Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (5) : 389-409    https://doi.org/10.1007/s11515-014-1326-y
REVIEW
RNA-binding proteins in pluripotency, differentiation, and reprogramming
Diana GUALLAR1,2,Jianlong WANG1,2,3,*()
1. The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
2. Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
3. The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
 Download: PDF(669 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Embryonic stem cell maintenance, differentiation, and somatic cell reprogramming require the interplay of multiple pluripotency factors, epigenetic remodelers, and extracellular signaling pathways. RNA-binding proteins (RBPs) are involved in a wide range of regulatory pathways, from RNA metabolism to epigenetic modifications. In recent years we have witnessed more and more studies on the discovery of new RBPs and the assessment of their functions in a variety of biological systems, including stem cells. We review the current studies on RBPs and focus on those that have functional implications in pluripotency, differentiation, and/or reprogramming in both the human and mouse systems.

Keywords RNA-binding protein      embryonic stem cell      pluripotency      differentiation      somatic cell reprogramming      lncRNA     
Corresponding Author(s): Jianlong WANG   
Just Accepted Date: 24 July 2014   Issue Date: 11 October 2014
 Cite this article:   
Diana GUALLAR,Jianlong WANG. RNA-binding proteins in pluripotency, differentiation, and reprogramming[J]. Front. Biol., 2014, 9(5): 389-409.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1326-y
https://academic.hep.com.cn/fib/EN/Y2014/V9/I5/389
RNA binding domainExampleFunctionReference
RRMRbfox2Regulation of alternative splicing of reprogramming and differentiationYeo et al., 2009; Venables et al., 2013b
SRSonRegulation of alternative splicing of pluripotency genes in hESCLu et al; 2013
KHhnRNP K and hnRNP E1/E2Translational control in erythroid differentiationOstareck et al., 1997
RGGhnRNPURNA/DNA binding, activation of OCT4 gene expressionChoi et al., 2011
PAZAgo2Regulation of miRNA and siRNA pathways for proper ESC maintenanceShekar et al., 2011
dsRBDDroshamicroRNA maturationKanellopoulou et al., 2005; Wang et al., 2007; Doyle et al., 2013
DEAD boxDDX5Regulation of splicing and transcription in cell differentiation and proliferationCaretti et al., 2006
ZnFLin28Inhibition of pri-miR-let7 processingPiskounova et al., 2011
PuFPum1Transcriptional repression and activation by binding to 3′UTR of target mRNAGalgano et al., 2008
Non canonicalEzh2Chromatin silencing through H3 K27 trimetylationZhao et al., 2010
Tab.1  RNA binding domains and representative proteins with functions in development, differentiation, and reprogramming
ProteinCell lineTechniqueReference
Rbfox2hESCsCLIP-seqYeo et al., 2009
mESCsCLIPJangi et al., 2014
Mouse brainHITS-CLIPWeyn-Vanhentenryck et al., 2014
Mbnl1/ Rbfox2hESCs/human fibroblastsHigh-throughput PCR for ASVenables et al., 2013b
SonhESCsRIP-qPCRLu et al., 2013
Srsf3P19CLIP-seq?nk? et al., 2012
Fip1mESCsCLIP-seqLackford et al., 2014
UnrDrosophilaRIP-seqMihailovic et al., 2012
Esrp1mESCsRIPFagoonee et al., 2013
DazlMouse testisOligo dT capturedTsui et al., 2000
Mouse testisUV-RIPReynolds et al., 2005
Pum1DrosophilaRIP-ChipGerber et al., 2006
Tagged-AGO2/Tagged-PUM2HEK293PAR-CLIPHafner et al., 2010a
Ago2mESCsRIPHanina et al., 2010
mESCsHITS-CLIPLeung et al., 2011
Mouse brain/HeLaHITS-CLIPChi et al., 2009
Dgcr8/DroshaHEK293HITS-CLIPMacias et al., 2012
Lin28hESCsCLIP-seqWilbert et al., 2012
mESCsCLIP-seqCho et al., 2012
Lsd1/Ezh2Foreskin fibroblasts (CRL-2091), lung fibroblasts (FL2), and HeLa (CCL-2)RIP-qPCRTsai et al., 2010
Ezh2mESCsRIP-seqZhao et al., 2010
mESCsPAR-CLIPKaneko et al., 2013
Suz12CEM cellsRIP-qPCRKanhere et al., 2010
Human foreskin and foot fibroblastsRIPRinn et al., 2007
Ezh2/Suz12/CoRESTHeLa, human fetal lung fibroblast, andforeskin fibroblastsRIP-Chip (native IP)Khalil et al., 2009
Jarid2mESCsPAR-CLIP/CLIP-qPCRKaneko et al., 2014
Wdr5mESCsRIPiTYang et al., 2014
Thoc2mESCsRIP-seqWang et al., 2013
Thoc5mESCsRIP-qPCRWang et al., 2013
Tagged-Rbm47mESCsRIP-PCRYeganeh et al., 2013
Tab.2  High-throughput studies of RBPs with roles in ESC maintenance, differentiation, and/or reprogramming discussed in this review
Fig.1  RBPs with important roles in ESC maintenance and/or differentiation are depicted according to the RNA metabolism step in which they are implicated. Ezh2, Suz12 and Lsd1 repress transcription whereas Wdr5 activates it, binding to chromatin through lncRNAs. Rbfox2 is implicated both in AS and AS-NMD, whereas Mbnl1, Son, Rbm47, U2af1, Srsf3 and Fus have only been reported to regulate AS. Fip1 mediates APA. Once processed, transcripts can either be retained in paraspeckles by PSPs or exported to the cytoplasm. Thoc2 and Thoc5 regulate the transport of important pluripotency-related transcripts in ESC. In the cytoplasm, transcripts are stabilized and transcribed to proteins or targeted for destabilization and/or miRNA silencing by Unr and Pum1 or Ago2 and PTB, respectively. Translation efficiency can be also subjected to regulation, through proteins such as Larp7 (stabilizer) or Esrp1 and Dazl (reduce ribosomal loading). Processing of pri-miRNAs by Drosha and pre-miRNA by Dicer gives rise to mature miRNAs available in the cytoplasm for transcript silencing. Lin28 affects its targets through targeting pre-miRNAs for degradation, therefore reducing the steady-state levels of miRNAs. From top to bottom: AS-NMD: alternative splicing-coupled nonsense-mediated decay, AS: alternative splicing; APA: alternative polyadenylation; PSPs: paraspeckle proteins; pri-miRNA: primary microRNA transcript; pre-miRNA: precursor microRNA transcript; miRNA: microRNA.
ProteinFunctional processReference
UnrEmbryonic developmentESC maintenanceBoussadia et al., 1997Elatmani et al., 2011
Paraspeckle proteinsESC differentiationPrasanth et al., 2005; Chen and Carmichael, 2009
Thoc2/Thoc5Embryonic developmentESC maintenance and somatic cell reprogrammingWang et al., 2006Ivanova et al., 2006; Ding et al., 2009; Subramanian et al., 2009; Chia et al., 2010
DicerEmbryonic developmentESC proliferation and differentiationBernstein et al., 2003Kanellopoulou et al., 2005; Murchison et al., 2005; Wang et al., 2007
Lin28Pluripotency maintenanceSomatic cell reprogrammingSchulman et al., 2005; Melton et al., 2010Yu et al., 2007
Ago2Post-implantation embryonic developmentESC proliferation and differentiationMorita et al., 2007Shekar et al., 2011
Ezh2X-inactivationESC differentiationZhao et al., 2008;Kaneko et al., 2010; Kanhere et al., 2010Zhao et al., 2010
Suz12ESC differentiationX-inactivationPasini et al., 2007Zhao et al., 2008;Kaneko et al., 2010; Kanhere et al., 2010
Jarid2ESC differentiationX-inactivationPeng et al. 2009; Pasini et al. 2010da Rocha et al., 2014; Kaneko et al. 2014
Rbfox2ESC viabilityESC differentiationYeo et al., 2009Venables et al., 2013b
Lsd1ESC differentiationAdamo et al., 2011; Whyte et al., 2012
Wdr5ESC maintenance and iPSC generationRamakrishna et al., 2011; Li et al., 2012; Yang et al., 2014
Fip1ESC self-renewal and differentiationDing et al., 2009; Hu et al., 2009; Lackford et al., 2014
SonESC maintenanceSomatic cell reprogrammingChia et al., 2010Lu et al., 2013
Tip110ESC maintenanceLiu et al., 2012; Liu et al., 2013
PTBRepression of a neural phenotype in non-neural cellsYuanchao Xue et al. 2013
U2af1Somatic cell reprogrammingOhta et al., 2013b
Srsf3Somatic cell reprogrammingOhta et al., 2013b
Mbnl1ESC differentiationVenables et al., 2013b
Esrp1ESC maintenance-differentiation balanceFagoonee et al., 2013
DazlESC maintenance-differentiation balanceXu et al., 2013
Larp7ESC maintenanceDai et al., 2014
Pum1ESC differentiationLeeb et al., 2014
Tab.3  Summary of the main RBPs with functions in ESC maintenance, differentiation or somatic cell reprogramming
1 Adamo A, Sesé B, Boue S, Casta?o J, Paramonov I, Barrero M J, Izpisua Belmonte J C (2011). LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat Cell Biol, 13(6): 652–659
https://doi.org/10.1038/ncb2246 pmid: 21602794
2 Ahn E Y, DeKelver R C, Lo M C, Nguyen T A, Matsuura S, Boyapati A, Pandit S, Fu X D, Zhang D E (2011). SON controls cell-cycle progression by coordinated regulation of RNA splicing. Mol Cell, 42(2): 185–198
https://doi.org/10.1016/j.molcel.2011.03.014 pmid: 21504830
3 Altschul S F, Gish W, Miller W, Myers E W, Lipman D J (1990). Basic local alignment search tool. J Mol Biol, 215(3): 403–410
https://doi.org/10.1016/S0022-2836(05)80360-2 pmid: 2231712
4 Amarasinghe G K, De Guzman R N, Turner R B, Chancellor K J, Wu Z R, Summers M F (2000). NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop SL2 of the psi-RNA packaging signal. Implications for genome recognition. J Mol Biol, 301(2): 491–511
https://doi.org/10.1006/jmbi.2000.3979 pmid: 10926523
5 ?nk? M L, Müller-McNicoll M, Brandl H, Curk T, Gorup C, Henry I, Ule J, Neugebauer K M (2012). The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biol, 13(3): R17
https://doi.org/10.1186/gb-2012-13-3-r17 pmid: 22436691
6 Anokye-Danso F, Trivedi C M, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber P J, Epstein J A, Morrisey E E (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8(4): 376–388
https://doi.org/10.1016/j.stem.2011.03.001 pmid: 21474102
7 Apostolou E, Hochedlinger K (2013). Chromatin dynamics during cellular reprogramming. Nature, 502(7472): 462–471
https://doi.org/10.1038/nature12749 pmid: 24153299
8 Atlasi Y, Mowla S J, Ziaee S A, Gokhale P J, Andrews P W (2008). OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells, 26(12): 3068–3074
https://doi.org/10.1634/stemcells.2008-0530 pmid: 18787205
9 Augui S, Nora E P, Heard E (2011). Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet, 12(6): 429–442
https://doi.org/10.1038/nrg2987 pmid: 21587299
10 Baltz A G, Munschauer M, Schwanh?usser B, Vasile A, Murakawa Y, Schueler M, Youngs N, Penfold-Brown D, Drew K, Milek M, Wyler E, Bonneau R, Selbach M, Dieterich C, Landthaler M (2012). The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell, 46(5): 674–690
https://doi.org/10.1016/j.molcel.2012.05.021 pmid: 22681889
11 Balzer E, Heine C, Jiang Q, Lee V M, Moss E G (2010). LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro. Development, 137(6): 891–900
https://doi.org/10.1242/dev.042895 pmid: 20179095
12 Bartel D P (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2): 215–233
https://doi.org/10.1016/j.cell.2009.01.002 pmid: 19167326
13 Bedard K M, Daijogo S, Semler B L (2007). A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation. EMBO J, 26(2): 459–467
https://doi.org/10.1038/sj.emboj.7601494 pmid: 17183366
14 Bernstein E, Kim S Y, Carmell M A, Murchison E P, Alcorn H, Li M Z, Mills A A, Elledge S J, Anderson K V, Hannon G J (2003). Dicer is essential for mouse development. Nat Genet, 35(3): 215–217
https://doi.org/10.1038/ng1253 pmid: 14528307
15 Bond C S, Fox A H (2009). Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol, 186(5): 637–644
https://doi.org/10.1083/jcb.200906113 pmid: 19720872
16 Bongso A, Fong C Y, Ng S C, Ratnam S (1994). Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod, 9(11): 2110–2117
pmid: 7868682
17 Borozdin W, Wright M J, Hennekam R C, Hannibal M C, Crow Y J, Neumann T E, Kohlhase J (2004). Novel mutations in the gene SALL4 provide further evidence for acro-renal-ocular and Okihiro syndromes being allelic entities, and extend the phenotypic spectrum. J Med Genet, 41(8): e102
https://doi.org/10.1136/jmg.2004.019505 pmid: 15286162
18 Boussadia O, Amiot F, Cases S, Triqueneaux G, Jacquemin-Sablon H, Dautry F (1997). Transcription of unr (upstream of N-ras) down-modulates N-ras expression in vivo. FEBS Lett, 420(1): 20–24
https://doi.org/10.1016/S0014-5793(97)01479-8 pmid: 9450542
19 Boutet S C, Cheung T H, Quach N L, Liu L, Prescott S L, Edalati A, Iori K, Rando T A (2012). Alternative polyadenylation mediates microRNA regulation of muscle stem cell function. Cell Stem Cell, 10(3): 327–336
https://doi.org/10.1016/j.stem.2012.01.017 pmid: 22385659
20 Boyer L A, Mathur D, Jaenisch R (2006). Molecular control of pluripotency. Curr Opin Genet Dev, 16(5): 455–462
https://doi.org/10.1016/j.gde.2006.08.009 pmid: 16920351
21 Braeutigam C, Rago L, Rolke A, Waldmeier L, Christofori G, Winter J (2014). The RNA-binding protein Rbfox2: an essential regulator of EMT-driven alternative splicing and a mediator of cellular invasion. Oncogene, 33(9): 1082–1092
https://doi.org/10.1038/onc.2013.50 pmid: 23435423
22 Brimacombe R, Stiege W, Kyriatsoulis A, Maly P (1988). Intra-RNA and RNA-protein cross-linking techniques in Escherichia coli ribosomes. Methods Enzymol, 164: 287–309
https://doi.org/10.1016/S0076-6879(88)64050-X pmid: 3071669
23 Brockdorff N (2013). Noncoding RNA and Polycomb recruitment. RNA, 19(4): 429–442
https://doi.org/10.1261/rna.037598.112 pmid: 23431328
24 Brogna S, Wen J (2009). Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol Biol, 16(2): 107–113
https://doi.org/10.1038/nsmb.1550 pmid: 19190664
25 Brooks A N, Choi P S, de Waal L, Sharifnia T, Imielinski M, Saksena G, Pedamallu C S, Sivachenko A, Rosenberg M, Chmielecki J, Lawrence M S, DeLuca D S, Getz G, Meyerson M (2014). A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS ONE, 9(1): e87361
https://doi.org/10.1371/journal.pone.0087361 pmid: 24498085
26 Buganim Y, Faddah D A, Jaenisch R (2013). Mechanisms and models of somatic cell reprogramming. Nat Rev Genet, 14(6): 427–439
https://doi.org/10.1038/nrg3473 pmid: 23681063
27 Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones R S, Zhang Y (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science, 298(5595): 1039–1043
https://doi.org/10.1126/science.1076997 pmid: 12351676
28 Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann B M, Strein C, Davey N E, Humphreys D T, Preiss T, Steinmetz L M, Krijgsveld J, Hentze M W (2012). Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell, 149(6): 1393–1406
https://doi.org/10.1016/j.cell.2012.04.031 pmid: 22658674
29 Cerase A, Smeets D, Tang Y A, Gdula M, Kraus F, Spivakov M, Moindrot B, Leleu M, Tattermusch A, Demmerle J, Nesterova T B, Green C, Otte A P, Schermelleh L, Brockdorff N (2014). Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proc Natl Acad Sci USA, 111(6): 2235–2240
https://doi.org/10.1073/pnas.1312951111 pmid: 24469834
30 Chamberlain S J, Yee D, Magnuson T (2008). Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells, 26(6): 1496–1505
https://doi.org/10.1634/stemcells.2008-0102 pmid: 18403752
31 Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, Vrana J, Jones K, Grotewold L, Smith A (2007). Nanog safeguards pluripotency and mediates germline development. Nature, 450(7173): 1230–1234
https://doi.org/10.1038/nature06403 pmid: 18097409
32 Chambers I, Tomlinson S R (2009). The transcriptional foundation of pluripotency. Development, 136(14): 2311–2322
https://doi.org/10.1242/dev.024398 pmid: 19542351
33 Chang K Y, Ramos A (2005). The double-stranded RNA-binding motif, a versatile macromolecular docking platform. FEBS J, 272(9): 2109–2117
https://doi.org/10.1111/j.1742-4658.2005.04652.x pmid: 15853796
34 Chen L L, Carmichael G G (2009). Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell, 35(4): 467–478
https://doi.org/10.1016/j.molcel.2009.06.027 pmid: 19716791
35 Cheong C Y, Lon Ng P M, Ponnampalam R, Tsai H H, Bourque G, Lufkin T (2011). In silico tandem affinity purification refines an Oct4 interaction list. Stem Cell Res Ther, 2(3): 26
https://doi.org/10.1186/scrt67 pmid: 21569470
36 Chi S W, Zang J B, Mele A, Darnell R B (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, 460(7254): 479–486
pmid: 19536157
37 Chia N Y, Chan Y S, Feng B, Lu X, Orlov Y L, Moreau D, Kumar P, Yang L, Jiang J, Lau M S, Huss M, Soh B S, Kraus P, Li P, Lufkin T, Lim B, Clarke N D, Bard F, Ng H H (2010). A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature, 468(7321): 316–320
https://doi.org/10.1038/nature09531 pmid: 20953172
38 Cho J, Chang H, Kwon S C, Kim B, Kim Y, Choe J, Ha M, Kim Y K, Kim V N (2012). LIN28A is a suppressor of ER-associated translation in embryonic stem cells. Cell, 151(4): 765–777
https://doi.org/10.1016/j.cell.2012.10.019 pmid: 23102813
39 Choi H S, Kim W T, Kim H, Kim J J, Ko J Y, Lee S W, Jang Y J, Kim S J, Lee M J, Jung H S, Kzhyshkowska J, Um S J, Lee M Y, Lee S H, Kim C H, Ryu C J (2011). Identification and characterization of adenovirus early region 1B-associated protein 5 as a surface marker on undifferentiated human embryonic stem cells. Stem Cells Dev, 20(4): 609–620
https://doi.org/10.1089/scd.2010.0265 pmid: 21083500
40 Clemson C M, Hutchinson J N, Sara S A, Ensminger A W, Fox A H, Chess A, Lawrence J B (2009). An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell, 33(6): 717–726
https://doi.org/10.1016/j.molcel.2009.01.026 pmid: 19217333
41 Cordin O, Banroques J, Tanner N K, Linder P (2006). The DEAD-box protein family of RNA helicases. Gene, 367: 17–37
https://doi.org/10.1016/j.gene.2005.10.019 pmid: 16337753
42 da Rocha S T, Boeva V, Escamilla-Del-Arenal M, Ancelin K, Granier C, Matias N R, Sanulli S, Chow J, Schulz E, Picard C, Kaneko S, Helin K, Reinberg D, Stewart A F, Wutz A, Margueron R, Heard E (2014). Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the Inactive X Chromosome. Mol Cell, 53(2): 301–316
https://doi.org/10.1016/j.molcel.2014.01.002 pmid: 24462204
43 Dai Q, Luan G, Deng L, Lei T, Kang H, Song X, Zhang Y, Xiao Z X, Li Q (2014). Primordial Dwarfism Gene Maintains Lin28 Expression to Safeguard Embryonic Stem Cells from Premature Differentiation. Cell Rep, 7(3): 735–746
44 Darnell R B (2010). HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA, 1(2): 266–286
https://doi.org/10.1002/wrna.31 pmid: 21935890
45 Das S, Jena S, Levasseur D N (2011). Alternative splicing produces Nanog protein variants with different capacities for self-renewal and pluripotency in embryonic stem cells. J Biol Chem, 286(49): 42690–42703
https://doi.org/10.1074/jbc.M111.290189 pmid: 21969378
46 Davidovich C, Zheng L, Goodrich K J, Cech T R (2013). Promiscuous RNA binding by Polycomb repressive complex 2. Nat Struct Mol Biol, 20(11): 1250–1257
https://doi.org/10.1038/nsmb.2679 pmid: 24077223
47 Di Ruscio A, Ebralidze A K, Benoukraf T, Amabile G, Goff L A, Terragni J, Figueroa M E, De Figueiredo Pontes L L, Alberich-Jorda M, Zhang P, Wu M, D’Alò F, Melnick A, Leone G, Ebralidze K K, Pradhan S, Rinn J L, Tenen D G (2013). DNMT1-interacting RNAs block gene-specific DNA methylation. Nature, 503(7476): 371–376
https://doi.org/10.1038/nature12598 pmid: 24107992
48 Dichmann D S, Harland R M (2012). fus/TLS orchestrates splicing of developmental regulators during gastrulation. Genes Dev, 26(12): 1351–1363
https://doi.org/10.1101/gad.187278.112 pmid: 22713872
49 Ding L, Paszkowski-Rogacz M, Nitzsche A, Slabicki M M, Heninger A K, de Vries I, Kittler R, Junqueira M, Shevchenko A, Schulz H, Hubner N, Doss M X, Sachinidis A, Hescheler J, Iacone R, Anastassiadis K, Stewart A F, Pisabarro M T, Caldarelli A, Poser I, Theis M, Buchholz F (2009). A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. Cell Stem Cell, 4(5): 403–415
https://doi.org/10.1016/j.stem.2009.03.009 pmid: 19345177
50 Dinger M E, Amaral P P, Mercer T R, Pang K C, Bruce S J, Gardiner B B, Askarian-Amiri M E, Ru K, Soldà G, Simons C, Sunkin S M, Crowe M L, Grimmond S M, Perkins A C, Mattick J S (2008). Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res, 18(9): 1433–1445
https://doi.org/10.1101/gr.078378.108 pmid: 18562676
51 Doyle M, Badertscher L, Jaskiewicz L, Güttinger S, Jurado S, Hugenschmidt T, Kutay U, Filipowicz W (2013). The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal. RNA, 19(9): 1238–1252
https://doi.org/10.1261/rna.039255.113 pmid: 23882114
52 Dreyfuss G, Matunis M J, Pi?ol-Roma S, Burd C G (1993). hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem, 62(1): 289–321
https://doi.org/10.1146/annurev.bi.62.070193.001445 pmid: 8352591
53 Edwards T A, Pyle S E, Wharton R P, Aggarwal A K (2001). Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell, 105(2): 281–289
https://doi.org/10.1016/S0092-8674(01)00318-X pmid: 11336677
54 Elatmani H, Dormoy-Raclet V, Dubus P, Dautry F, Chazaud C, Jacquemin-Sablon H (2011). The RNA-binding protein Unr prevents mouse embryonic stem cells differentiation toward the primitive endoderm lineage. Stem Cells, 29(10): 1504–1516
https://doi.org/10.1002/stem.712 pmid: 21954113
55 Elkon R, Ugalde A P, Agami R (2013). Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet, 14(7): 496–506
https://doi.org/10.1038/nrg3482 pmid: 23774734
56 Evans M J, Kaufman M H (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819): 154–156
https://doi.org/10.1038/292154a0 pmid: 7242681
57 Fagoonee S, Bearzi C, Di Cunto F, Clohessy J G, Rizzi R, Reschke M, Tolosano E, Provero P, Pandolfi P P, Silengo L, Altruda F (2013). The RNA-binding protein ESRP1 fine-tunes the expression of pluripotency-related factors in mouse embryonic stem cells. PLoS ONE, 8(8): e72300
https://doi.org/10.1371/journal.pone.0072300 pmid: 24015231
58 Fagoonee S, Hobbs R M, De Chiara L, Cantarella D, Piro R M, Tolosano E, Medico E, Provero P, Pandolfi P P, Silengo L, Altruda F (2010). Generation of functional hepatocytes from mouse germ line cell-derived pluripotent stem cells in vitro. Stem Cells Dev, 19(8): 1183–1194
https://doi.org/10.1089/scd.2009.0496 pmid: 20331356
59 Filipovska A, Razif M F, Nyg?rd K K, Rackham O (2011). A universal code for RNA recognition by PUF proteins. Nat Chem Biol, 7(7): 425–427
https://doi.org/10.1038/nchembio.577 pmid: 21572425
60 Flavell S W, Kim T K, Gray J M, Harmin D A, Hemberg M, Hong E J, Markenscoff-Papadimitriou E, Bear D M, Greenberg M E (2008). Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron, 60(6): 1022–1038
https://doi.org/10.1016/j.neuron.2008.11.029 pmid: 19109909
61 Florea L, Hartzell G, Zhang Z, Rubin G M, Miller W (1998). A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res, 8(9): 967–974
pmid: 9750195
62 Fox A H, Lam Y W, Leung A K, Lyon C E, Andersen J, Mann M, Lamond A I (2002). Paraspeckles: a novel nuclear domain. Curr Biol, 12(1): 13–25
https://doi.org/10.1016/S0960-9822(01)00632-7 pmid: 11790299
63 Fox A H, Lamond A I (2010). Paraspeckles. Cold Spring Harb Perspect Biol, 2(7): a000687
https://doi.org/10.1101/cshperspect.a000687 pmid: 20573717
64 Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O’Hanlon D, Sung H K, Alvarez M, Talukder S, Pan Q, Mazzoni E O, Nedelec S, Wichterle H, Woltjen K, Hughes T R, Zandstra P W, Nagy A, Wrana J L, Blencowe B J (2011). An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell, 147(1): 132–146
https://doi.org/10.1016/j.cell.2011.08.023 pmid: 21924763
65 Galgano A, Forrer M, Jaskiewicz L, Kanitz A, Zavolan M, Gerber A P (2008). Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. PLoS ONE, 3(9): e3164
https://doi.org/10.1371/journal.pone.0003164 pmid: 18776931
66 García M A, Meurs E F, Esteban M (2007). The dsRNA protein kinase PKR: virus and cell control. Biochimie, 89(6-7): 799–811
https://doi.org/10.1016/j.biochi.2007.03.001 pmid: 17451862
67 Gerber A P, Luschnig S, Krasnow M A, Brown P O, Herschlag D (2006). Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc Natl Acad Sci USA, 103(12): 4487–4492
https://doi.org/10.1073/pnas.0509260103 pmid: 16537387
68 Glisovic T, Bachorik J L, Yong J, Dreyfuss G (2008). RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett, 582(14): 1977–1986
https://doi.org/10.1016/j.febslet.2008.03.004 pmid: 18342629
69 Godin K S, Varani G (2007). How arginine-rich domains coordinate mRNA maturation events. RNA Biol, 4(2): 69–75
https://doi.org/10.4161/rna.4.2.4869 pmid: 17873524
70 Gomez J A, Wapinski O L, Yang Y W, Bureau J F, Gopinath S, Monack D M, Chang H Y, Brahic M, Kirkegaard K (2013). The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell, 152(4): 743–754
https://doi.org/10.1016/j.cell.2013.01.015 pmid: 23415224
71 Gopalakrishnan S, Van Emburgh B O, Shan J, Su Z, Fields C R, Vieweg J, Hamazaki T, Schwartz P H, Terada N, Robertson K D (2009). A novel DNMT3B splice variant expressed in tumor and pluripotent cells modulates genomic DNA methylation patterns and displays altered DNA binding. Mol Cancer Res, 7(10): 1622–1634
https://doi.org/10.1158/1541-7786.MCR-09-0018 pmid: 19825994
72 Gupta R A, Shah N, Wang K C, Kim J, Horlings H M, Wong D J, Tsai M C, Hung T, Argani P, Rinn J L, Wang Y, Brzoska P, Kong B, Li R, West R B, van de Vijver M J, Sukumar S, Chang H Y (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291): 1071–1076
https://doi.org/10.1038/nature08975 pmid: 20393566
73 Guttman M, Donaghey J, Carey B W, Garber M, Grenier J K, Munson G, Young G, Lucas A B, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn J L, Root D E, Lander E S (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477(7364): 295–300
https://doi.org/10.1038/nature10398 pmid: 21874018
74 Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp A C, Munschauer M, Ulrich A, Wardle G S, Dewell S, Zavolan M, Tuschl T (2010a). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 141(1): 129–141
https://doi.org/10.1016/j.cell.2010.03.009 pmid: 20371350
75 Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp A C, Munschauer M, Ulrich A, Wardle G S, Dewell S, Zavolan M, Tuschl T (2010b). PAR-CliP—a method to identify transcriptome-wide the binding sites of RNA binding proteins. J Vis Exp, (41): 2034
pmid: 20644507
76 Hafner M, Max K E, Bandaru P, Morozov P, Gerstberger S, Brown M, Molina H, Tuschl T (2013). Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition. RNA, 19(5): 613–626
https://doi.org/10.1261/rna.036491.112 pmid: 23481595
77 Hagan J P, Piskounova E, Gregory R I (2009). Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol, 16(10): 1021–1025
https://doi.org/10.1038/nsmb.1676 pmid: 19713958
78 Han H, Irimia M, Ross P J, Sung H K, Alipanahi B, David L, Golipour A, Gabut M, Michael I P, Nachman E N, Wang E, Trcka D, Thompson T, O’Hanlon D, Slobodeniuc V, Barbosa-Morais N L, Burge C B, Moffat J, Frey B J, Nagy A, Ellis J, Wrana J L, Blencowe B J (2013). MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature, 498(7453): 241–245
https://doi.org/10.1038/nature12270 pmid: 23739326
79 Hanina S A, Mifsud W, Down T A, Hayashi K, O’Carroll D, Lao K, Miska E A, Surani M A (2010). Genome-wide identification of targets and function of individual MicroRNAs in mouse embryonic stem cells. PLoS Genet, 6(10): e1001163
https://doi.org/10.1371/journal.pgen.1001163 pmid: 20975942
80 Hanna J H, Saha K, Jaenisch R (2010). Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell, 143(4): 508–525
https://doi.org/10.1016/j.cell.2010.10.008 pmid: 21074044
81 Hata K, Nishimura R, Muramatsu S, Matsuda A, Matsubara T, Amano K, Ikeda F, Harley V R, Yoneda T (2008). Paraspeckle protein p54nrb links Sox9-mediated transcription with RNA processing during chondrogenesis in mice. J Clin Invest, 118(9): 3098–3108
https://doi.org/10.1172/JCI31373 pmid: 18677406
82 Hayashi K, Lopes S M, Tang F, Surani M A (2008). Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell, 3(4): 391–401
https://doi.org/10.1016/j.stem.2008.07.027 pmid: 18940731
83 Heo I, Joo C, Cho J, Ha M, Han J, Kim V N (2008). Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell, 32(2): 276–284
https://doi.org/10.1016/j.molcel.2008.09.014 pmid: 18951094
84 Heo I, Joo C, Kim Y K, Ha M, Yoon M J, Cho J, Yeom K H, Han J, Kim V N (2009). TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell, 138(4): 696–708
https://doi.org/10.1016/j.cell.2009.08.002 pmid: 19703396
85 Hu G, Kim J, Xu Q, Leng Y, Orkin S H, Elledge S J (2009). A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev, 23(7): 837–848
https://doi.org/10.1101/gad.1769609 pmid: 19339689
86 Huang Y, Gattoni R, Stévenin J, Steitz J A (2003). SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol Cell, 11(3): 837–843
https://doi.org/10.1016/S1097-2765(03)00089-3 pmid: 12667464
87 Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Huminiecki L, Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C, Mongin E, Pettett R, Pocock M, Potter S, Rust A, Schmidt E, Searle S, Slater G, Smith J, Spooner W, Stabenau A, Stalker J, Stupka E, Ureta-Vidal A, Vastrik I, Clamp M (2002). The Ensembl genome database project. Nucleic Acids Res, 30(1): 38–41
https://doi.org/10.1093/nar/30.1.38 pmid: 11752248
88 Hutvágner G, McLachlan J, Pasquinelli A E, Bálint E, Tuschl T, Zamore P D (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293(5531): 834–838
https://doi.org/10.1126/science.1062961 pmid: 11452083
89 Hutvagner G, Simard M J (2008). Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol, 9(1): 22–32
https://doi.org/10.1038/nrm2321 pmid: 18073770
90 Imielinski M, Berger A H, Hammerman P S, Hernandez B, Pugh T J, Hodis E, Cho J, Suh J, Capelletti M, Sivachenko A, Sougnez C, Auclair D, Lawrence M S, Stojanov P, Cibulskis K, Choi K, de Waal L, Sharifnia T, Brooks A, Greulich H, Banerji S, Zander T, Seidel D, Leenders F, Ansén S, Ludwig C, Engel-Riedel W, Stoelben E, Wolf J, Goparju C, Thompson K, Winckler W, Kwiatkowski D, Johnson B E, J?nne P A, Miller V A, Pao W, Travis W D, Pass H I, Gabriel S B, Lander E S, Thomas R K, Garraway L A, Getz G, Meyerson M (2012). Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell, 150(6): 1107–1120
https://doi.org/10.1016/j.cell.2012.08.029 pmid: 22980975
91 Ishigaki S, Masuda A, Fujioka Y, Iguchi Y, Katsuno M, Shibata A, Urano F, Sobue G, Ohno K (2012). Position-dependent FUS-RNA interactions regulate alternative splicing events and transcriptions. Sci Rep, 2: 529
https://doi.org/10.1038/srep00529 pmid: 22829983
92 Ivanov I, Lo K C, Hawthorn L, Cowell J K, Ionov Y (2007). Identifying candidate colon cancer tumor suppressor genes using inhibition of nonsense-mediated mRNA decay in colon cancer cells. Oncogene, 26(20): 2873–2884
https://doi.org/10.1038/sj.onc.1210098 pmid: 17086209
93 Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y, Lemischka I R (2006). Dissecting self-renewal in stem cells with RNA interference. Nature, 442(7102): 533–538
https://doi.org/10.1038/nature04915 pmid: 16767105
94 Iwabuchi K A, Yamakawa T, Sato Y, Ichisaka T, Takahashi K, Okita K, Yamanaka S (2011). ECAT11/L1td1 is enriched in ESCs and rapidly activated during iPSC generation, but it is dispensable for the maintenance and induction of pluripotency. PLoS ONE, 6(5): e20461
https://doi.org/10.1371/journal.pone.0020461 pmid: 21637830
95 Jangi M, Boutz P L, Paul P, Sharp P A (2014). Rbfox2 controls autoregulation in RNA-binding protein networks. Genes Dev, 28(6): 637–651
https://doi.org/10.1101/gad.235770.113 pmid: 24637117
96 Jensen K B, Darnell R B (2008). CLIP: crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding proteins. Methods Mol Biol, 488: 85–98
https://doi.org/10.1007/978-1-60327-475-3_6 pmid: 18982285
97 Ji Y, Tulin A V (2012). Poly(ADP-ribose) controls DE-cadherin-dependent stem cell maintenance and oocyte localization. Nat Commun, 3: 760
https://doi.org/10.1038/ncomms1759 pmid: 22453833
98 Ji Z, Lee J Y, Pan Z H, Jiang B J, Tian B (2009). Progressive lengthening of 3 ' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci USA, 106(17): 9535–9535
https://doi.org/10.1073/pnas.0900028106
99 Ji Z, Tian B (2009). Reprogramming of 3 ' Untranslated Regions of mRNAs by Alternative Polyadenylation in Generation of Pluripotent Stem Cells from Different Cell Types. PLoS ONE, 4(12): e8419
100 Johnson J M, Castle J, Garrett-Engele P, Kan Z, Loerch P M, Armour C D, Santos R, Schadt E E, Stoughton R, Shoemaker D D (2003). Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 302(5653): 2141–2144
https://doi.org/10.1126/science.1090100 pmid: 14684825
101 Judson R L, Babiarz J E, Venere M, Blelloch R (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol, 27(5): 459–461
https://doi.org/10.1038/nbt.1535 pmid: 19363475
102 Kaneko S, Bonasio R, Salda?a-Meyer R, Yoshida T, Son J, Nishino K, Umezawa A, Reinberg D (2014). Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to chromatin. Mol Cell, 53(2): 290–300
https://doi.org/10.1016/j.molcel.2013.11.012 pmid: 24374312
103 Kaneko S, Li G, Son J, Xu C F, Margueron R, Neubert T A, Reinberg D (2010). Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev, 24(23): 2615–2620
https://doi.org/10.1101/gad.1983810 pmid: 21123648
104 Kaneko S, Son J, Shen S S, Reinberg D, Bonasio R (2013). PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nat Struct Mol Biol, 20(11): 1258–1264
https://doi.org/10.1038/nsmb.2700 pmid: 24141703
105 Kanellopoulou C, Muljo S A, Kung A L, Ganesan S, Drapkin R, Jenuwein T, Livingston D M, Rajewsky K (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev, 19(4): 489–501
https://doi.org/10.1101/gad.1248505 pmid: 15713842
106 Kanhere A, Viiri K, Araújo C C, Rasaiyaah J, Bouwman R D, Whyte W A, Pereira C F, Brookes E, Walker K, Bell G W, Pombo A, Fisher A G, Young R A, Jenner R G (2010). Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol Cell, 38(5): 675–688
https://doi.org/10.1016/j.molcel.2010.03.019 pmid: 20542000
107 Karwacki-Neisius V, G?ke J, Osorno R, Halbritter F, Ng J H, Wei?e A Y, Wong F C, Gagliardi A, Mullin N P, Festuccia N, Colby D, Tomlinson S R, Ng H H, Chambers I (2013). Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog. Cell Stem Cell, 12(5): 531–545
https://doi.org/10.1016/j.stem.2013.04.023 pmid: 23642364
108 Kashyap V, Rezende N C, Scotland K B, Shaffer S M, Persson J L, Gudas L J, Mongan N P (2009). Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev, 18(7): 1093–1108
https://doi.org/10.1089/scd.2009.0113 pmid: 19480567
109 Katahira J (2012). mRNA export and the TREX complex. Biochim Biophys Acta, 1819(6): 507–513
https://doi.org/10.1016/j.bbagrm.2011.12.001 pmid: 22178508
110 Khalil A M, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein B E, van Oudenaarden A, Regev A, Lander E S, Rinn J L (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA, 106(28): 11667–11672
https://doi.org/10.1073/pnas.0904715106 pmid: 19571010
111 Kiledjian M, Dreyfuss G (1992). Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J, 11(7): 2655–2664
pmid: 1628625
112 Kim B M, Choi M Y (2012). Non-canonical microRNAs miR-320 and miR-702 promote proliferation in Dgcr8-deficient embryonic stem cells. Biochem Biophys Res Commun, 426(2): 183–189
https://doi.org/10.1016/j.bbrc.2012.08.058 pmid: 22925886
113 Kim D H, Saetrom P, Sn?ve O Jr, Rossi J J (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA, 105(42): 16230–16235
https://doi.org/10.1073/pnas.0808830105 pmid: 18852463
114 Kirmizis A, Bartley S M, Kuzmichev A, Margueron R, Reinberg D, Green R, Farnham P J (2004). Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev, 18(13): 1592–1605
https://doi.org/10.1101/gad.1200204 pmid: 15231737
115 Krol J, Loedige I, Filipowicz W (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 11(9): 597–610
pmid: 20661255
116 Kunarso G, Wong K Y, Stanton L W, Lipovich L (2008). Detailed characterization of the mouse embryonic stem cell transcriptome reveals novel genes and intergenic splicing associated with pluripotency. BMC Genomics, 9(1): 155
https://doi.org/10.1186/1471-2164-9-155 pmid: 18400104
117 Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002). Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev, 16(22): 2893–2905
https://doi.org/10.1101/gad.1035902 pmid: 12435631
118 Kwon S C, Yi H, Eichelbaum K, F?hr S, Fischer B, You K T, Castello A, Krijgsveld J, Hentze M W, Kim V N (2013). The RNA-binding protein repertoire of embryonic stem cells. Nat Struct Mol Biol, 20(9): 1122–1130
https://doi.org/10.1038/nsmb.2638 pmid: 23912277
119 Lackford B, Yao C, Charles G M, Weng L, Zheng X, Choi E A, Xie X, Wan J, Xing Y, Freudenberg J M, Yang P, Jothi R, Hu G, Shi Y (2014). Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal. EMBO J, 33(8): 878–889
https://doi.org/10.1002/embj.201386537 pmid: 24596251
120 Lander E S, Linton L M, Birren B, Nusbaum C, Zody M C, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov J P, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin J C, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston R H, Wilson R K, Hillier L W, McPherson J D, Marra M A, Mardis E R, Fulton L A, Chinwalla A T, Pepin K H, Gish W R, Chissoe S L, Wendl M C, Delehaunty K D, Miner T L, Delehaunty A, Kramer J B, Cook L L, Fulton R S, Johnson D L, Minx P J, Clifton S W, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng J F, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs R A, Muzny D M, Scherer S E, Bouck J B, Sodergren E J, Worley K C, Rives C M, Gorrell J H, Metzker M L, Naylor S L, Kucherlapati R S, Nelson D L, Weinstock G M, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith D R, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee H M, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis R W, Federspiel N A, Abola A P, Proctor M J, Myers R M, Schmutz J, Dickson M, Grimwood J, Cox D R, Olson M V, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans G A, Athanasiou M, Schultz R, Roe B A, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie W R, de la Bastide M, Dedhia N, Bl?cker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey J A, Bateman A, Batzoglou S, Birney E, Bork P, Brown D G, Burge C B, Cerutti L, Chen H C, Church D, Clamp M, Copley R R, Doerks T, Eddy S R, Eichler E E, Furey T S, Galagan J, Gilbert J G, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson L S, Jones T A, Kasif S, Kaspryzk A, Kennedy S, Kent W J, Kitts P, Koonin E V, Korf I, Kulp D, Lancet D, Lowe T M, McLysaght A, Mikkelsen T, Moran J V, Mulder N, Pollara V J, Ponting C P, Schuler G, Schultz J, Slater G, Smit A F, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf Y I, Wolfe K H, Yang S P, Yeh R F, Collins F, Guyer M S, Peterson J, Felsenfeld A, Wetterstrand K A, Patrinos A, Morgan M J, de Jong P, Catanese J J, Osoegawa K, Shizuya H, Choi S, Chen Y J, and the International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822): 860–921
https://doi.org/10.1038/35057062 pmid: 11237011
121 Leeb M, Dietmann S, Paramor M, Niwa H, Smith A (2014). Genetic exploration of the exit from self-renewal using haploid embryonic stem cells. Cell Stem Cell, 14(3): 385–393
https://doi.org/10.1016/j.stem.2013.12.008 pmid: 24412312
122 Leung A K, Young A G, Bhutkar A, Zheng G X, Bosson A D, Nielsen C B, Sharp P A (2011). Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat Struct Mol Biol, 18(2): 237–244
https://doi.org/10.1038/nsmb.1991 pmid: 21258322
123 Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q, Qin B, Xu J, Li W, Yang J, Gan Y, Qin D, Feng S, Song H, Yang D, Zhang B, Zeng L, Lai L, Esteban M A, Pei D (2010). A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell, 7(1): 51–63
https://doi.org/10.1016/j.stem.2010.04.014 pmid: 20621050
124 Li X, Li L, Pandey R, Byun J S, Gardner K, Qin Z, Dou Y (2012). The histone acetyltransferase MOF is a key regulator of the embryonic stem cell core transcriptional network. Cell Stem Cell, 11(2): 163–178 doi:10.1016/j.stem.2012.04.023
pmid: 22862943
125 Li X, Song J, Yi C (2014). Genome-wide mapping of cellular protein-RNA interactions enabled by chemical crosslinking. Genomics Proteomics Bioinformatics, 12(2): 72–78
https://doi.org/10.1016/j.gpb.2014.03.001 pmid: 24747191
126 Linder P, Jankowsky E (2011). From unwinding to clamping - the DEAD box RNA helicase family. Nat Rev Mol Cell Biol, 12(8): 505–516
https://doi.org/10.1038/nrm3154 pmid: 21779027
127 Liu Y, Lee M R, Timani K, He J J, Broxmeyer H E (2012). Tip110 maintains expression of pluripotent factors in and pluripotency of human embryonic stem cells. Stem Cells Dev, 21(6): 829–833
https://doi.org/10.1089/scd.2011.0512 pmid: 22132941
128 Liu Y, Timani K, Ou X, Broxmeyer H E, He J J (2013). C-MYC controlled TIP110 protein expression regulates OCT4 mRNA splicing in human embryonic stem cells. Stem Cells Dev, 22(5): 689–694
https://doi.org/10.1089/scd.2012.0271 pmid: 23088399
129 Lou H, Neugebauer K M, Gagel R F, Berget S M (1998). Regulation of alternative polyadenylation by U1 snRNPs and SRp20. Mol Cell Biol, 18(9): 4977–4985
pmid: 9710581
130 Lu X, G?ke J, Sachs F, Jacques P E, Liang H, Feng B, Bourque G, Bubulya P A, Ng H H (2013). SON connects the splicing-regulatory network with pluripotency in human embryonic stem cells. Nat Cell Biol, 15(10): 1141–1152
https://doi.org/10.1038/ncb2839 pmid: 24013217
131 Lytle J R, Yario T A, Steitz J A (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci USA, 104(23): 9667–9672
https://doi.org/10.1073/pnas.0703820104 pmid: 17535905
132 Macias S, Plass M, Stajuda A, Michlewski G, Eyras E, Cáceres J F (2012). DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nat Struct Mol Biol, 19(8): 760–766
https://doi.org/10.1038/nsmb.2344 pmid: 22796965
133 Manley J L, Tacke R (1996). SR proteins and splicing control. Genes Dev, 10(13): 1569–1579
https://doi.org/10.1101/gad.10.13.1569 pmid: 8682289
134 Margueron R, Reinberg D (2011). The Polycomb complex PRC2 and its mark in life. Nature, 469(7330): 343–349
https://doi.org/10.1038/nature09784 pmid: 21248841
135 Maris C, Dominguez C, Allain F H (2005). The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J, 272(9): 2118–2131
https://doi.org/10.1111/j.1742-4658.2005.04653.x pmid: 15853797
136 Marson A, Levine S S, Cole M F, Frampton G M, Brambrink T, Johnstone S, Guenther M G, Johnston W K, Wernig M, Newman J, Calabrese J M, Dennis L M, Volkert T L, Gupta S, Love J, Hannett N, Sharp P A, Bartel D P, Jaenisch R, Young R A (2008). Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 134(3): 521–533
https://doi.org/10.1016/j.cell.2008.07.020 pmid: 18692474
137 Martin G R (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 78(12): 7634–7638
https://doi.org/10.1073/pnas.78.12.7634 pmid: 6950406
138 Melton C, Judson R L, Blelloch R (2010). Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature, 463(7281): 621–626
https://doi.org/10.1038/nature08725 pmid: 20054295
139 Mihailovic M, Wurth L, Zambelli F, Abaza I, Militti C, Mancuso F M, Roma G, Pavesi G, Gebauer F (2012). Widespread generation of alternative UTRs contributes to sex-specific RNA binding by UNR. RNA, 18(1): 53–64
https://doi.org/10.1261/rna.029603.111 pmid: 22101243
140 Modrek B, Resch A, Grasso C, Lee C (2001). Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res, 29(13): 2850–2859
https://doi.org/10.1093/nar/29.13.2850 pmid: 11433032
141 Moran V A, Perera R J, Khalil A M (2012). Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res, 40(14): 6391–6400
https://doi.org/10.1093/nar/gks296 pmid: 22492512
142 Morita S, Horii T, Kimura M, Goto Y, Ochiya T, Hatada I (2007). One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics, 89(6): 687–696
https://doi.org/10.1016/j.ygeno.2007.01.004 pmid: 17418524
143 Morlando M, Dini Modigliani S, Torrelli G, Rosa A, Di Carlo V, Caffarelli E, Bozzoni I (2012). FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO J, 31(24): 4502–4510
https://doi.org/10.1038/emboj.2012.319 pmid: 23232809
144 Mueller A A, Cheung T H, Rando T A (2013). All’s well that ends well: alternative polyadenylation and its implications for stem cell biology. Curr Opin Cell Biol, 25(2): 222–232
https://doi.org/10.1016/j.ceb.2012.12.008 pmid: 23357469
145 Murchison E P, Partridge J F, Tam O H, Cheloufi S, Hannon G J (2005). Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA, 102(34): 12135–12140
https://doi.org/10.1073/pnas.0505479102 pmid: 16099834
146 Nakagawa S, Naganuma T, Shioi G, Hirose T (2011). Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol, 193(1): 31–39
https://doi.org/10.1083/jcb.201011110 pmid: 21444682
147 N?rv? E, Rahkonen N, Emani M R, Lund R, Pursiheimo J P, N?sti J, Autio R, Rasool O, Denessiouk K, L?hdesm?ki H, Rao A, Lahesmaa R (2012). RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells, 30(3): 452–460
https://doi.org/10.1002/stem.1013 pmid: 22162396
148 Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco M A (2002). Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods, 26(2): 182–190
https://doi.org/10.1016/S1046-2023(02)00021-X pmid: 12054895
149 Niwa H, Miyazaki J, Smith A G (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 24(4): 372–376
https://doi.org/10.1038/74199 pmid: 10742100
150 Ohta S, Nishida E, Yamanaka S, Yamamoto T (2013a). Global splicing pattern reversion during somatic cell reprogramming. Cell Reports, 5(2): 357–366
https://doi.org/10.1016/j.celrep.2013.09.016 pmid: 24139801
151 Ohta S, Nishida E, Yamanaka S, Yamamoto T (2013b). Global splicing pattern reversion during somatic cell reprogramming. Cell Reports, 5(2): 357–366
https://doi.org/10.1016/j.celrep.2013.09.016 pmid: 24139801
152 Pádua Alves C, Fonseca A S, Muys B R, de Barros E Lima Bueno R, Bürger M C, de Souza J E, Valente V, Zago M A, Silva W A Jr (2013). Brief report: The lincRNA Hotair is required for epithelial-to-mesenchymal transition and stemness maintenance of cancer cell lines. Stem Cells, 31(12): 2827–2832
https://doi.org/10.1002/stem.1547 pmid: 24022994
153 Park J M, Kohn M J, Bruinsma M W, Vech C, Intine R V, Fuhrmann S, Grinberg A, Mukherjee I, Love P E, Ko M S, DePamphilis M L, Maraia R J (2006). The multifunctional RNA-binding protein La is required for mouse development and for the establishment of embryonic stem cells. Mol Cell Biol, 26(4): 1445–1451
https://doi.org/10.1128/MCB.26.4.1445-1451.2006 pmid: 16449655
154 Park Y, Lee J M, Hwang M Y, Son G H, Geum D (2013). NonO binds to the CpG island of oct4 promoter and functions as a transcriptional activator of oct4 gene expression. Mol Cells, 35(1): 61–69
https://doi.org/10.1007/s10059-013-2273-1 pmid: 23212346
155 Pasini D, Bracken A P, Hansen J B, Capillo M, Helin K (2007). The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol, 27(10): 3769–3779
https://doi.org/10.1128/MCB.01432-06 pmid: 17339329
156 Pasini D, Cloos P A, Walfridsson J, Olsson L, Bukowski J P, Johansen J V, Bak M, Tommerup N, Rappsilber J, Helin K (2010). JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature, 464(7286): 306–310
https://doi.org/10.1038/nature08788 pmid: 20075857
157 Pelham H R, Brown D D (1980). A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc Natl Acad Sci USA, 77(7): 4170–4174
https://doi.org/10.1073/pnas.77.7.4170 pmid: 7001457
158 Peng J C, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A, Wysocka J (2009). Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell, 139(7): 1290–1302
https://doi.org/10.1016/j.cell.2009.12.002 pmid: 20064375
159 Peng S, Chen L L, Lei X X, Yang L, Lin H, Carmichael G G, Huang Y (2011). Genome-wide studies reveal that Lin28 enhances the translation of genes important for growth and survival of human embryonic stem cells. Stem Cells, 29(3): 496–504
https://doi.org/10.1002/stem.591 pmid: 21425412
160 Piskounova E, Polytarchou C, Thornton J E, LaPierre R J, Pothoulakis C, Hagan J P, Iliopoulos D, Gregory R I (2011). Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell, 147(5): 1066–1079
https://doi.org/10.1016/j.cell.2011.10.039 pmid: 22118463
161 Prasanth K V, Prasanth S G, Xuan Z, Hearn S, Freier S M, Bennett C F, Zhang M Q, Spector D L (2005). Regulating gene expression through RNA nuclear retention. Cell, 123(2): 249–263
https://doi.org/10.1016/j.cell.2005.08.033 pmid: 16239143
162 Pritsker M, Doniger T T, Kramer L C, Westcot S E, Lemischka I R (2005). Diversification of stem cell molecular repertoire by alternative splicing. Proc Natl Acad Sci USA, 102(40): 14290–14295
https://doi.org/10.1073/pnas.0502132102 pmid: 16183747
163 Qiu C, Ma Y, Wang J, Peng S, Huang Y (2010). Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Res, 38(4): 1240–1248
https://doi.org/10.1093/nar/gkp1071 pmid: 19966271
164 Quenault T, Lithgow T, Traven A (2011). PUF proteins: repression, activation and mRNA localization. Trends Cell Biol, 21(2): 104–112
https://doi.org/10.1016/j.tcb.2010.09.013 pmid: 21115348
165 Radzisheuskaya A, Chia G B, dos Santos R L, Theunissen T W, Castro L F, Nichols J, Silva J C (2013). A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nat Cell Biol, 15(6): 579–590
https://doi.org/10.1038/ncb2742 pmid: 23629142
166 Radzisheuskaya A, Silva J C (2014). Do all roads lead to Oct4? the emerging concepts of induced pluripotency. Trends Cell Biol, 24(5): 275–284
https://doi.org/10.1016/j.tcb.2013.11.010 pmid: 24370212
167 Rajyaguru P, Parker R (2012). RGG motif proteins: modulators of mRNA functional states. Cell Cycle, 11(14): 2594–2599
https://doi.org/10.4161/cc.20716 pmid: 22767211
168 Ramakrishna S, Suresh B, Lim K H, Cha B H, Lee S H, Kim K S, Baek K H (2011). PEST motif sequence regulating human NANOG for proteasomal degradation. Stem Cells Dev, 20(9): 1511–1519
https://doi.org/10.1089/scd.2010.0410 pmid: 21299413
169 Rao S, Zhen S, Roumiantsev S, McDonald L T, Yuan G C, Orkin S H (2010). Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol, 30(22): 5364–5380
https://doi.org/10.1128/MCB.00419-10 pmid: 20837710
170 Ray D, Kazan H, Chan E T, Pe?a Castillo L, Chaudhry S, Talukder S, Blencowe B J, Morris Q, Hughes T R (2009). Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol, 27(7): 667–670
https://doi.org/10.1038/nbt.1550 pmid: 19561594
171 Ray D, Kazan H, Cook K B, Weirauch M T, Najafabadi H S, Li X, Gueroussov S, Albu M, Zheng H, Yang A, Na H, Irimia M, Matzat L H, Dale R K, Smith S A, Yarosh C A, Kelly S M, Nabet B, Mecenas D, Li W, Laishram R S, Qiao M, Lipshitz H D, Piano F, Corbett A H, Carstens R P, Frey B J, Anderson R A, Lynch K W, Penalva L O, Lei E P, Fraser A G, Blencowe B J, Morris Q D, Hughes T R (2013). A compendium of RNA-binding motifs for decoding gene regulation. Nature, 499(7457): 172–177
https://doi.org/10.1038/nature12311 pmid: 23846655
172 Reynolds N, Collier B, Maratou K, Bingham V, Speed R M, Taggart M, Semple C A, Gray N K, Cooke H J (2005). Dazl binds in vivo to specific transcripts and can regulate the pre-meiotic translation of Mvh in germ cells. Hum Mol Genet, 14(24): 3899–3909
https://doi.org/10.1093/hmg/ddi414 pmid: 16278232
173 Rinn J L, Kertesz M, Wang J K, Squazzo S L, Xu X, Brugmann S A, Goodnough L H, Helms J A, Farnham P J, Segal E, Chang H Y (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7): 1311–1323
https://doi.org/10.1016/j.cell.2007.05.022 pmid: 17604720
174 Salomonis N, Nelson B, Vranizan K, Pico A R, Hanspers K, Kuchinsky A, Ta L, Mercola M, Conklin B R (2009). Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors. PLOS Comput Biol, 5(11): e1000553
https://doi.org/10.1371/journal.pcbi.1000553 pmid: 19893621
175 Salomonis N, Schlieve C R, Pereira L, Wahlquist C, Colas A, Zambon A C, Vranizan K, Spindler M J, Pico A R, Cline M S, Clark T A, Williams A, Blume J E, Samal E, Mercola M, Merrill B J, Conklin B R (2010). Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA, 107(23): 10514–10519
https://doi.org/10.1073/pnas.0912260107 pmid: 20498046
176 Samavarchi-Tehrani P, Golipour A, David L, Sung H K, Beyer T A, Datti A, Woltjen K, Nagy A, Wrana J L (2010). Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell, 7(1): 64–77
https://doi.org/10.1016/j.stem.2010.04.015 pmid: 20621051
177 Sandberg R, Neilson J R, Sarma A, Sharp P A, Burge C B (2008). Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science, 320(5883): 1643–1647
https://doi.org/10.1126/science.1155390 pmid: 18566288
178 Saunders A, Faiola F, Wang J (2013). Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells, 31(7): 1227–1236
https://doi.org/10.1002/stem.1384 pmid: 23653415
179 Saunders A, Wang J (2014). Export and expression: mRNAs deliver new messages for controlling pluripotency. Cell Stem Cell, 14(5): 549–550
https://doi.org/10.1016/j.stem.2014.04.009 pmid: 24792108
180 Schulman B R, Esquela-Kerscher A, Slack F J (2005). Reciprocal expression of lin-41 and the microRNAs let-7 and mir-125 during mouse embryogenesis. Dev Dyn, 234(4): 1046–1054
https://doi.org/10.1002/dvdy.20599 pmid: 16247770
181 Schulz E G, Heard E (2013). Role and control of X chromosome dosage in mammalian development. Curr Opin Genet Dev, 23(2): 109–115
https://doi.org/10.1016/j.gde.2013.01.008 pmid: 23465885
182 Schulz E G, Meisig J, Nakamura T, Okamoto I, Sieber A, Picard C, Borensztein M, Saitou M, Blüthgen N, Heard E (2014). The two active X chromosomes in female ESCs block exit from the pluripotent state by modulating the ESC signaling network. Cell Stem Cell, 14(2): 203–216
https://doi.org/10.1016/j.stem.2013.11.022 pmid: 24506884
183 Sheik Mohamed J, Gaughwin P M, Lim B, Robson P, Lipovich L (2010). Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA (New York, NY 16, 324–337
184 Shekar P C, Naim A, Sarathi D P, Kumar S (2011). Argonaute-2-null embryonic stem cells are retarded in self-renewal and differentiation. J Biosci, 36(4): 649–657
https://doi.org/10.1007/s12038-011-9094-1 pmid: 21857111
185 Shepard P J, Choi E A, Lu J, Flanagan L A, Hertel K J, Shi Y (2011). Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA, 17(4): 761–772
https://doi.org/10.1261/rna.2581711 pmid: 21343387
186 Shibayama M, Ohno S, Osaka T, Sakamoto R, Tokunaga A, Nakatake Y, Sato M, Yoshida N (2009). Polypyrimidine tract-binding protein is essential for early mouse development and embryonic stem cell proliferation. FEBS J, 276(22): 6658–6668
https://doi.org/10.1111/j.1742-4658.2009.07380.x pmid: 19843185
187 Simon B, Kirkpatrick J P, Eckhardt S, Reuter M, Rocha E A, Andrade-Navarro M A, Sehr P, Pillai R S, Carlomagno T (2011). Recognition of 2′-O-methylated 3′-end of piRNA by the PAZ domain of a Piwi protein. Structure, 19(2): 172–180
https://doi.org/10.1016/j.str.2010.11.015 pmid: 21237665
188 Singh G, Ricci E P, Moore M J (2014). RIPiT-Seq: a high-throughput approach for footprinting RNA:protein complexes. Methods, 65(3): 320–332
https://doi.org/10.1016/j.ymeth.2013.09.013 pmid: 24096052
189 Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel C G, Zavolan M, Svoboda P, Filipowicz W (2008). MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol, 15(3): 259–267
https://doi.org/10.1038/nsmb.1391 pmid: 18311153
190 Souquere S, Beauclair G, Harper F, Fox A, Pierron G (2010). Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol Biol Cell, 21(22): 4020–4027
https://doi.org/10.1091/mbc.E10-08-0690 pmid: 20881053
191 Stefl R, Skrisovska L, Allain F H (2005). RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep, 6(1): 33–38
https://doi.org/10.1038/sj.embor.7400325 pmid: 15643449
192 Subramanian V, Klattenhoff C A, Boyer L A (2009). Screening for novel regulators of embryonic stem cell identity. Cell Stem Cell, 4(5): 377–378
https://doi.org/10.1016/j.stem.2009.04.006 pmid: 19427287
193 Sugnet C W, Srinivasan K, Clark T A, O’Brien G, Cline M S, Wang H, Williams A, Kulp D, Blume J E, Haussler D, Ares M Jr (2006). Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLOS Comput Biol, 2(1): e4
https://doi.org/10.1371/journal.pcbi.0020004 pmid: 16424921
194 Sunwoo H, Dinger M E, Wilusz J E, Amaral P P, Mattick J S, Spector D L (2009). MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res, 19(3): 347–359
https://doi.org/10.1101/gr.087775.108 pmid: 19106332
195 Tanaka T S (2009). Transcriptional heterogeneity in mouse embryonic stem cells. Reprod Fertil Dev, 21(1): 67–75
https://doi.org/10.1071/RD08219 pmid: 19152747
196 Tay Y, Zhang J, Thomson A M, Lim B, Rigoutsos I (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455(7216): 1124–1128
https://doi.org/10.1038/nature07299 pmid: 18806776
197 Teplova M, Patel D J (2008). Structural insights into RNA recognition by the alternative-splicing regulator muscleblind-like MBNL1. Nat Struct Mol Biol, 15(12): 1343–1351
https://doi.org/10.1038/nsmb.1519 pmid: 19043415
198 Thornton J E, Chang H M, Piskounova E, Gregory R I (2012). Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA, 18(10): 1875–1885
https://doi.org/10.1261/rna.034538.112 pmid: 22898984
199 Tian B, Manley J L (2013). Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem Sci, 38(6): 312–320
https://doi.org/10.1016/j.tibs.2013.03.005 pmid: 23632313
200 Tian Y, Simanshu D K, Ma J B, Patel D J (2011). Structural basis for piRNA 2′-O-methylated 3′-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. Proc Natl Acad Sci USA, 108(3): 903–910
https://doi.org/10.1073/pnas.1017762108 pmid: 21193640
201 Tiscornia G, Izpisúa Belmonte J C (2010). MicroRNAs in embryonic stem cell function and fate. Genes Dev, 24(24): 2732–2741
https://doi.org/10.1101/gad.1982910 pmid: 21159814
202 Toyooka Y, Shimosato D, Murakami K, Takahashi K, Niwa H (2008). Identification and characterization of subpopulations in undifferentiated ES cell culture. Development, 135(5): 909–918
https://doi.org/10.1242/dev.017400 pmid: 18263842
203 Tsai M C, Manor O, Wan Y, Mosammaparast N, Wang J K, Lan F, Shi Y, Segal E, Chang H Y (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329(5992): 689–693
https://doi.org/10.1126/science.1192002 pmid: 20616235
204 Tsai S C, Chang D F, Hong C M, Xia P, Senadheera D, Trump L, Mishra S, Lutzko C (2014). Induced overexpression of OCT4A in human embryonic stem cells increases cloning efficiency. Am J Physiol Cell Physiol, 306(12): C1108–C1118
https://doi.org/10.1152/ajpcell.00205.2013 pmid: 24627557
205 Tsui S, Dai T, Warren S T, Salido E C, Yen P H (2000). Association of the mouse infertility factor DAZL1 with actively translating polyribosomes. Biol Reprod, 62(6): 1655–1660
https://doi.org/10.1095/biolreprod62.6.1655 pmid: 10819768
206 Ule J, Jensen K, Mele A, Darnell R B (2005). CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods, 37(4): 376–386
https://doi.org/10.1016/j.ymeth.2005.07.018 pmid: 16314267
207 Ule J, Jensen K B, Ruggiu M, Mele A, Ule A, Darnell R B (2003). CLIP identifies Nova-regulated RNA networks in the brain. Science, 302(5648): 1212–1215
https://doi.org/10.1126/science.1090095 pmid: 14615540
208 Underwood J G, Boutz P L, Dougherty J D, Stoilov P, Black D L (2005). Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol Cell Biol, 25(22): 10005–10016
https://doi.org/10.1128/MCB.25.22.10005-10016.2005 pmid: 16260614
209 Valente L, Nishikura K (2005). ADAR gene family and A-to-I RNA editing: diverse roles in posttranscriptional gene regulation. Prog Nucleic Acid Res Mol Biol, 79: 299–338
https://doi.org/10.1016/S0079-6603(04)79006-6 pmid: 16096031
210 Valverde R, Edwards L, Regan L (2008). Structure and function of KH domains. FEBS J, 275(11): 2712–2726
https://doi.org/10.1111/j.1742-4658.2008.06411.x pmid: 18422648
211 Venables J P, Brosseau J P, Gadea G, Klinck R, Prinos P, Beaulieu J F, Lapointe E, Durand M, Thibault P, Tremblay K, Rousset F, Tazi J, Abou Elela S, Chabot B (2013a). RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues. Mol Cell Biol, 33(2): 396–405
https://doi.org/10.1128/MCB.01174-12 pmid: 23149937
212 Venables J P, Lapasset L, Gadea G, Fort P, Klinck R, Irimia M, Vignal E, Thibault P, Prinos P, Chabot B, Abou Elela S, Roux P, Lemaitre J M, Tazi J (2013b). MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation. Nat Commun, 4: 2480
https://doi.org/10.1038/ncomms3480 pmid: 24048253
213 Venter J C, Adams M D, Myers E W, Li P W, Mural R J, Sutton G G, Smith H O, Yandell M, Evans C A, Holt R A, Gocayne J D, Amanatides P, Ballew R M, Huson D H, Wortman J R, Zhang Q, Kodira C D, Zheng X H, Chen L, Skupski M, Subramanian G, Thomas P D, Zhang J, Gabor Miklos G L, Nelson C, Broder S, Clark A G, Nadeau J, McKusick V A, Zinder N, Levine A J, Roberts R J, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian A E, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman T J, Higgins M E, Ji R R, Ke Z, Ketchum K A, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov G V, Milshina N, Moore H M, Naik A K, Narayan V A, Neelam B, Nusskern D, Rusch D B, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng M L, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers Y H, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint N N, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril J F, Guigó R, Campbell M J, Sjolander K V, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang Y H, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X (2001). The sequence of the human genome. Science, 291(5507): 1304–1351
https://doi.org/10.1126/science.1058040 pmid: 11181995
214 Wang K C, Chang H Y (2011). Molecular mechanisms of long noncoding RNAs. Mol Cell, 43(6): 904–914
https://doi.org/10.1016/j.molcel.2011.08.018 pmid: 21925379
215 Wang K C, Yang Y W, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie B R, Protacio A, Flynn R A, Gupta R A, Wysocka J, Lei M, Dekker J, Helms J A, Chang H Y (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 472(7341): 120–124
https://doi.org/10.1038/nature09819 pmid: 21423168
216 Wang L, Miao Y L, Zheng X, Lackford B, Zhou B, Han L, Yao C, Ward J M, Burkholder A, Lipchina I, Fargo D C, Hochedlinger K, Shi Y, Williams C J, Hu G (2013). The THO complex regulates pluripotency gene mRNA export and controls embryonic stem cell self-renewal and somatic cell reprogramming. Cell Stem Cell, 13(6): 676–690
https://doi.org/10.1016/j.stem.2013.10.008 pmid: 24315442
217 Wang X, Chang Y, Li Y, Zhang X, Goodrich D W (2006). Thoc1/Hpr1/p84 is essential for early embryonic development in the mouse. Mol Cell Biol, 26(11): 4362–4367
https://doi.org/10.1128/MCB.02163-05 pmid: 16705185
218 Wang X, McLachlan J, Zamore P D, Hall T M (2002). Modular recognition of RNA by a human pumilio-homology domain. Cell, 110(4): 501–512
https://doi.org/10.1016/S0092-8674(02)00873-5 pmid: 12202039
219 Wang X, Zamore P D, Hall T M (2001). Crystal structure of a Pumilio homology domain. Mol Cell, 7(4): 855–865
https://doi.org/10.1016/S1097-2765(01)00229-5 pmid: 11336708
220 Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet, 39(3): 380–385
https://doi.org/10.1038/ng1969 pmid: 17259983
221 Weyn-Vanhentenryck S M, Mele A, Yan Q, Sun S, Farny N, Zhang Z, Xue C, Herre M, Silver P A, Zhang M Q, Krainer A R, Darnell R B, Zhang C (2014). HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Reports, 6(6): 1139–1152
https://doi.org/10.1016/j.celrep.2014.02.005 pmid: 24613350
222 Whyte W A, Bilodeau S, Orlando D A, Hoke H A, Frampton G M, Foster C T, Cowley S M, Young R A (2012). Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature, 482(7384): 221–225
pmid: 22297846
223 Wilbert M L, Huelga S C, Kapeli K, Stark T J, Liang T Y, Chen S X, Yan B Y, Nathanson J L, Hutt K R, Lovci M T, Kazan H, Vu A Q, Massirer K B, Morris Q, Hoon S, Yeo G W (2012). LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance. Mol Cell, 48(2): 195–206
https://doi.org/10.1016/j.molcel.2012.08.004 pmid: 22959275
224 Wolin S L, Cedervall T (2002). The La protein. Annu Rev Biochem, 71(1): 375–403
https://doi.org/10.1146/annurev.biochem.71.090501.150003 pmid: 12045101
225 Wong R C, Ibrahim A, Fong H, Thompson N, Lock L F, Donovan P J (2011). L1TD1 is a marker for undifferentiated human embryonic stem cells. PLoS ONE, 6(4): e19355
https://doi.org/10.1371/journal.pone.0019355 pmid: 21559406
226 Wu J Q, Habegger L, Noisa P, Szekely A, Qiu C, Hutchison S, Raha D, Egholm M, Lin H, Weissman S, Cui W, Gerstein M, Snyder M (2010). Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci USA, 107(11): 5254–5259
https://doi.org/10.1073/pnas.0914114107 pmid: 20194744
227 Xu X, Tan X, Lin Q, Schmidt B, Engel W, Pantakani D V (2013). Mouse Dazl and its novel splice variant functions in translational repression of target mRNAs in embryonic stem cells. Biochim Biophys Acta, 1829(5): 425–435
https://doi.org/10.1016/j.bbagrm.2012.12.010 pmid: 23298641
228 Xue Y, Ouyang K, Huang J, Zhou Y, Ouyang H, Li H, Wang G, Wu Q, Wei C, Bi Y, Jiang L, Cai Z, Sun H, Zhang K, Zhang Y, Chen J, Fu X D (2013). Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell, 152(1–2): 82–96
https://doi.org/10.1016/j.cell.2012.11.045 pmid: 23313552
229 Yan K S, Yan S, Farooq A, Han A, Zeng L, Zhou M M (2003). Structure and conserved RNA binding of the PAZ domain. Nature, 426(6965): 468–474
https://doi.org/10.1038/nature02129 pmid: 14615802
230 Yang Y W, Flynn R A, Chen Y, Qu K, Wan B, Wang K C, Lei M, Chang H Y (2014). Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. eLife, 3: e02046
231 Yeganeh M, Seyedjafari E, Kamrani F A, Ghaemi N (2013). RNA-binding protein Rbm47 binds to Nanog in mouse embryonic stem cells. Mol Biol Rep, 40(7): 4391–4396
https://doi.org/10.1007/s11033-013-2528-0 pmid: 23649762
232 Yeo G W, Coufal N G, Liang T Y, Peng G E, Fu X D, Gage F H (2009). An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol, 16(2): 130–137
https://doi.org/10.1038/nsmb.1545 pmid: 19136955
233 Yeo G W, Xu X, Liang T Y, Muotri A R, Carson C T, Coufal N G, Gage F H (2007). Alternative splicing events identified in human embryonic stem cells and neural progenitors. PLOS Comput Biol, 3(10): 1951–1967
https://doi.org/10.1371/journal.pcbi.0030196 pmid: 17967047
234 Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y, Sato-Otsubo A, Kon A, Nagasaki M, Chalkidis G, Suzuki Y, Shiosaka M, Kawahata R, Yamaguchi T, Otsu M, Obara N, Sakata-Yanagimoto M, Ishiyama K, Mori H, Nolte F, Hofmann W K, Miyawaki S, Sugano S, Haferlach C, Koeffler H P, Shih L Y, Haferlach T, Chiba S, Nakauchi H, Miyano S, Ogawa S (2011). Frequent pathway mutations of splicing machinery in myelodysplasia. Nature, 478(7367): 64–69
https://doi.org/10.1038/nature10496 pmid: 21909114
235 Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858): 1917–1920
https://doi.org/10.1126/science.1151526 pmid: 18029452
236 Zahler A M, Lane W S, Stolk J A, Roth M B (1992). SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev, 6(5): 837–847
https://doi.org/10.1101/gad.6.5.837 pmid: 1577277
237 Zhang M, Zamore P D, Carmo-Fonseca M, Lamond A I, Green M R (1992). Cloning and intracellular localization of the U2 small nuclear ribonucleoprotein auxiliary factor small subunit. Proc Natl Acad Sci USA, 89(18): 8769–8773
https://doi.org/10.1073/pnas.89.18.8769 pmid: 1388271
238 Zhao J, Ohsumi T K, Kung J T, Ogawa Y, Grau D J, Sarma K, Song J J, Kingston R E, Borowsky M, Lee J T (2010). Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell, 40(6): 939–953
https://doi.org/10.1016/j.molcel.2010.12.011 pmid: 21172659
239 Zhao J, Sun B K, Erwin J A, Song J J, Lee J T (2008). Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 322(5902): 750–756
https://doi.org/10.1126/science.1163045 pmid: 18974356
240 Zhong X Y, Wang P, Han J, Rosenfeld M G, Fu X D (2009). SR proteins in vertical integration of gene expression from transcription to RNA processing to translation. Mol Cell, 35(1): 1–10
https://doi.org/10.1016/j.molcel.2009.06.016 pmid: 19595711
241 Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones J M (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391): 1145–1147
241 Zwieb C, Brimacombe R (1978). RNA-protein cross-linking in Eschericia coli 30S ribosomal subunits: a method for the direct analysis of the RNA regions involved in the cross-links. Nucleic Acids Res, 5(4): 1189–1206
https://doi.org/10.1093/nar/5.4.1189 pmid: 349502
242 Ostareck D H, Ostareck-Lederer A, Wilm M, Thiele B J, Mann M, Hentze M W (1997). mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3' end. Cell, 89: 597–606
243 Caretti G, Schiltz R L, Dilworth F J, Di Padova M, Zhao P, Ogryzko V, Fuller-Pace F V, Hoffman E P, Tapscott S J, Sartorelli V (2006). The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell, 11: 547–560
244 Shen X, Kim W, Fujiwara Y, Simon M D, Liu Y, Mysliwiec M R, Yuan G C, Lee Y, Orkin S H (2009). Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell, 139(7): 1303–1314
https://doi.org/10.1007/s12038-011-9094-1 pmid: 21857111
245 Ang Y S, Tsai S Y, Lee D F, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B, Wang J, Rendl M, Bernstein E, Schaniel C, Lemischka I R (2011). Wdr5 mediates self-renewal and reprogramming via the embryonic stemcell core transcriptional network. Cell, 145(2): 183–197
[1] Yujie Deng, Caixia Lin, Huanjiao Jenny Zhou, Wang Min. Smooth muscle cell differentiation: Mechanisms and models for vascular diseases[J]. Front. Biol., 2017, 12(6): 392-405.
[2] Jun Sun. Intestinal organoid as an in vitromodel in studying host-microbial interactions[J]. Front. Biol., 2017, 12(2): 94-102.
[3] Pang-Kuo Lo,Benjamin Wolfson,Qun Zhou. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1[J]. Front. Biol., 2016, 11(6): 413-426.
[4] Liang Hu,Edward Trope,Qi-Long Ying. Metabolism of pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 355-365.
[5] Ying-Tao Zhao,Maria Fasolino,Zhaolan Zhou. Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals[J]. Front. Biol., 2016, 11(4): 311-322.
[6] Behnam Ebrahimi. Chemical-only reprogramming to pluripotency[J]. Front. Biol., 2016, 11(2): 75-84.
[7] Marlen Knobloch,Sebastian Jessberger. Metabolic control of adult neural stem cell behavior[J]. Front. Biol., 2015, 10(2): 100-106.
[8] Joshua D. TOMPKINS,Arthur D. RIGGS. An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy[J]. Front. Biol., 2015, 10(1): 11-27.
[9] Brandoch D. COOK. Modeling murine yolk sac hematopoiesis with embryonic stem cell culture systems[J]. Front. Biol., 2014, 9(5): 339-346.
[10] Mary Catherine RENEER, Francesc MARTI. The balancing act of AKT in T cells[J]. Front Biol, 2013, 8(2): 160-174.
[11] Iouri CHEPELEV, Xin CHEN. Alternative splicing switching in stem cell lineages[J]. Front Biol, 2013, 8(1): 50-59.
[12] Yonggang ZHANG, Wenhui HU. NFκB signaling regulates embryonic and adult neurogenesis[J]. Front Biol, 2012, 7(4): 277-291.
[13] Jia LUO. The role of GSK3beta in the development of the central nervous system[J]. Front Biol, 2012, 7(3): 212-220.
[14] Chao YANG, Jia-Fei XI, Xiao-Yan XIE, Wen YUE, Ruo-Yong WANG, Qiong WU, Li-Juan HE, Xue NAN, Yan-Hua LI, Xue-Tao PEI. Prostaglandin E2 promotes hematopoietic development from human embryonic stem cells[J]. Front Biol, 2010, 5(5): 445-454.
[15] Ying Hua SU, Zhi Juan CHENG, Yu Xiao SU, Xian Sheng ZHANG. Pattern analysis of stem cell differentiation during in vitroArabidopsis organogenesis[J]. Front Biol, 2010, 5(5): 464-470.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed