|
|
Smooth muscle cell differentiation: Mechanisms and models for vascular diseases |
Yujie Deng1, Caixia Lin1, Huanjiao Jenny Zhou2, Wang Min1,2( ) |
1. Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China 2. Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA |
|
|
Abstract BACKGROUND: Vascular smooth muscle cells (VSMCs) are mature cells that play critical roles in both normal and aberrant cardiovascular conditions. In response to various environmental cues, VSMCs can dedifferentiate from a contractile state to a highly proliferative synthetic state through the so-called ‘phenotypic switching’ process. Changes in VSMC phenotype contribute to numerous vascular-related diseases, including atherosclerosis, calcification, and restenosis following angioplasty. Adventitial VSMC progenitor cells also contribute to formation of the neointima. METHODS/RESULTS: Herein, we review both, the roles of VSMC differentiation in vascular diseases, and the in vitro models used to investigate the molecular mechanisms involved in the regulation of VSMC differentiation and phenotype modulation. CONCLUSION: A comprehensive understanding of VSMC behavior in vascular diseases is essential to identify new therapeutic targets for the prevention and treatment of cardiovascular diseases.
|
Keywords
vascular smooth muscle cells
progenitor
differentiation
transcription factor
cardiovascular disease
|
Corresponding Author(s):
Wang Min
|
Just Accepted Date: 07 December 2017
Online First Date: 29 December 2017
Issue Date: 10 January 2018
|
|
1 |
Abedin M, Tintut Y, Demer L L (2004). Mesenchymal stem cells and the artery wall. Circ Res, 95(7): 671–676
https://doi.org/10.1161/01.RES.0000143421.27684.12
pmid: 15459088
|
2 |
Ackers-Johnson M, Talasila A, Sage A P, Long X, Bot I, Morrell N W, Bennett M R, Miano J M, Sinha S (2015). Myocardin regulates vascular smooth muscle cell inflammatory activation and disease. Arterioscler Thromb Vasc Biol, 35(4): 817–828
https://doi.org/10.1161/ATVBAHA.114.305218
pmid: 25614278
|
3 |
Aicher A, Zeiher A M, Dimmeler S ( 2005). Mobilizing endothelial progenitor cells. Hypertension (Dallas, Tex: 1979), 45(3): 321–325
|
4 |
Ailawadi G, Eliason J L, Upchurch G R Jr (2003). Current concepts in the pathogenesis of abdominal aortic aneurysm. J Vasc Surg, 38(3): 584–588
https://doi.org/10.1016/S0741-5214(03)00324-0
pmid: 12947280
|
5 |
Ailawadi G, Moehle C W, Pei H, Walton S P, Yang Z, Kron I L, Lau C L, Owens G K (2009). Smooth muscle phenotypic modulation is an early event in aortic aneurysms. J Thorac Cardiovasc Surg, 138(6): 1392–1399
https://doi.org/10.1016/j.jtcvs.2009.07.075
pmid: 19931668
|
6 |
Airhart N, Brownstein B H, Cobb J P, Schierding W, Arif B, Ennis T L, Thompson R W, Curci J A (2014). Smooth muscle cells from abdominal aortic aneurysms are unique and can independently and synergistically degrade insoluble elastin. J Vasc Surg, 60(4): 1033–1041, discussion 1041–1042
https://doi.org/10.1016/j.jvs.2013.07.097
pmid: 24080131
|
7 |
Alexander M R, Owens G K (2012). Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol, 74(1): 13–40
https://doi.org/10.1146/annurev-physiol-012110-142315
pmid: 22017177
|
8 |
Allahverdian S, Chehroudi A C, McManus B M, Abraham T, Francis G A (2014). Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation, 129(15): 1551–1559
https://doi.org/10.1161/CIRCULATIONAHA.113.005015
pmid: 24481950
|
9 |
Baumgartner H R, Studer Ab( 1963). Controlled over-dilatation of the abdominal aorta in normo- and hypercholesteremic rabbits. Pathol Microbiol, 26: 129–148
|
10 |
Baxter B T, Terrin M C, Dalman R L (2008). Medical management of small abdominal aortic aneurysms. Circulation, 117(14): 1883–1889
https://doi.org/10.1161/CIRCULATIONAHA.107.735274
pmid: 18391122
|
11 |
Beamish J A, He P, Kottke-Marchant K, Marchant R E (2010). Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. Tissue Eng Part B Rev, 16(5): 467–491
https://doi.org/10.1089/ten.teb.2009.0630
pmid: 20334504
|
12 |
Bennett M R, Sinha S, Owens G K (2016). Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res, 118(4): 692–702
https://doi.org/10.1161/CIRCRESAHA.115.306361
pmid: 26892967
|
13 |
Bessueille L, Magne D (2015). Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes. Cell Mol Life Sci, 72(13): 2475–2489
https://doi.org/10.1007/s00018-015-1876-4
pmid: 25746430
|
14 |
Blank R S, Swartz E A, Thompson M M, Olson E N, Owens G K (1995). A retinoic acid-induced clonal cell line derived from multipotential P19 embryonal carcinoma cells expresses smooth muscle characteristics. Circ Res, 76(5): 742–749
https://doi.org/10.1161/01.RES.76.5.742
pmid: 7728990
|
15 |
Boström K I, Rajamannan N M, Towler D A (2011). The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circ Res, 109(5): 564–577
https://doi.org/10.1161/CIRCRESAHA.110.234278
pmid: 21852555
|
16 |
Boyd N L, Robbins K R, Dhara S K, West F D, Stice S L (2009). Human embryonic stem cell-derived mesoderm-like epithelium transitions to mesenchymal progenitor cells. Tissue Eng Part A, 15(8): 1897–1907
https://doi.org/10.1089/ten.tea.2008.0351
pmid: 19196144
|
17 |
Butoi E, Gan A M, Tucureanu M M, Stan D, Macarie R D, Constantinescu C, Calin M, Simionescu M, Manduteanu I (2016). Cross-talk between macrophages and smooth muscle cells impairs collagen and metalloprotease synthesis and promotes angiogenesis. Biochim Biophys Acta, 1863(7 7 Pt A): 1568–1578
https://doi.org/10.1016/j.bbamcr.2016.04.001
pmid: 27060293
|
18 |
Byon C H, Javed A, Dai Q, Kappes J C, Clemens T L, Darley-Usmar V M, McDonald J M, Chen Y (2008). Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J Biol Chem, 283(22): 15319–15327
https://doi.org/10.1074/jbc.M800021200
pmid: 18378684
|
19 |
Campagnolo P, Cesselli D, Al Haj Zen A, Beltrami A P, Kränkel N, Katare R, Angelini G, Emanueli C, Madeddu P (2010). Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation, 121(15): 1735–1745
https://doi.org/10.1161/CIRCULATIONAHA.109.899252
pmid: 20368523
|
20 |
Chen N X, Duan D, O’Neill K D, Wolisi G O, Koczman J J, Laclair R, Moe S M (2006). The mechanisms of uremic serum-induced expression of bone matrix proteins in bovine vascular smooth muscle cells. Kidney Int, 70(6): 1046–1053
https://doi.org/10.1038/sj.ki.5001663
pmid: 16837922
|
21 |
Chen S, Lechleider R J (2004). Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line. Circ Res, 94(9): 1195–1202
https://doi.org/10.1161/01.RES.0000126897.41658.81
pmid: 15059931
|
22 |
Clowes A W, Reidy M A, Clowes M M (1983). Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab Invest, 49(3): 327–333
pmid: 6887785
|
23 |
Dahia P L (2000). PTEN, a unique tumor suppressor gene. Endocr Relat Cancer, 7(2): 115–129
https://doi.org/10.1677/erc.0.0070115
pmid: 10903528
|
24 |
Doyle A J, Redmond E M, Gillespie D L, Knight P A, Cullen J P, Cahill P A, Morrow D J (2015). Differential expression of Hedgehog/Notch and transforming growth factor-β in human abdominal aortic aneurysms. J Vasc Surg, 62(2): 464–470
https://doi.org/10.1016/j.jvs.2014.02.053
pmid: 24768363
|
25 |
Du F, Zhou J, Gong R, Huang X, Pansuria M, Virtue A, Li X, Wang H, Yang X F( 2012). Endothelial progenitor cells in atherosclerosis. Front Biosci, 17: 2327–2349
|
26 |
Durgin B G, Cherepanova O A, Gomez D, Karaoli T, Alencar G F, Butcher J T, Zhou Y Q, Bendeck M P, Isakson B E, Owens G K, Connelly J J (2017). Smooth muscle cell-specific deletion of Col15a1 unexpectedly leads to impaired development of advanced atherosclerotic lesions. Am J Physiol Heart Circ Physiol, 312(5): H943–H958
https://doi.org/10.1152/ajpheart.00029.2017
pmid: 28283548
|
27 |
Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K, Schaller M, Feil R (2014). Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ Res, 115(7): 662–667
https://doi.org/10.1161/CIRCRESAHA.115.304634
pmid: 25070003
|
28 |
Fukui D, Miyagawa S, Soeda J, Tanaka K, Urayama H, Kawasaki S (2003). Overexpression of transforming growth factor beta1 in smooth muscle cells of human abdominal aortic aneurysm. Eur J Vasc Endovasc Surg, 25(6): 540–545
https://doi.org/10.1053/ejvs.2002.1857
pmid: 12787696
|
29 |
Fukumoto Y, Deguchi J O, Libby P, Rabkin-Aikawa E, Sakata Y, Chin M T, Hill C C, Lawler P R, Varo N, Schoen F J, Krane S M, Aikawa M (2004). Genetically determined resistance to collagenase action augments interstitial collagen accumulation in atherosclerotic plaques. Circulation, 110(14): 1953–1959
https://doi.org/10.1161/01.CIR.0000143174.41810.10
pmid: 15451791
|
30 |
Furgeson S B, Simpson P A, Park I, Vanputten V, Horita H, Kontos C D, Nemenoff R A, Weiser-Evans M C (2010). Inactivation of the tumour suppressor, PTEN, in smooth muscle promotes a pro-inflammatory phenotype and enhances neointima formation. Cardiovasc Res, 86(2): 274–282
https://doi.org/10.1093/cvr/cvp425
pmid: 20051384
|
31 |
Gao F, Chambon P, Offermanns S, Tellides G, Kong W, Zhang X, Li W (2014). Disruption of TGF-β signaling in smooth muscle cell prevents elastase-induced abdominal aortic aneurysm. Biochem Biophys Res Commun, 454(1): 137–143
https://doi.org/10.1016/j.bbrc.2014.10.053
pmid: 25450370
|
32 |
Owens G K, Kumar M S, Wamhoff B R (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev, 84(3): 767
|
33 |
Glass C K, Witztum J L (2001). Atherosclerosis. the road ahead. Cell, 104(4): 503–516
https://doi.org/10.1016/S0092-8674(01)00238-0
pmid: 11239408
|
34 |
Guo X, Stice S L, Boyd N L, Chen S Y (2013). A novel in vitro model system for smooth muscle differentiation from human embryonic stem cell-derived mesenchymal cells. Am J Physiol Cell Physiol, 304(4): C289–C298
https://doi.org/10.1152/ajpcell.00298.2012
pmid: 23220114
|
35 |
Ha J M, Yun S J, Jin S Y, Lee H S, Kim S J, Shin H K, Bae S S (2017). Regulation of vascular smooth muscle phenotype by cross-regulation of krüppel-like factors. Korean J Physiol Pharmacol, 21(1): 37–44
https://doi.org/10.4196/kjpp.2017.21.1.37
pmid: 28066139
|
36 |
Ha J M, Yun S J, Kim Y W, Jin S Y, Lee H S, Song S H, Shin H K, Bae S S (2015). Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammalian target of rapamycin complex 1. Biochem Biophys Res Commun, 464(1): 57–62
https://doi.org/10.1016/j.bbrc.2015.05.097
pmid: 26032503
|
37 |
Hayashi K, Shibata K, Morita T, Iwasaki K, Watanabe M, Sobue K (2004). Insulin receptor substrate-1/SHP-2 interaction, a phenotype-dependent switching machinery of insulin-like growth factor-I signaling in vascular smooth muscle cells. J Biol Chem, 279(39): 40807–40818
https://doi.org/10.1074/jbc.M405100200
pmid: 15272025
|
38 |
Hirschi K K, Majesky M W (2004). Smooth muscle stem cells. Anat Rec A Discov Mol Cell Evol Biol, 276(1): 22–33
https://doi.org/10.1002/ar.a.10128
pmid: 14699631
|
39 |
Hirschi K K, Rohovsky S A, D’Amore P A (1998). PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol, 141(3): 805–814
https://doi.org/10.1083/jcb.141.3.805
pmid: 9566978
|
40 |
Holifield B, Helgason T, Jemelka S, Taylor A, Navran S, Allen J, Seidel C (1996). Differentiated vascular myocytes: are they involved in neointimal formation? J Clin Invest, 97(3): 814–825
https://doi.org/10.1172/JCI118481
pmid: 8609239
|
41 |
Horita H, Wysoczynski C L, Walker L A, Moulton KS, Li M, Ostriker A, Tucker R, McKinsey T A, Churchill M E, Nemenoff R A, Weiser-Evans M C (2016). Nuclear PTEN functions as an essential regulator of SRF-dependent transcription to control smooth muscle differentiation. Nat Commun,7: 10830
|
42 |
Hu Y, Xu Q (2011). Adventitial biology: differentiation and function. Arterioscler Thromb Vasc Biol, 31(7): 1523–1529
https://doi.org/10.1161/ATVBAHA.110.221176
pmid: 21677295
|
43 |
Hu Y, Zhang Z, Torsney E, Afzal A R, Davison F, Metzler B, Xu Q (2004). Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest, 113(9): 1258–1265
https://doi.org/10.1172/JCI19628
pmid: 15124016
|
44 |
Huang H, Zhao X, Chen L, Xu C, Yao X, Lu Y, Dai L, Zhang M (2006). Differentiation of human embryonic stem cells into smooth muscle cells in adherent monolayer culture. Biochem Biophys Res Commun, 351(2): 321–327
https://doi.org/10.1016/j.bbrc.2006.09.171
pmid: 17069765
|
45 |
Jain M K, Layne M D, Watanabe M, Chin M T, Feinberg M W, Sibinga N E, Hsieh C M, Yet S F, Stemple D L, Lee M E (1998). In vitro system for differentiating pluripotent neural crest cells into smooth muscle cells. J Biol Chem, 273(11): 5993–5996
https://doi.org/10.1074/jbc.273.11.5993
pmid: 9497310
|
46 |
Kim S H, Yun S J, Kim Y H, Ha J M, Jin S Y, Lee H S, Kim S J, Shin H K, Chung S W, Bae S S (2015). Essential role of krüppel-like factor 5 during tumor necrosis factor α-induced phenotypic conversion of vascular smooth muscle cells. Biochem Biophys Res Commun, 463(4): 1323–1327
https://doi.org/10.1016/j.bbrc.2015.06.123
pmid: 26102029
|
47 |
Kovacic J C, Boehm M (2009). Resident vascular progenitor cells: an emerging role for non-terminally differentiated vessel-resident cells in vascular biology. Stem Cell Res (Amst), 2(1): 2–15
https://doi.org/10.1016/j.scr.2008.05.005
pmid: 19383404
|
48 |
Koyama H, Raines E W, Bornfeldt K E, Roberts J M, and Ross R (1996). Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell, 87:1069–1078
|
49 |
Kramann R, Goettsch C, Wongboonsin J, Iwata H, Schneider R K, Kuppe C, Kaesler N, Chang-Panesso M, Machado F G, Gratwohl S, Madhurima K, Hutcheson J D, Jain S, Aikawa E, Humphreys B D (2016). Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease. Cell Stem Cell, 19(5): 628–642
https://doi.org/10.1016/j.stem.2016.08.001
pmid: 27618218
|
50 |
Lacolley P, Regnault V, Nicoletti A, Li Z, Michel J B (2012). The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res, 95(2): 194–204
https://doi.org/10.1093/cvr/cvs135
pmid: 22467316
|
51 |
Legein B, Temmerman L, Biessen E A, Lutgens E (2013). Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci, 70(20): 3847–3869
https://doi.org/10.1007/s00018-013-1289-1
pmid: 23430000
|
52 |
Li D Y, Brooke B, Davis E C, Mecham R P, Sorensen L K, Boak B B, Eichwald E, Keating M T (1998). Elastin is an essential determinant of arterial morphogenesis. Nature, 393(6682): 276–280
https://doi.org/10.1038/30522
pmid: 9607766
|
53 |
Li G, Chen S J, Oparil S, Chen Y F, Thompson J A (2000). Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries. Circulation, 101(12): 1362–1365
https://doi.org/10.1161/01.CIR.101.12.1362
pmid: 10736277
|
54 |
Li M, Izpisua Belmonte J C (2016). Mending a faltering heart. Circ Res, 118(2): 344–351
https://doi.org/10.1161/CIRCRESAHA.115.306820
pmid: 26838318
|
55 |
Li N, Cheng W, Huang T, Yuan J, Wang X, Song M (2015). Vascular adventitia calcification and its underlying mechanism. PLoS One, 10(7): e0132506
https://doi.org/10.1371/journal.pone.0132506
pmid: 26148272
|
56 |
Li W, Li Q, Jiao Y, Qin L, Ali R, Zhou J, Ferruzzi J, Kim R W, Geirsson A, Dietz H C, Offermanns S, Humphrey J D, Tellides G (2014). Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis. J Clin Invest, 124(2): 755–767
https://doi.org/10.1172/JCI69942
pmid: 24401272
|
57 |
Libby P, Ridker P M, Hansson G K (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473(7347): 317–325
https://doi.org/10.1038/nature10146
pmid: 21593864
|
58 |
Liu G H, Barkho B Z, Ruiz S, Diep D, Qu J, Yang S L, Panopoulos A D, Suzuki K, Kurian L, Walsh C, Thompson J, Boue S, Fung H L, Sancho-Martinez I, Zhang K, Yates J, Izpisua Belmonte J C (2011). Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature, 472(7342): 221–225
|
59 |
Liu T M, Lee E H (2013). Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Eng Part B Rev, 19(3): 254–263
https://doi.org/10.1089/ten.teb.2012.0527
pmid: 23150948
|
60 |
Majesky M W (2007). Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol, 27(6): 1248–1258
https://doi.org/10.1161/ATVBAHA.107.141069
pmid: 17379839
|
61 |
Majesky M W, Dong X R, Hoglund V, Mahoney W M Jr, Daum G (2011a). The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol, 31(7): 1530–1539
https://doi.org/10.1161/ATVBAHA.110.221549
pmid: 21677296
|
62 |
Majesky M W, Dong X R, Regan J N, Hoglund V J (2011b). Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ Res, 108(3): 365–377
https://doi.org/10.1161/CIRCRESAHA.110.223800
pmid: 21293008
|
63 |
Majesky M W, Horita H, Ostriker A, Lu S, Regan J N, Bagchi A, Dong X R, Poczobutt J, Nemenoff R A, Weiser-Evans M C (2017). Differentiated smooth muscle cells generate a subpopulation of resident vascular progenitor cells in the adventitia regulated by Klf4. Circ Res, 120(2): 296–311
https://doi.org/10.1161/CIRCRESAHA.116.309322
pmid: 27834190
|
64 |
Manabe I, Owens G K (2001). Recruitment of serum response factor and hyperacetylation of histones at smooth muscle-specific regulatory regions during differentiation of a novel P19-derived in vitro smooth muscle differentiation system. Circ Res, 88(11): 1127–1134
https://doi.org/10.1161/hh1101.091339
pmid: 11397778
|
65 |
Martinez-Moreno JM, Herencia C, Montes de Oca A, Diaz-Tocados JM, Vergara N, Gomez MJ, Lopez-Arguello SD, Camargo A, Peralbo-Santaella E, Rodriguez-Ortiz ME, Canalejo A, Rodríguez M, Muñoz-Castañeda J R, Almadén Y (2017). High phosphate induces a pro-inflammatory response by vascular smooth muscle cells. Modulation by vitamin D derivatives. Clin Sci (Lond), 131(13):1449–1463
|
66 |
Marx S O, Totary-Jain H, Marks A R (2011). Vascular smooth muscle cell proliferation in restenosis. Circ Cardiovasc Interv, 4(1): 104–111
https://doi.org/10.1161/CIRCINTERVENTIONS.110.957332
pmid: 21325199
|
67 |
Mason D P, Kenagy R D, Hasenstab D, Bowen-Pope D F, Seifert R A, Coats S, Hawkins S M, Clowes A W (1999). Matrix metalloproteinase-9 overexpression enhances vascular smooth muscle cell migration and alters remodeling in the injured rat carotid artery. Circ Res, 85(12): 1179–1185
https://doi.org/10.1161/01.RES.85.12.1179
pmid: 10590245
|
68 |
Maurer J, Fuchs S, Jager R, Kurz B, Sommer L, Schorle H ( 2007). Establishment and controlled differentiation of neural crest stem cell lines using conditional transgenesis. Differentiation, 75(7): 580–591
|
69 |
McBurney M W (1993). P19 embryonal carcinoma cells. Int J Dev Biol, 37(1): 135–140
pmid: 8507558
|
70 |
McBurney M W, Rogers B J (1982). Isolation of male embryonal carcinoma cells and their chromosome replication patterns. Dev Biol, 89(2): 503–508
https://doi.org/10.1016/0012-1606(82)90338-4
pmid: 7056443
|
71 |
McCarty M F, DiNicolantonio J J (2014). The molecular biology and pathophysiology of vascular calcification. Postgrad Med, 126(2): 54–64
https://doi.org/10.3810/pgm.2014.03.2740
pmid: 24685968
|
72 |
McConnell B B, Yang V W (2010). Mammalian Krüppel-like factors in health and diseases. Physiol Rev, 90(4): 1337–1381
https://doi.org/10.1152/physrev.00058.2009
pmid: 20959618
|
73 |
Mikawa T, Gourdie R G (1996). Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol, 174(2): 221–232
https://doi.org/10.1006/dbio.1996.0068
pmid: 8631495
|
74 |
Mitra A K, Agrawal D K (2006). In stent restenosis: bane of the stent era. J Clin Pathol, 59(3): 232–239
https://doi.org/10.1136/jcp.2005.025742
pmid: 16505271
|
75 |
Newby A C, Zaltsman A B (2000). Molecular mechanisms in intimal hyperplasia. J Pathol, 190(3): 300–309
https://doi.org/10.1002/(SICI)1096-9896(200002)190:3<300::AID-PATH596>3.0.CO;2-I
pmid: 10685064
|
76 |
Ohta H, Wada H, Niwa T, Kirii H, Iwamoto N, Fujii H, Saito K, Sekikawa K, Seishima M (2005). Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis, 180(1): 11–17
https://doi.org/10.1016/j.atherosclerosis.2004.11.016
pmid: 15823270
|
77 |
Oparil S, Chen S J, Chen Y F, Durand J N, Allen L, Thompson J A (1999). Estrogen attenuates the adventitial contribution to neointima formation in injured rat carotid arteries. Cardiovasc Res, 44(3): 608–614
https://doi.org/10.1016/S0008-6363(99)00240-0
pmid: 10690294
|
78 |
Orlandi A, Bennett M (2010). Progenitor cell-derived smooth muscle cells in vascular disease. Biochem Pharmacol, 79(12): 1706–1713
https://doi.org/10.1016/j.bcp.2010.01.027
pmid: 20117099
|
79 |
Owens G K (1995). Regulation of differentiation of vascular smooth muscle cells. Physiol Rev, 75 (3): 487–517
|
80 |
Owens G K ( 2007). Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity. Novartis Found Symp.; 283(174–191; discussion 91–93, 238–241
|
81 |
Passman J N, Dong X R, Wu S P, Maguire C T, Hogan K A, Bautch V L, Majesky M W (2008). A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc Natl Acad Sci USA, 105(27): 9349–9354
https://doi.org/10.1073/pnas.0711382105
pmid: 18591670
|
82 |
Plass C A, Sabdyusheva-Litschauer I, Bernhart A, Samaha E, Petnehazy O, Szentirmai E, Petrási Z, Lamin V, Pavo N, Nyolczas N, Jakab A, Murlasits Z, Bergler-Klein J, Maurer G, Gyöngyösi M (2012). Time course of endothelium-dependent and-independent coronary vasomotor response to coronary balloons and stents. Comparison of plain and drug-eluting balloons and stents. JACC Cardiovasc Interv, 5(7): 741–751
https://doi.org/10.1016/j.jcin.2012.03.021
pmid: 22814779
|
83 |
Psaltis P J, Harbuzariu A, Delacroix S, Holroyd E W, Simari R D (2011). Resident vascular progenitor cells--diverse origins, phenotype, and function. J Cardiovasc Transl Res, 4(2): 161–176
https://doi.org/10.1007/s12265-010-9248-9
pmid: 21116882
|
84 |
Rao M S, Anderson D J (1997). Immortalization and controlled in vitro differentiation of murine multipotent neural crest stem cells. J Neurobiol, 32(7): 722–746
https://doi.org/10.1002/(SICI)1097-4695(19970620)32:7<722::AID-NEU7>3.0.CO;2-6
pmid: 9183749
|
85 |
Regan C P, Adam P J, Madsen C S, Owens G K (2000). Molecular mechanisms of decreased smooth muscle differentiation marker expression after vascular injury. J Clin Invest, 106(9): 1139–1147
https://doi.org/10.1172/JCI10522
pmid: 11067866
|
86 |
Reznikoff C A, Brankow D W, Heidelberger C (1973). Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res, 33(12): 3231–3238
pmid: 4357355
|
87 |
Rodriguez-Menocal L, St-Pierre M, Wei Y, Khan S, Mateu D, Calfa M, Rahnemai-Azar A A, Striker G, Pham S M, Vazquez-Padron R I (2009). The origin of post-injury neointimal cells in the rat balloon injury model. Cardiovasc Res, 81(1): 46–53
https://doi.org/10.1093/cvr/cvn265
pmid: 18818213
|
88 |
Rohwedder I, Montanez E, Beckmann K, Bengtsson E, Dunér P, Nilsson J, Soehnlein O, Fässler R (2012). Plasma fibronectin deficiency impedes atherosclerosis progression and fibrous cap formation. EMBO Mol Med, 4(7): 564–576
https://doi.org/10.1002/emmm.201200237
pmid: 22514136
|
89 |
Rudnicki M A, Sawtell N M, Reuhl K R, Berg R, Craig J C, Jardine K, Lessard J L, McBurney M W (1990). Smooth muscle actin expression during P19 embryonal carcinoma differentiation in cell culture. J Cell Physiol, 142(1): 89–98
https://doi.org/10.1002/jcp.1041420112
pmid: 2404996
|
90 |
Rzucidlo E M, Martin K A, Powell R J (2007). Regulation of vascular smooth muscle cell differentiation. J Vasc Surg, 45 (Suppl A): A25–32
|
91 |
Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, Pauletto P (2001). Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ Res, 89(12): 1111–1121
https://doi.org/10.1161/hh2401.100844
pmid: 11739275
|
92 |
Schober A (2008). Chemokines in vascular dysfunction and remodeling. Arterioscler Thromb Vasc Biol, 28(11): 1950–1959
https://doi.org/10.1161/ATVBAHA.107.161224
pmid: 18818421
|
93 |
Schwartz S M, Stemerman M B, Benditt E P (1975). The aortic intima. II. Repair of the aortic lining after mechanical denudation. Am J Pathol, 81(1): 15–42
pmid: 1180329
|
94 |
Scott N A, Cipolla G D, Ross C E, Dunn B, Martin F H, Simonet L, Wilcox J N (1996). Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation, 93(12): 2178–2187
https://doi.org/10.1161/01.CIR.93.12.2178
pmid: 8925587
|
95 |
Shanahan C M, Crouthamel M H, Kapustin A, Giachelli C M (2011). Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res, 109(6): 697–711
https://doi.org/10.1161/CIRCRESAHA.110.234914
pmid: 21885837
|
96 |
Shankman L S, Gomez D, Cherepanova O A, Salmon M, Alencar G F, Haskins R M, Swiatlowska P, Newman A A, Greene E S, Straub A C, Isakson B, Randolph G J, Owens G K (2015). KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med, 21(6): 628–637
https://doi.org/10.1038/nm.3866
pmid: 25985364
|
97 |
Shi N, Chen S Y (2016). Smooth muscle cell differentiation: model systems, regulatory mechanisms, and vascular diseases. J Cell Physiol, 231(4): 777–787
https://doi.org/10.1002/jcp.25208
pmid: 26425843
|
98 |
Shi N, Xie W B, Chen S Y (2012). Cell division cycle 7 is a novel regulator of transforming growth factor-β-induced smooth muscle cell differentiation. J Biol Chem, 287(9): 6860–6867
https://doi.org/10.1074/jbc.M111.306209
pmid: 22223649
|
99 |
Shi Y, O’Brien J E, Fard A, Mannion J D, Wang D, Zalewski A (1996). Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation, 94(7): 1655–1664
https://doi.org/10.1161/01.CIR.94.7.1655
pmid: 8840858
|
100 |
Shikatani E A, Chandy M, Besla R, Li C C, Momen A, El-Mounayri O, Robbins C S, Husain M (2016). c-Myb Regulates Proliferation and Differentiation of Adventitial Sca1+ Vascular Smooth Muscle Cell Progenitors by Transactivation of Myocardin. Arterioscler Thromb Vasc Biol, 36(7): 1367–1376
https://doi.org/10.1161/ATVBAHA.115.307116
pmid: 27174098
|
101 |
Speer M Y, Yang H Y, Brabb T, Leaf E, Look A, Lin W L, Frutkin A, Dichek D, Giachelli C M (2009). Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res, 104(6): 733–741
https://doi.org/10.1161/CIRCRESAHA.108.183053
pmid: 19197075
|
102 |
Spin J M, Nallamshetty S, Tabibiazar R, Ashley E A, King J Y, Chen M, Tsao P S, Quertermous T (2004). Transcriptional profiling of in vitro smooth muscle cell differentiation identifies specific patterns of gene and pathway activation. Physiol Genomics, 19(3): 292–302
https://doi.org/10.1152/physiolgenomics.00148.2004
pmid: 15340120
|
103 |
Steinbach S K, Husain M ( 2016). Vascular smooth muscle cell differentiation from human stem/progenitor cells. Methods, 101: 85–92.
|
104 |
Steitz S A, Speer M Y, Curinga G, Yang H Y, Haynes P, Aebersold R, Schinke T, Karsenty G, Giachelli C M (2001). Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res, 89(12): 1147–1154
https://doi.org/10.1161/hh2401.101070
pmid: 11739279
|
105 |
Stemerman M B, Ross R (1972). Experimental arteriosclerosis. I. Fibrous plaque formation in primates, an electron microscope study. J Exp Med, 136(4): 769–789
https://doi.org/10.1084/jem.136.4.769
pmid: 4626850
|
106 |
Sun Y, Byon C H, Yuan K, Chen J, Mao X, Heath J M, Javed A, Zhang K, Anderson P G, Chen Y (2012). Smooth muscle cell-specific runx2 deficiency inhibits vascular calcification. Circ Res, 111(5): 543–552
https://doi.org/10.1161/CIRCRESAHA.112.267237
pmid: 22773442
|
107 |
Swirski F K, Nahrendorf M (2014). Do vascular smooth muscle cells differentiate to macrophages in atherosclerotic lesions? Circ Res, 115(7): 605–606
https://doi.org/10.1161/CIRCRESAHA.114.304925
pmid: 25214571
|
108 |
Tabas I, García-Cardeña G, Owens G K (2015). Recent insights into the cellular biology of atherosclerosis. J Cell Biol, 209(1): 13–22
https://doi.org/10.1083/jcb.201412052
pmid: 25869663
|
109 |
Tamguney T, Stokoe D (2007). New insights into PTEN. J Cell Sci, 120(Pt 23): 4071–4079
https://doi.org/10.1242/jcs.015230
pmid: 18032782
|
110 |
Tang Z, Wang A, Yuan F, Yan Z, Liu B, Chu J S, Helms J A, Li S (2012). Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat Commun, 3(2): 875
https://doi.org/10.1038/ncomms1867
pmid: 22673902
|
111 |
Torsney E, Xu Q (2011). Resident vascular progenitor cells. J Mol Cell Cardiol, 50(2): 304–311
https://doi.org/10.1016/j.yjmcc.2010.09.006
pmid: 20850452
|
112 |
Tyson K L, Reynolds J L, McNair R, Zhang Q, Weissberg P L, Shanahan C M (2003). Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Thromb Vasc Biol, 23(3): 489–494
https://doi.org/10.1161/01.ATV.0000059406.92165.31
pmid: 12615658
|
113 |
Vazquez F, Ramaswamy S, Nakamura N, Sellers W R (2000). Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol, 20(14): 5010–5018
https://doi.org/10.1128/MCB.20.14.5010-5018.2000
pmid: 10866658
|
114 |
Vengrenyuk Y, Nishi H, Long X, Ouimet M, Savji N, Martinez F O, Cassella C P, Moore K J, Ramsey S A, Miano J M, Fisher E A (2015). Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler Thromb Vasc Biol, 35(3): 535–546
https://doi.org/10.1161/ATVBAHA.114.304029
pmid: 25573853
|
115 |
Vilahur G, Badimon L (2013). Antiplatelet properties of natural products. Vascul Pharmacol, 59(3-4): 67–75
https://doi.org/10.1016/j.vph.2013.08.002
pmid: 23994642
|
116 |
Virmani R, Kolodgie F D, Burke A P, Farb A, Schwartz S M (2000). Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol, 20(5): 1262–1275
https://doi.org/10.1161/01.ATV.20.5.1262
pmid: 10807742
|
117 |
Wang C C, Gurevich I, Draznin B (2003a). Insulin affects vascular smooth muscle cell phenotype and migration via distinct signaling pathways. Diabetes, 52(10): 2562–2569
https://doi.org/10.2337/diabetes.52.10.2562
pmid: 14514641
|
118 |
Wang D Z, Olson E N (2004). Control of smooth muscle development by the myocardin family of transcriptional coactivators. Curr Opin Genet Dev, 14(5): 558–566
https://doi.org/10.1016/j.gde.2004.08.003
pmid: 15380248
|
119 |
Wang Y, Ait-Oufella H, Herbin O, Bonnin P, Ramkhelawon B, Taleb S, Huang J, Offenstadt G, Combadière C, Rénia L, Johnson J L, Tharaux P L, Tedgui A, Mallat Z (2010). TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J Clin Invest, 120(2): 422–432
https://doi.org/10.1172/JCI38136
pmid: 20101093
|
120 |
Wang Y, Krishna S, Walker P J, Norman P, Golledge J (2013). Transforming growth factor-β and abdominal aortic aneurysms. Cardiovasc Pathol, 22(2): 126–132
https://doi.org/10.1016/j.carpath.2012.07.005
pmid: 22959236
|
121 |
Wang Z, Wang D Z, Pipes G C, Olson E N (2003b). Myocardin is a master regulator of smooth muscle gene expression. Proc Natl Acad Sci USA, 100(12): 7129–7134
https://doi.org/10.1073/pnas.1232341100
pmid: 12756293
|
122 |
Xiao Q, Zeng L, Zhang Z, Hu Y, Xu Q (2007). Stem cell-derived Sca-1+ progenitors differentiate into smooth muscle cells, which is mediated by collagen IV-integrin alpha1/beta1/alphav and PDGF receptor pathways. Am J Physiol Cell Physiol, 292(1): C342–C352
https://doi.org/10.1152/ajpcell.00341.2006
pmid: 16914533
|
123 |
Xiao Q, Zeng L, Zhang Z, Margariti A, Ali Z A, Channon K M, Xu Q, Hu Y (2006). Sca-1+ progenitors derived from embryonic stem cells differentiate into endothelial cells capable of vascular repair after arterial injury. Arterioscler Thromb Vasc Biol, 26(10): 2244–2251
https://doi.org/10.1161/01.ATV.0000240251.50215.50
pmid: 16902164
|
124 |
Xie C Q, Huang H, Wei S, Song L S, Zhang J, Ritchie R P, Chen L, Zhang M, Chen Y E (2009). A comparison of murine smooth muscle cells generated from embryonic versus induced pluripotent stem cells. Stem Cells Dev, 18(5): 741–748
https://doi.org/10.1089/scd.2008.0179
pmid: 18795840
|
125 |
Xu Q (2007). Progenitor cells in vascular repair. Curr Opin Lipidol, 18(5): 534–539
https://doi.org/10.1097/MOL.0b013e3282a66082
pmid: 17885424
|
126 |
Yang L, Geng Z, Nickel T, Johnson C, Gao L, Dutton J, Hou C, Zhang J (2016). Differentiation of Human Induced-Pluripotent Stem Cells into Smooth-Muscle Cells: Two Novel Protocols. PLoS One, 11(1): e0147155
https://doi.org/10.1371/journal.pone.0147155
pmid: 26771193
|
127 |
Yoshida T, Kaestner K H, Owens G K (2008). Conditional deletion of Krüppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ Res, 102(12): 1548–1557
https://doi.org/10.1161/CIRCRESAHA.108.176974
pmid: 18483411
|
128 |
Yoshida T, Owens G K (2005). Molecular determinants of vascular smooth muscle cell diversity. Circ Res, 96(3): 280–291
https://doi.org/10.1161/01.RES.0000155951.62152.2e
pmid: 15718508
|
129 |
Zengin E, Chalajour F, Gehling U M, Ito W D, Treede H, Lauke H, Weil J, Reichenspurner H, Kilic N, Ergün S (2006). Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development, 133(8): 1543–1551
https://doi.org/10.1242/dev.02315
pmid: 16524930
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|