|
|
Intestinal organoid as an in vitromodel in studying host-microbial interactions |
Jun Sun( ) |
Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Chicago, IL 60612, USA |
|
|
Abstract BACKGROUND: Organoid is an in vitro three-dimensional organ-bud that shows realistic microanatomy and physiological relevance. The progress in generating organoids that faithfully recapitulate humanin vivo tissue composition has extended organoid applications from being just a basic research tool to a translational platform with a wide range of uses. Study of host-microbial interactions relies on model systems to mimic thein vivo infection. Researchers have developed various experimental models in vitro and in vivo to examine the dynamic host-microbial interactions. For some infectious pathogens, model systems are lacking whereas some of the used systems are far from optimal. OBJECTIVE: In the present work, we will review the brief history and recent findings using organoids for studying host-microbial interactions. METHODS: A systematic literature search was performed using the PubMed search engine. We also shared our data and research contribution to the field. RESULTS: we summarize the brief history of 3D organoids. We discuss the feasibility of using organoids in studying host-microbial interactions, focusing on the development of intestinal organoids and gastric organoids. We highlight the advantage and challenges of the new experimental models. Further, we discuss the future direction in using organoids in studying host-microbial interactions and its potential application in biomedical studies. CONCLUSION: In combination with genetic, transcriptome and proteomic profiling, both murine- and human-derived organoids have revealed crucial aspects of development, homeostasis and diseases. Specifically, human organoids from susceptible host will be used to test their responses to pathogens, probiotics, and drugs. Organoid system is an exciting tool for studying infectious disease, microbiome, and therapy.
|
Keywords
bacteria
colonoids
enteroids
gastric organoids
host-microbial interactions
H. pylori
inflammation
intestinal organoids
microbiome
organoids
tight junctions
Salmonella
stem-cell differentiation
ZO-1
|
Corresponding Author(s):
Jun Sun
|
Just Accepted Date: 20 January 2017
Online First Date: 28 February 2017
Issue Date: 14 April 2017
|
|
1 |
Aoki-Yoshida A, Saito S, Fukiya S , Aoki R, Takayama Y, Suzuki C , Sonoyama K (2016). Lactobacillus rhamnosus GG increases Toll-like receptor 3 gene expression in murine small intestine ex vivo and in vivo. Benef Microbes, 7(3): 421–429
https://doi.org/10.3920/BM2015.0169
pmid: 27013459
|
2 |
Arnold J W, Roach J, Azcarate-Peril M A (2016). Emerging technologies for gut microbiome research. Trends Microbiol, 24(11): 887–901
https://doi.org/10.1016/j.tim.2016.06.008
pmid: 27426971
|
3 |
Barrandon Y, Green H (1987). Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA, 84(8): 2302–2306
https://doi.org/10.1073/pnas.84.8.2302
pmid: 2436229
|
4 |
Bartfeld S, Bayram T, van de Wetering M, Huch M , Begthel H , Kujala P , Vries R , Peters P J , Clevers H (2015). In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology, 148(1): 126–136.e6
https://doi.org/10.1053/j.gastro.2014.09.042
pmid: 25307862
|
5 |
Bartfeld S, Clevers H (2015). Organoids as model for infectious diseases: Culture of human and murine stomach organoids and microinjection of Helicobacter pylori. J Vis Exp, 43(105):816–818
|
6 |
Bertaux-Skeirik N, Feng R, Schumacher M A , Li J, Mahe M M, Engevik A C, Javier J E, Peek R M Jr, Ottemann K, Orian-Rousseau V , Boivin G P , Helmrath M A , Zavros Y (2015). CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog, 11(2): e1004663
https://doi.org/10.1371/journal.ppat.1004663
pmid: 25658601
|
7 |
Crosnier C, Stamataki D, Lewis J (2006). Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet, 7(5): 349–359
https://doi.org/10.1038/nrg1840
pmid: 16619050
|
8 |
D’Aiuto L, Di Maio R, Heath B , Raimondi G , Milosevic J , Watson A M , Bamne M , Parks W T , Yang L, Lin B, Miki T , Mich-Basso J D , Arav-Boger R , Sibille E , Sabunciyan S , Yolken R , Nimgaonkar V (2012). Human induced pluripotent stem cell-derived models to investigate human cytomegalovirus infection in neural cells. PLoS One, 7(11): e49700
https://doi.org/10.1371/journal.pone.0049700
pmid: 23209593
|
9 |
Dedhia P H, Bertaux-Skeirik N, Zavros Y , Spence J R (2016). Organoid models of human gastrointestinal development and disease. Gastroenterology, 150(5): 1098–1112 PMID:26774180
https://doi.org/10.1053/j.gastro.2015.12.042
|
10 |
Dingli D, Nowak M A (2006). Cancer biology: infectious tumour cells. Nature, 443(7107): 35–36
https://doi.org/10.1038/443035a
pmid: 16957717
|
11 |
Engevik M A, Aihara E, Montrose M H , Shull G E , Hassett D J , Worrell R T (2013). Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth. Am J Physiol Gastrointest Liver Physiol, 305(10): G697–G711
https://doi.org/10.1152/ajpgi.00184.2013
pmid: 24072680
|
12 |
Ettayebi K, Crawford S E, Murakami K, Broughman J R , Karandikar U , Tenge V R , Neill F H , Blutt S E , Zeng X L , Qu L, Kou B, Opekun A R , Burrin D , Graham D Y , Ramani S , Atmar R L , Estes M K (2016). Replication of human noroviruses in stem cell-derived human enteroids. Science, 353(6306): 1387–1393
https://doi.org/10.1126/science.aaf5211
pmid: 27562956
|
13 |
Fang S B, Schüller S, Phillips A D (2013). Human intestinal in vitro organ culture as a model for investigation of Bacteriae-host interactions. J Exp Clin Med, 5(2): 43–50
https://doi.org/10.1016/j.jecm.2013.02.006
|
14 |
Fatehullah A, Tan S H, Barker N (2016). Organoids as an in vitro model of human development and disease. Nat Cell Biol, 18(3): 246–254
https://doi.org/10.1038/ncb3312
pmid: 26911908
|
15 |
Finkbeiner S R , Zeng X L , Utama B , Atmar R L , Shroyer N F , Estes M K (2012). Stem cell-derived human intestinal organoids as an infection model for rotaviruses. MBio, 3(4): e00159–e12
https://doi.org/10.1128/mBio.00159-12
pmid: 22761392
|
16 |
Forbester J L , Goulding D , et al. (2014). Intestinal organoids are a novel system to study Salmonella enterica Serovar Typhimurium interaction with the intestinal epithelial barrier. Immunology, 143: 111–112
|
17 |
Forbester J L , Goulding D , Vallier L , Hannan N , Hale C, Pickard D, Mukhopadhyay S , Dougan G (2015). Interaction of Salmonella enterica Serovar Typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun, 83(7): 2926–2934
https://doi.org/10.1128/IAI.00161-15
pmid: 25964470
|
18 |
Foulke-Abel J, In J, Kovbasnjuk O , Zachos N C , Ettayebi K , Blutt S E , Hyser J M , Zeng X L , Crawford S E , Broughman J R , Estes M K , Donowitz M (2014). Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp Biol Med (Maywood), 239(9): 1124–1134
https://doi.org/10.1177/1535370214529398
pmid: 24719375
|
19 |
Garcez P P, Loiola E C, Madeiro da Costa R, Higa L M , Trindade P , Delvecchio R , Nascimento J M , Brindeiro R , Tanuri A , Rehen S K (2016). Zika virus impairs growth in human neurospheres and brain organoids. Science, 352(6287): 816–818
https://doi.org/10.1126/science.aaf6116
pmid: 27064148
|
20 |
Gjorevski N, Sachs N, Manfrin A , Giger S , Bragina M E , Ordóñez-Morán P, Clevers H , Lutolf M P (2016). Designer matrices for intestinal stem cell and organoid culture. Nature, 539(7630): 560–564
https://doi.org/10.1038/nature20168
pmid: 27851739
|
21 |
Harrison R G (1907). Observations on the living developing fiber. Proc Soc Exp Biol Med, 4(1): 140–143
https://doi.org/10.3181/00379727-4-98
|
22 |
Heuberger J, Kosel F, Qi J , Grossmann K S , Rajewsky K , Birchmeier W (2014). Shp2/MAPK signaling controls goblet/paneth cell fate decisions in the intestine. Proc Natl Acad Sci USA, 111(9): 3472–3477
https://doi.org/10.1073/pnas.1309342111
pmid: 24550486
|
23 |
Hilleman M R (1990). History, precedent, and progress in the development of mammalian cell culture systems for preparing vaccines: safety considerations revisited. J Med Virol, 31(1): 5–12
https://doi.org/10.1002/jmv.1890310104
pmid: 2198327
|
24 |
Huang G, Ye S, Zhou X , Liu D, Ying Q L (2015a). Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cell Mol Life Sci, 72(9): 1741–1757
https://doi.org/10.1007/s00018-015-1833-2
pmid: 25595304
|
25 |
Huang J Y, Sweeney E G, Sigal M, Zhang H C , Remington S J , Cantrell M A , Kuo C J , Guillemin K , Amieva M R (2015b). Chemodetection and destruction of host urea allows Helicobacter pylori to locate the epithelium. Cell Host Microbe, 18(2): 147–156
https://doi.org/10.1016/j.chom.2015.07.002
pmid: 26269952
|
26 |
Huch M, Koo B K (2015). Modeling mouse and human development using organoid cultures. Development, 142(18): 3113–3125
https://doi.org/10.1242/dev.118570
pmid: 26395140
|
27 |
In J G, Foulke-Abel J, Estes M K , Zachos N C , Kovbasnjuk O , Donowitz M (2016). Human mini-guts: new insights into intestinal physiology and host-pathogen interactions. Nat Rev Gastroenterol Hepatol, 13(11): 633–642
https://doi.org/10.1038/nrgastro.2016.142
pmid: 27677718
|
28 |
Jung P, Sato T, Merlos-Suárez A, Barriga F M , Iglesias M , Rossell D , Auer H, Gallardo M, Blasco M A , Sancho E , Clevers H , Batlle E (2011). Isolation and in vitro expansion of human colonic stem cells. Nat Med, 17(10): 1225–1227
https://doi.org/10.1038/nm.2470
pmid: 21892181
|
29 |
Klotz C, Aebischer T, Seeber F (2012). Stem cell-derived cell cultures and organoids for protozoan parasite propagation and studying host-parasite interaction. Int J Med Microbiol, 302(4-5): 203–209
https://doi.org/10.1016/j.ijmm.2012.07.010
pmid: 22898491
|
30 |
Kristin W, Weitz J, et al. (2016). Organoids as model systems for gastrointestinal diseases: tissue engineering meets. Curr Pathobiol Rep, 4(1): 1–9
https://doi.org/10.1007/s40139-016-0100-z
|
31 |
Leslie J L, Huang S, Opp J S , Nagy M S , Kobayashi M , Young V B , Spence J R (2015). Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun, 83(1): 138–145
https://doi.org/10.1128/IAI.02561-14
pmid: 25312952
|
32 |
Mahe M M, Aihara E, Schumacher M A , Zavros Y , Montrose M H , Helmrath M A , Sato T, Shroyer N F (2013). Establishment of gastrointestinal epithelial organoids. Curr Protoc Mouse Biol, 3(4): 217–240
https://doi.org/10.1002/9780470942390.mo130179
pmid: 25105065
|
33 |
Mahe M M, Sundaram N, Watson C L , Shroyer N F , Helmrath M A (2015). Establishment of human epithelial enteroids and colonoids from whole tissue and biopsy. J Vis Exp, (97): e52483-e52483
pmid: 25866936
|
34 |
McCracken K W , Catá E M , Crawford C M , Sinagoga K L , Schumacher M , Rockich B E , Tsai Y H , Mayhew C N , Spence J R , Zavros Y , Wells J M (2014). Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 516(7531): 400–404
https://doi.org/10.1038/nature13863
pmid: 25363776
|
35 |
Miyoshi H, Stappenbeck T S (2013). In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat Protoc, 8(12): 2471–2482
https://doi.org/10.1038/nprot.2013.153
pmid: 24232249
|
36 |
Ng S, Schwartz R E, March S, Galstian A , Gural N , Shan J, Prabhu M, Mota M M , Bhatia S N (2015). Human iPSC-derived hepatocyte-like cells support Plasmodium liver-stage infection in vitro. Stem Cell Rep, 4(3): 348–359
https://doi.org/10.1016/j.stemcr.2015.01.002
pmid: 25660406
|
37 |
Ootani A, Li X, Sangiorgi E , Ho Q T , Ueno H, Toda S, Sugihara H , Fujimoto K , Weissman I L , Capecchi M R , Kuo C J (2009). Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med, 15(6): 701–706
https://doi.org/10.1038/nm.1951
pmid: 19398967
|
38 |
Penkert R R, Kalejta R F (2013). Human embryonic stem cell lines model experimental human cytomegalovirus latency. MBio, 4(3): e00298–e13
https://doi.org/10.1128/mBio.00298-13
pmid: 23716573
|
39 |
Roelandt P, Obeid S, Paeshuyse J , Vanhove J , Van Lommel A , Nahmias Y , Nevens F , Neyts J , Verfaillie C M (2012). Human pluripotent stem cell-derived hepatocytes support complete replication of hepatitis C virus. J Hepatol, 57(2): 246–251
https://doi.org/10.1016/j.jhep.2012.03.030
pmid: 22521345
|
40 |
Salama N R, Hartung M L, Müller A (2013). Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev Microbiol, 11(6): 385–399
https://doi.org/10.1038/nrmicro3016
pmid: 23652324
|
41 |
Sato T, Stange D E, Ferrante M, Vries R G , Van Es J H , Van den Brink S , Van Houdt W J , Pronk A , Van Gorp J , Siersema P D , Clevers H (2011a). Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology, 141(5): 1762–1772
https://doi.org/10.1053/j.gastro.2011.07.050
pmid: 21889923
|
42 |
Sato T, van Es J H, Snippert H J, Stange D E, Vries R G, van den Born M, Barker N , Shroyer N F , van de Wetering M , Clevers H (2011b). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 469(7330): 415–418
https://doi.org/10.1038/nature09637
pmid: 21113151
|
43 |
Sato T, Vries R G, Snippert H J, van de Wetering M, Barker N , Stange D E , van Es J H , Abo A, Kujala P, Peters P J , Clevers H (2009). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 459(7244): 262–265
https://doi.org/10.1038/nature07935
pmid: 19329995
|
44 |
Saxena K, Blutt S E, Ettayebi K, Zeng X L , Broughman J R , Crawford S E , Karandikar U C , Sastri N P , Conner M E , Opekun A R , Graham D Y , Qureshi W , Sherman V , Foulke-Abel J , In J, Kovbasnjuk O, Zachos N C , Donowitz M , Estes M K (2015). Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J Virol, 90(1): 43–56
https://doi.org/10.1128/JVI.01930-15
pmid: 26446608
|
45 |
Schlaermann P, Toelle B, Berger H , Schmidt S C , Glanemann M , Ordemann J , Bartfeld S , Mollenkopf H J , Meyer T F (2016). A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. Gut, 65(2): 202–213
https://doi.org/10.1136/gutjnl-2014-307949
pmid: 25539675
|
46 |
Schumacher M A , Feng R, Aihara E, Engevik A C , Montrose M H , Ottemann K M , Zavros Y (2015). Helicobacter pylori-induced Sonic Hedgehog expression is regulated by NF kB pathway activation: the use of a novel in vitro model to study epithelial response to infection. Helicobacter, 20(1): 19–28
https://doi.org/10.1111/hel.12152
pmid: 25495001
|
47 |
Schwank G, Koo B K, Sasselli V, Dekkers J F , Heo I, Demircan T, Sasaki N , Boymans S , Cuppen E , van der Ent C K , Nieuwenhuis E E , Beekman J M , Clevers H (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13(6): 653–658
https://doi.org/10.1016/j.stem.2013.11.002
pmid: 24315439
|
48 |
Schwartz R E, Trehan K, Andrus L , Sheahan T P , Ploss A , Duncan S A , Rice C M , Bhatia S N (2012). Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc Natl Acad Sci USA, 109(7): 2544–2548
https://doi.org/10.1073/pnas.1121400109
pmid: 22308485
|
49 |
Shlomai A, Schwartz R E, Ramanan V, Bhatta A , de Jong Y P , Bhatia S N , Rice C M (2014). Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci USA, 111(33): 12193–12198
https://doi.org/10.1073/pnas.1412631111
pmid: 25092305
|
50 |
Sigal M, Rothenberg M E, Logan C Y, Lee J Y, Honaker R W, Cooper R L, Passarelli B, Camorlinga M , Bouley D M , Alvarez G , Nusse R , Torres J , Amieva M R (2015). Helicobacter pylori activates and expands Lgr5(+) stem cells through direct colonization of the gastric glands. Gastroenterology, 148(7): 1392–404.e21
https://doi.org/10.1053/j.gastro.2015.02.049
pmid: 25725293
|
51 |
Spence J R, Mayhew C N, Rankin S A, Kuhar M F, Vallance J E, Tolle K, Hoskins E E , Kalinichenko V V , Wells S I , Zorn A M , Shroyer N F , Wells J M (2011). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470(7332): 105–109
https://doi.org/10.1038/nature09691
pmid: 21151107
|
52 |
Unsworth B R, Lelkes P I (1998). Growing tissues in microgravity. Nat Med, 4(8): 901–907
https://doi.org/10.1038/nm0898-901
pmid: 9701241
|
53 |
VanDussen K L , Marinshaw J M , Shaikh N , Miyoshi H , Moon C, Tarr P I, Ciorba M A, Stappenbeck T S (2015). Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut, 64(6): 911–920
https://doi.org/10.1136/gutjnl-2013-306651
pmid: 25007816
|
54 |
Wang X, Yamamoto Y, Wilson L H , Zhang T , Howitt B E , Farrow M A , Kern F, Ning G, Hong Y , Khor C C , Chevalier B , Bertrand D , Wu L, Nagarajan N, Sylvester F A , Hyams J S , Devers T , Bronson R , Lacy D B , Ho K Y , Crum C P , McKeon F , Xian W (2015). Cloning and variation of ground state intestinal stem cells. Nature, 522(7555): 173–178
https://doi.org/10.1038/nature14484
pmid: 26040716
|
55 |
Wilson S S, Tocchi A, Holly M K , Parks W C , Smith J G (2015). A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions. Mucosal Immunol, 8(2): 352–361
https://doi.org/10.1038/mi.2014.72
pmid: 25118165
|
56 |
Wroblewski L E , Peek R M Jr, Wilson K T (2010). Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev, 23(4): 713–739
https://doi.org/10.1128/CMR.00011-10
pmid: 20930071
|
57 |
Wu X, Robotham J M, Lee E, Dalton S , Kneteman N M , Gilbert D M , Tang H (2012). Productive hepatitis C virus infection of stem cell-derived hepatocytes reveals a critical transition to viral permissiveness during differentiation. PLoS Pathog, 8(4): e1002617
https://doi.org/10.1371/journal.ppat.1002617
pmid: 22496645
|
58 |
Yin Y, Bijvelds M, Dang W , Xu L, van der Eijk A A, Knipping K, Tuysuz N , Dekkers J F , Wang Y, de Jonge J, Sprengers D , van der Laan L J , Beekman J M , Ten Berge D , Metselaar H J , de Jonge H , Koopmans M P , Peppelenbosch M P , Pan Q (2015). Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antiviral Res, 123: 120–131
https://doi.org/10.1016/j.antiviral.2015.09.010
pmid: 26408355
|
59 |
Yoshida T, Takayama K, Kondoh M , Sakurai F , Tani H, Sakamoto N, Matsuura Y , Mizuguchi H , Yagi K (2011). Use of human hepatocyte-like cells derived from induced pluripotent stem cells as a model for hepatocytes in hepatitis C virus infection. Biochem Biophys Res Commun, 416(1-2): 119–124
https://doi.org/10.1016/j.bbrc.2011.11.007
pmid: 22093821
|
60 |
Yui S, Nakamura T, Sato T , Nemoto Y , Mizutani T , Zheng X , Ichinose S , Nagaishi T , Okamoto R , Tsuchiya K , Clevers H , Watanabe M (2012). Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med, 18(4): 618–623
https://doi.org/10.1038/nm.2695
pmid: 22406745
|
61 |
Zhang Y G, Wu S, Xia Y , Sun J (2014). Salmonella-infected crypt-derived intestinal organoid culture system for host-bacterial interactions. Physiol Rep, 2(9): e12147
https://doi.org/10.14814/phy2.12147
pmid: 25214524
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|