait in Brassica rapa L. Mol Plant, 7(12): 1788–1792
https://doi.org/10.1093/mp/ssu090
pmid: 25122699
|
| 32 |
Feng Z, Zhang B, Ding W, Liu X, Yang D L, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu J K (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 23(10): 1229–1232
https://doi.org/10.1038/cr.2013.114
pmid: 23958582
|
| 33 |
Fisher K, Turner S (2007). PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol, 17(12): 1061–1066
https://doi.org/10.1016/j.cub.2007.05.049
pmid: 17570668
|
| 34 |
Fletcher J C, Brand U, Running M P, Simon R, Meyerowitz E M (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 283(5409): 1911–1914
https://doi.org/10.1126/science.283.5409.1911
pmid: 10082464
|
| 35 |
Furner I J, Pumfrey J E (1992). Cell fate in the shoot apical meristem of Arabidopsis thaliana. Development, 115: 755–764
|
| 36 |
Gifford E M (1954). The shoot apex in angiosperms. Bot Rev, 20(8): 429–447
https://doi.org/10.1007/BF02957569
|
| 37 |
Goad D M, Zhu C, Kellogg E A (2017). Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groups with potentially shared function. New Phytol, 216(2):605–616
|
| 38 |
Gordon S P, Chickarmane V S, Ohno C, Meyerowitz E M (2009). Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA, 106(38): 16529–16534
https://doi.org/10.1073/pnas.0908122106
pmid: 19717465
|
| 39 |
Grooteclaes M L, Frisch S M (2000). Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene, 19(33): 3823–3828
https://doi.org/10.1038/sj.onc.1203721
pmid: 10949939
|
| 40 |
Guo Y, Han L, Hymes M, Denver R, Clark S E (2010). CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification. Plant J, 63(6): 889–900
https://doi.org/10.1111/j.1365-313X.2010.04295.x
pmid: 20626648
|
| 41 |
Han H, Zhang G, Wu M, Wang G (2016). Identification and characterization of the Populus trichocarpa CLE family. BMC Genomics, 17(1): 174
https://doi.org/10.1186/s12864-016-2504-x
pmid: 26935217
|
| 42 |
Hastwell A H, Gresshoff P M, Ferguson B J (2015). Genome-wide annotation and characterization of CLAVATA/ESR (CLE) peptide hormones of soybean (Glycine max) and common bean (Phaseolus vulgaris), and their orthologues of Arabidopsis thaliana. J Exp Bot, 66(17): 5271–5287
https://doi.org/10.1093/jxb/erv351
pmid: 26188205
|
| 43 |
Hirakawa Y, Kondo Y, Fukuda H (2010). TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell, 22(8): 2618–2629
https://doi.org/10.1105/tpc.110.076083
pmid: 20729381
|
| 44 |
Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H (2008). Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci USA, 105(39): 15208–15213
https://doi.org/10.1073/pnas.0808444105
pmid: 18812507
|
| 45 |
Ikeda M, Mitsuda N, Ohme-Takagi M (2009). Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. Plant Cell, 21(11): 3493–3505
https://doi.org/10.1105/tpc.109.069997
pmid: 19897670
|
| 46 |
Irish V F, Sussex I M (1992). A fate map of the Arabidopsis embryonic shoot apical meristem. Development, 115: 745–753
|
| 47 |
Ishida T, Tabata R, Yamada M, Aida M, Mitsumasu K, Fujiwara M, Yamaguchi K, Shigenobu S, Higuchi M, Tsuji H, Shimamoto K, Hasebe M, Fukuda H, Sawa S (2014). Heterotrimeric G proteins control stem cell proliferation through CLAVATA signaling in Arabidopsis. EMBO Rep, 15(11): 1202–1209
https://doi.org/10.15252/embr.201438660
pmid: 25260844
|
| 48 |
Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006). Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science, 313(5788): 842–845
https://doi.org/10.1126/science.1128436
pmid: 16902140
|
| 49 |
Je B I, Gruel J, Lee Y K, Bommert P, Arevalo E D, Eveland A L, Wu Q, Goldshmidt A, Meeley R, Bartlett M, Komatsu M, Sakai H, Jönsson H, Jackson D (2016). Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat Genet, 48(7): 785–791
https://doi.org/10.1038/ng.3567
pmid: 27182966
|
| 50 |
Jeong S, Trotochaud A E, Clark S E (1999). The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell, 11(10): 1925–1934
https://doi.org/10.1105/tpc.11.10.1925
pmid: 10521522
|
| 52 |
Ji J, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon M J (2010). WOX4 promotes procambial development. Plant Physiol, 152(3): 1346–1356
https://doi.org/10.1104/pp.109.149641
pmid: 20044450
|
| 53 |
Jun J, Fiume E, Roeder A H K, Meng L, Sharma V K, Osmont K S, Baker C, Ha C M, Meyerowitz E M, Feldman L J, Fletcher J C (2010). Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. Plant Physiol, 154(4): 1721–1736
https://doi.org/10.1104/pp.110.163683
pmid: 20884811
|
| 54 |
Kayes J M, Clark S E (1998). CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development, 125(19): 3843–3851
pmid: 9729492
|
| 55 |
Kieffer M, Stern Y, Cook H, Clerici E, Maulbetsch C, Laux T, Davies B (2006). Analysis of the transcription factor WUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their roles in meristem maintenance. Plant Cell, 18(3): 560–573
https://doi.org/10.1105/tpc.105.039107
pmid: 16461579
|
| 56 |
Kinoshita A, Betsuyaku S, Osakabe Y, Mizuno S, Nagawa S, Stahl Y, Simon R, Yamaguchi-Shinozaki K, Fukuda H, Sawa S (2010). RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development, 137(22): 3911–3920
https://doi.org/10.1242/dev.048199
pmid: 20978082
|
| 57 |
Kinoshita A, Seo M, Kamiya Y, Sawa S (2015). Mystery in genetics: PUB4 gives a clue to the complex mechanism of CLV signaling pathway in the shoot apical meristem. Plant Signal Behav, 10(6): e1028707
https://doi.org/10.1080/15592324.2015.1028707
pmid: 25898239
|
| 58 |
Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006). A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science, 313(5788): 845–848
https://doi.org/10.1126/science.1128439
pmid: 16902141
|
| 59 |
Kondo Y, Ito T, Nakagami H, Hirakawa Y, Saito M, Tamaki T, Shirasu K, Fukuda H (2014). Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling. Nat Commun, 5: 3504
https://doi.org/10.1038/ncomms4504
pmid: 24662460
|
| 60 |
Kuittinen H, Aguadé M (2000). Nucleotide variation at the CHALCONE ISOMERASE locus in Arabidopsis thaliana. Genetics, 155(2): 863–872
pmid: 10835405
|
| 61 |
Laux T, Mayer K F X, Berger J, Jürgens G (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 122(1): 87–96
pmid: 8565856
|
| 62 |
Lease K A, Walker J C (2006). The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiol, 142(3): 831–838
https://doi.org/10.1104/pp.106.086041
pmid: 16998087
|
| 63 |
Leibfried A, To J P C, Busch W, Stehling S, Kehle A, Demar M, Kieber J J, Lohmann J U (2005). WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature, 438(7071): 1172–1175
https://doi.org/10.1038/nature04270
pmid: 16372013
|
| 64 |
Li Z, Chakraborty S, Xu G (2017). Differential CLE peptide perception by plant receptors implicated from structural and functional analyses of TDIF-TDR interactions. PLoS One, 12(4): e0175317
https://doi.org/10.1371/journal.pone.0175317
pmid: 28384649
|
| 65 |
Long J A, Ohno C, Smith Z R, Meyerowitz E M (2006). TOPLESS regulates apical embryonic fate in Arabidopsis. Science, 312(5779): 1520–1523
https://doi.org/10.1126/science.1123841
pmid: 16763149
|
| 66 |
Mandel T, Candela H, Landau U, Asis L, Zelinger E, Carles C C, Williams L E (2016). Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and class III HD-ZIP pathways. Development, 143(9): 1612–1622
https://doi.org/10.1242/dev.129973
pmid: 26989178
|
| 67 |
Mandel T, Moreau F, Kutsher Y, Fletcher J C, Carles C C, Eshed Williams L (2014). The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity. Development, 141(4): 830–841
https://doi.org/10.1242/dev.104687
pmid: 24496620
|
| 68 |
Matsubayashi Y (2014). Posttranslationally modified small-peptide signals in plants. Annu Rev Plant Biol, 65(1): 385–413
https://doi.org/10.1146/annurev-arplant-050312-120122
pmid: 24779997
|
| 69 |
Mayer K F X, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 95(6): 805–815
https://doi.org/10.1016/S0092-8674(00)81703-1
pmid: 9865698
|
| 70 |
McCallum C M, Comai L, Greene E A, Henikoff S (2000). Targeting Induced Local Lesions IN Genomes (TILLING) for plant functional genomics. Plant Physiol, 123(2): 439–442
https://doi.org/10.1104/pp.123.2.439
pmid: 10859174
|
| 71 |
Meng L, Ruth K C, Fletcher J C, Feldman L (2010). The roles of different CLE domains in Arabidopsis CLE polypeptide activity and functional specificity. Mol Plant, 3(4): 760–772
https://doi.org/10.1093/mp/ssq021
pmid: 20494950
|
| 72 |
Morita J, Kato K, Nakane T, Kondo Y, Fukuda H, Nishimasu H, Ishitani R, Nureki O (2016). Crystal structure of the plant receptor-like kinase TDR in complex with the TDIF peptide. Nat Comm, 7:12383
|
| 73 |
Müller R, Bleckmann A, Simon R (2008). The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell, 20(4): 934–946
https://doi.org/10.1105/tpc.107.057547
pmid: 18381924
|
| 74 |
Nekrasov V, Staskawicz B, Weigel D, Jones J D G, Kamoun S (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol, 31(8): 691–693
https://doi.org/10.1038/nbt.2655
pmid: 23929340
|
| 75 |
Ni J, Clark S E (2006). Evidence for functional conservation, sufficiency, and proteolytic processing of the CLAVATA3 CLE domain. Plant Physiol, 140(2): 726–733
https://doi.org/10.1104/pp.105.072678
pmid: 16407446
|
| 76 |
Ni J, Guo Y, Jin H, Hartsell J, Clark S E (2011). Characterization of a CLE processing activity. Plant Mol Biol, 75(1-2): 67–75
https://doi.org/10.1007/s11103-010-9708-2
pmid: 21052783
|
| 77 |
Nimchuk Z L (2017). CLAVATA1 controls distinct signaling outputs that buffer shoot stem cell proliferation through a two-step transcriptional compensation loop. PLoS Genet, 13(3): e1006681
https://doi.org/10.1371/journal.pgen.1006681
pmid: 28355208
|
| 78 |
Nimchuk Z L, Tarr P T, Meyerowitz E M (2011a). An evolutionarily conserved pseudokinase mediates stem cell production in plants. Plant Cell, 23(3): 851–854
https://doi.org/10.1105/tpc.110.075622
pmid: 21398569
|
| 79 |
Nimchuk Z L, Tarr P T, Ohno C, Qu X, Meyerowitz E M (2011b). Plant stem cell signaling involves ligand-dependent trafficking of the CLAVATA1 receptor kinase. Curr Biol, 21(5): 345–352
https://doi.org/10.1016/j.cub.2011.01.039
pmid: 21333538
|
| 80 |
Nimchuk Z L, Zhou Y, Tarr P T, Peterson B A, Meyerowitz E M (2015). Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases. Development, 142(6): 1043–1049
https://doi.org/10.1242/dev.119677
pmid: 25758219
|
| 81 |
Oelkers K, Goffard N, Weiller G F, Gresshoff P M, Mathesius U, Frickey T (2008). Bioinformatic analysis of the CLE signaling peptide family. BMC Plant Biol, 8(1): 1
https://doi.org/10.1186/1471-2229-8-1
pmid: 18171480
|
| 82 |
Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008). Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science, 319(5861): 294
https://doi.org/10.1126/science.1150083
pmid: 18202283
|
| 83 |
Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001). Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 13(8): 1959–1968
https://doi.org/10.1105/tpc.13.8.1959
pmid: 11487705
|
| 84 |
Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009). A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol, 5(8): 578–580
https://doi.org/10.1038/nchembio.182
pmid: 19525968
|
| 85 |
Perales M, Rodriguez K, Snipes S, Yadav R K, Diaz-Mendoza M, Reddy G V (2016). Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. Proc Natl Acad Sci USA, 113(41): E6298–E6306
https://doi.org/10.1073/pnas.1607669113
pmid: 27671653
|
| 86 |
Pfeiffer A, Janocha D, Dong Y, Medzihradszky A, Schöne S, Daum G, Suzaki T, Forner J, Langenecker T, Rempel E, Schmid M, Wirtz M, Hell R, Lohmann J U (2016). Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. eLife, 5: e17023
https://doi.org/10.7554/eLife.17023
pmid: 27400267
|
| 87 |
Poethig R S (1987). Clonal analysis of cell lineage patterns in plant development. Am J Bot, 74(4): 581–194
https://doi.org/10.2307/2443838
|
| 88 |
Poethig R S, Coe E H J Jr, Johri M M (1986). Cell lineage patterns in maize Zea mays embryogenesis: A clonal analysis. Dev Biol, 117(2): 392–404
https://doi.org/10.1016/0012-1606(86)90308-8
|
| 89 |
Poethig R S, Sussex I M (1985a). The cellular parameters of leaf development in tobacco: a clonal analysis. Planta, 165(2): 170–184
https://doi.org/10.1007/BF00395039
pmid: 24241041
|
| 90 |
Poethig R S, Sussex I M (1985b). The developmental morphology and growth dynamics of the tobacco leaf. Planta, 165(2): 158–169
https://doi.org/10.1007/BF00395038
pmid: 24241040
|
| 91 |
Prigge M J, Otsuga D, Alonso J M, Ecker J R, Drews G N, Clark S E (2005). Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell, 17(1): 61–76
https://doi.org/10.1105/tpc.104.026161
pmid: 15598805
|
| 92 |
Reddy G V, Meyerowitz E M (2005). Stem-cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. Science, 310(5748): 663–667
https://doi.org/10.1126/science.1116261
pmid: 16210497
|
| 93 |
Rodriguez K, Perales M, Snipes S, Yadav R K, Diaz-Mendoza M, Reddy G V (2016). DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilization control WUSCHEL levels and spatial patterning. Proc Natl Acad Sci USA, 113(41): E6307–E6315
https://doi.org/10.1073/pnas.1607673113
pmid: 27671631
|
| 94 |
Rojo E, Sharma V K, Kovaleva V, Raikhel N V, Fletcher J C (2002). CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell, 14(5): 969–977
https://doi.org/10.1105/tpc.002196
pmid: 12034890
|
| 95 |
Satina S, Blakeslee A F, Avery A G (1940). Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am J Bot, 27(10): 895–905
https://doi.org/10.2307/2436558
|
| 96 |
Schoof H, Lenhard M, Haecker A, Mayer K F X, Jürgens G, Laux T (2000). The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 100(6): 635–644
https://doi.org/10.1016/S0092-8674(00)80700-X
pmid: 10761929
|
| 97 |
Schuster C, Gaillochet C, Medzihradszky A, Busch W, Daum G, Krebs M, Kehle A, Lohmann J U (2014). A regulatory framework for shoot stem cell control integrating metabolic, transcriptional, and phytohormone signals. Dev Cell, 28(4): 438–449
https://doi.org/10.1016/j.devcel.2014.01.013
pmid: 24576426
|
| 98 |
Sharma V K, Ramirez J, Fletcher J C (2003). The Arabidopsis CLV3-like (CLE) genes are expressed in diverse tissues and encode secreted proteins. Plant Mol Biol, 51(3): 415–425
https://doi.org/10.1023/A:1022038932376
pmid: 12602871
|
| 99 |
Shimizu N, Ishida T, Yamada M, Shigenobu S, Tabata R, Kinoshita A, Yamaguchi K, Hasebe M, Mitsumasu K, Sawa S (2015). BAM 1 and RECEPTOR-LIKE PROTEIN KINASE 2 constitute a signaling pathway and modulate CLE peptide-triggered growth inhibition in Arabidopsis root. New Phytol, 208(4): 1104–1113
https://doi.org/10.1111/nph.13520
pmid: 26083273
|
| 100 |
Shinohara H, Matsubayashi Y (2013). Chemical synthesis of Arabidopsis CLV3 glycopeptide reveals the impact of hydroxyproline arabinosylation on peptide conformation and activity. Plant Cell Physiol, 54(3): 369–374
https://doi.org/10.1093/pcp/pcs174
pmid: 23256149
|
| 101 |
Shinohara H, Matsubayashi Y (2015). Reevaluation of the CLV3-receptor interaction in the shoot apical meristem: dissection of the CLV3 signaling pathway from a direct ligand-binding point of view. Plant J, 82(2): 328–336
https://doi.org/10.1111/tpj.12817
pmid: 25754504
|
| 102 |
Shiu S H, Bleecker A B (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA, 98(19): 10763–10768
https://doi.org/10.1073/pnas.181141598
pmid: 11526204
|
| 103 |
Smith Z R, Long J A (2010). Control of Arabidopsis apical-basal embryo polarity by antagonistic transcription factors. Nature, 464(7287): 423–426
https://doi.org/10.1038/nature08843
pmid: 20190735
|
| 104 |
Somssich M, Je B I, Simon R, Jackson D (2016). CLAVATA-WUSCHEL signaling in the shoot meristem. Development, 143(18): 3238–3248
https://doi.org/10.1242/dev.133645
pmid: 27624829
|
| 105 |
Somssich M, Ma Q, Weidtkamp-Peters S, Stahl Y, Felekyan S, Bleckmann A, Seidel C A M, Simon R (2015). Real-time dynamics of peptide ligand-dependent receptor complex formation in planta. Sci Signal, 8(388): ra76
https://doi.org/10.1126/scisignal.aab0598
pmid: 26243190
|
| 106 |
Song S K, Lee M M, Clark S E (2006). POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. Development, 133(23): 4691–4698
https://doi.org/10.1242/dev.02652
pmid: 17079273
|
| 107 |
Song X F, Xu T T, Ren S C, Liu C M (2013). Individual amino acid residues in CLV3 peptide contribute to its stability in vitro. Plant Signal Behav, 8(9): 8
https://doi.org/10.4161/psb.25344
pmid: 23803748
|
| 108 |
Song X F, Yu D L, Xu T T, Ren S C, Guo P, Liu C M (2012). Contributions of individual amino acid residues to the endogenous CLV3 function in shoot apical meristem maintenance in Arabidopsis. Mol Plant, 5(2): 515–523
https://doi.org/10.1093/mp/ssr120
pmid: 22259020
|
| 109 |
Steeves T A, Sussex I M (1989). Patterns in Plant Development. New York: Cambridge University Press.
|
| 110 |
Strabala T J, Phillips L, West M, Stanbra L (2014). Bioinformatic and phylogenetic analysis of the CLAVATA3/EMBRYO-SURROUNDING REGION (CLE) and the CLE-LIKE signal peptide genes in the Pinophyta. BMC Plant Biol, 14(1): 47
https://doi.org/10.1186/1471-2229-14-47
pmid: 24529101
|
| 111 |
Stuurman J, Jäggi F, Kuhlemeier C (2002). Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Genes Dev, 16(17): 2213–2218
https://doi.org/10.1101/gad.230702
pmid: 12208843
|
| 112 |
Suer S, Agusti J, Sanchez P, Schwarz M, Greb T (2011). WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. Plant Cell, 23(9): 3247–3259
https://doi.org/10.1105/tpc.111.087874
pmid: 21926336
|
| 113 |
Sussex I M (1954). Experiments on the cause of dorsiventrality in leaves. Nature, 174(4425): 351–352
https://doi.org/10.1038/174351a0
pmid: 14826895
|
| 114 |
Szemenyei H, Hannon M, Long J A (2008). TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science, 319(5868): 1384–1386
https://doi.org/10.1126/science.1151461
pmid: 18258861
|
| 115 |
Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue B P (2015). The plant peptidome: an expanding repertoire of structural features and biological functions. Plant Cell, 27(8): 2095–2118
https://doi.org/10.1105/tpc.15.00440
pmid: 26276833
|
| 116 |
To J P C, Haberer G, Ferreira F J, Deruère J, Mason M G, Schaller G E, Alonso J M, Ecker J R, Kieber J J (2004). Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell, 16(3): 658–671
https://doi.org/10.1105/tpc.018978
pmid: 14973166
|
| 117 |
Trotochaud A E, Hao T, Wu G, Yang Z, Clark S E (1999). The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell, 11(3): 393–406
https://doi.org/10.1105/tpc.11.3.393
pmid: 10072399
|
| 118 |
Uchida N, Shimada M, Tasaka M (2013). ERECTA-family receptor kinases regulate stem cell homeostasis via buffering its cytokinin responsiveness in the shoot apical meristem. Plant Cell Physiol, 54(3): 343–351
https://doi.org/10.1093/pcp/pcs109
pmid: 22885615
|
| 119 |
Urano D, Jones A M (2014). Heterotrimeric G protein-coupled signaling in plants. Annu Rev Plant Biol, 65(1): 365–384
https://doi.org/10.1146/annurev-arplant-050213-040133
pmid: 24313842
|
| 120 |
Wang X, Mitchum M G, Gao B, Li C, Diab H, Baum T J, Hussey R S, Davis E L (2005). A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana. Mol Plant Pathol, 6(2): 187–191
https://doi.org/10.1111/j.1364-3703.2005.00270.x
pmid: 20565649
|
| 121 |
Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P (2008). Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proc Natl Acad Sci USA, 105(47): 18625–18630
https://doi.org/10.1073/pnas.0809395105
pmid: 19011104
|
| 122 |
Williams R W, Wilson J M, Meyerowitz E M (1997). A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway. Proc Natl Acad Sci USA, 94(19): 10467–10472
https://doi.org/10.1073/pnas.94.19.10467
pmid: 9294234
|
| 123 |
Xu C, Liberatore K L, MacAlister C A, Huang Z, Chu Y H, Jiang K, Brooks C, Ogawa-Ohnishi M, Xiong G, Pauly M, Van Eck J, Matsubayashi Y, van der Knaap E, Lippman Z B (2015). A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat Genet, 47(7): 784–792
https://doi.org/10.1038/ng.3309
pmid: 26005869
|
| 124 |
Xu T T, Song X F, Ren S C, Liu C M (2013). The sequence flanking the N-terminus of the CLV3 peptide is critical for its cleavage and activity in stem cell regulation in Arabidopsis. BMC Plant Biol, 13(1): 225
https://doi.org/10.1186/1471-2229-13-225
pmid: 24369789
|
| 125 |
Yadav R K, Perales M, Gruel J, Girke T, Jönsson H, Reddy G V (2011). WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev, 25(19): 2025–2030
https://doi.org/10.1101/gad.17258511
pmid: 21979915
|
| 126 |
Yadav R K, Perales M, Gruel J, Ohno C, Heisler M, Girke T, Jönsson H, Reddy G V (2013). Plant stem cell maintenance involves direct transcriptional repression of differentiation program. Mol Syst Biol, 9(1): 654
https://doi.org/10.1038/msb.2013.8
pmid: 23549482
|
| 127 |
Yamamoto R, Fujioka S, Iwamoto K, Demura T, Takatsuto S, Yoshida S, Fukuda H (2007). Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation. Plant Cell Physiol, 48(1): 74–83
https://doi.org/10.1093/pcp/pcl039
pmid: 17132633
|
| 128 |
Yue M, Li Q, Zhang Y, Zhao Y, Zhang Z, Bao S (2013). Histone H4R3 methylation catalyzed by SKB1/PRMT5 is required for maintaining shoot apical meristem. PLoS One, 8(12): e83258
https://doi.org/10.1371/journal.pone.0083258
pmid: 24349476
|
| 129 |
Zhang H, Lin X, Han Z, Qu L J, Chai J (2016). Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs. Cell Res, 26(5): 543–555
https://doi.org/10.1038/cr.2016.45
pmid: 27055373
|
| 130 |
Zhang Z, Tucker E, Hermann M, Laux T (2017). A molecular framework for the embryonic initiation of shoot meristem stem cells. Dev Cell, 40(3): 264–277.e4
https://doi.org/10.1016/j.devcel.2017.01.002
pmid: 28171749
|
| 131 |
Zhou Y, Liu X, Engstrom E M, Nimchuk Z L, Pruneda-Paz J L, Tarr P T, Yan A, Kay S A, Meyerowitz E M (2015). Control of plant stem cell function by conserved interacting transcriptional regulators. Nature, 517(7534): 377–380
https://doi.org/10.1038/nature13853
pmid: 25363783
|
| 132 |
Zhu Y, Wang Y, Li R, Song X, Wang Q, Huang S, Jin J B, Liu C M, Lin J (2010). Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis. Plant J, 61(2): 223–233
https://doi.org/10.1111/j.1365-313X.2009.04049.x
pmid: 19843317
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|