Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2018, Vol. 13 Issue (5) : 327-341    https://doi.org/10.1007/s11515-018-1490-6
REVIEW
The journey of gut microbiome – An introduction and its influence on metabolic disorders
Ankita Chattopadhyay, Mythili S.()
School of Bio Sciences and Technology, VIT University, Vellore – 632014, Tamil Nadu, India
 Download: PDF(1645 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Metabolic disorders such as Obesity, Diabetes Type 2 (T2DM) and Inflammatory Bowel Diseases (IBD) are the most prevalent globally. Recently, there has been a surge in the evidence indicating the correlation between the intestinal microbiota and development of these metabolic conditions apart from predisposing genetic and epigenetic factors. Gut microbiome is pivotal in controlling the host metabolism and physiology. But imbalances in the microbiota patterns lead to these disorders via several pathways. Animal and human studies so far have concentrated mostly on metagenomics for the whole microbiome characterization to understand how microbiome supports health in general. However, the accurate mechanisms connecting the metabolic disorders and alterations in gut microbial composition in host and the metabolites employed by the microorganisms in regulating the metabolic disorders is still vague.

OBJECTIVE: The review delineates the latest findings about the role of gut microbiome to the pathophysiology of Obesity, IBD and Diabetes Mellitus. Here, we provide a brief introduction to the gut microbiome followed by the current therapeutic interventions in restoration of the disrupted intestinal microbiota.

METHODS: A methodical PubMed search was performed using keywords like “gut microbiome,” “obesity,” “diabetes,” “IBD,” and “metabolic syndromes.” All significant and latest publications up to January 2018 were accounted for the review.

RESULTS: Out of the 93 articles cited, 63 articles focused on the gut microbiota association to these disorders. The rest 18 literature outlines the therapeutic approaches in maintaining the gut homeostasis using probiotics, prebiotics and faecal microbial transplant (FMT).

CONCLUSION: Metabolic disorders have intricate etiology and thus a lucid understanding of the complex host-microbiome inter-relationships will open avenues to novel therapeutics for the diagnosis, prevention and treatment of the metabolic diseases.

Keywords gut microbiome      metabolic disorders      obesity      diabetes type 2      inflammatorybowel diseases      probiotics      prebiotics      FMT     
Corresponding Author(s): Mythili S.   
Online First Date: 20 August 2018    Issue Date: 25 October 2018
 Cite this article:   
Ankita Chattopadhyay,Mythili S.. The journey of gut microbiome – An introduction and its influence on metabolic disorders[J]. Front. Biol., 2018, 13(5): 327-341.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-018-1490-6
https://academic.hep.com.cn/fib/EN/Y2018/V13/I5/327
Fig.1  Distribution of the gut microbiota in gastrointestinal tract of humans (Sartor, 2008) [Numbers in bracket shows microbial load per mL].
Fig.2  Mechanisms by which the gut microbiota produced SCFAs affect the host metabolism in lean and obese persons. {Adapted from Hartstra et al., 2015. Insights into the role of the microbiome in obesity and type-2 diabetes. Diabetes Care}.
Fig.3  Diagram representing the mechanisms by which the gut microbiota contributes to IBD pathophysiology.
Fig.4  Diagram depicting the role of prebiotics in modifying the gut microbiome and treatment of metabolic disorders. Prebiotics modify the intestinal microbiota by promoting the growth and activity of probiotics (E.g. Bifidobacterium spp.). This induces the differentiation of precursor cells into entero-endocrine L cells in the gut epithelium. L cells increase the secretion of GLP-1 and PYY in the portal plasma and decrease Ghrelin and plasma LPS levels. This activates the endocannabinoid system in the gut and adipose tissue. L cells also secrete GLP-2 that improves the distribution of tight junction proteins ZO-1 and Occludin, thereby alleviating endotoxemia, and localized inflammation. All these processes lead to decreased gut permeability, reduced hunger, enhanced satiety, reduction in body fat accumulation, increased insulin sensitivity and pancreatic beta cell mass, and normalized low-level inflammation, indicating the usefulness of prebiotics in management of Obesity, T2D and IBD.
Fig.5  Overview of the mechanisms of modulation of the intestinal microbiota against metabolic disorders by probiotics(Figure adapted from Le Barz et al., 2015). 1) Intake of Probiotics stimulates metabolites like SCFAs (Butyrate, Propionate, acetate etc.) which act as energy sources and regulate host metabolism. SCFAs bind to G-protein coupled receptors (GPR41/43) and secrete GLP-1 that inhibits glucagon secretion, reduce hepatic gluconeogenesis thereby enhancing glucose tolerance and insulin sensitivity. 2) Bile salt hydrolase activity in probiotics aid in detoxification of the bile salts and increase their survival in the gut. Bile salt de-conjugation decreases serum cholesterol and fatty acids and their absorption through the lumen causing decrease in lipid accumulation. 3) Probiotics activates AMPK pathway that elevates fatty acid oxidation, inhibits glycogen storage and decreases insulin resistance. ANGPTL4 is modulated by probiotics that restricts LPL production and prevents accumulation of fatty acids in adipocytes; this in turn prevents obesity and related disorders. 4) Probiotics promote TJ and AJ junction proteins production that reduces intestinal permeability and inhibits the influx of LPS into systemic circulation, thereby reducing metabolic endotoxemia. 5) Induces production of mucin proteins that assembles to form a mucus layer, acting as physical barrier against pathogen establishment. 6) Probiotics stimulates signaling pathways such as NF-kB and MAPK that recruits dendritic cells/macrophages and trigger anti-inflammatory pathways (Plasma cells multiplication and Treg cells). This results in decrease in pro-inflammatory cytokines and increase in anti-inflammatory cytokines and IgA immunoglobulins. (7) IgA mostly present in the mucus layer aid in maintaining the mucosal barrier. All these cause reduction in low-level inflammation and useful in colitis treatment. 8) Bacteriocin production by probiotics changes the gut microbial community and increases the commensal bacteria. It also prevents invasion by harmful microbes. Metabolites produced by the probiotics enhance the diversity of beneficial microbes and nutrients availability to be used by the surrounding colonocytes.
1 Aas J, Gessert C E, Bakken J S (2003). Recurrent Clostridium difficile colitis: case series involving 18 patients treated with donor stool administered via a nasogastric tube. Clin Infect Dis, 36(5): 580–585
https://doi.org/10.1086/367657 pmid: 12594638
2 Adlerberth I, Wold A E (2009). Establishment of the gut microbiota in Western infants. Acta Paediatr, 98(2): 229–238
https://doi.org/10.1111/j.1651-2227.2008.01060.x pmid: 19143664
3 Allen J M, Mailing L J, Niemiro G M, Moore R, Cook M D, White B A, Holscher H D, Woods J A(2018).Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Med Sci Sports Exerc, 50(4): 747–757.doi:10.1249/MSS.0000000000001495
pmid: 29166320
4 Aw W, Fukuda S (2018). Understanding the role of the gut ecosystem in diabetes mellitus. J Diabetes Investig, 9(1): 5–12
https://doi.org/10.1111/jdi.12673 pmid: 28390093
5 Bäckhed F, Ding H, Wang T, Hooper L V, Koh G Y, Nagy A, Semenkovich C F, Gordon J I (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA, 101(44): 15718–15723
https://doi.org/10.1073/pnas.0407076101 pmid: 15505215
6 Bäckhed F, Ley R E, Sonnenburg J L, Peterson D A, Gordon J I (2005). Host-bacterial mutualism in the human intestine. Science, 307(5717): 1915–1920
https://doi.org/10.1126/science.1104816 pmid: 15790844
7 Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, Khan M T, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee Y S, Kotowska D, Colding C, Tremaroli V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K, Dahlgren J, Wang J (2015). Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe, 17(5):690–703doi:10.1016/j.chom.2015.05.012
8 Barlow G M, Yu A, Mathur R (2015). Role of the Gut Microbiome in Obesity and Diabetes Mellitus. Nutr Clin Pract, 30(6): 787–797
https://doi.org/10.1177/0884533615609896 pmid: 26452391
9 Bevins C L, Salzman N H (2011). Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol, 9(5): 356–368
https://doi.org/10.1038/nrmicro2546 pmid: 21423246
10 Boulangé C L, Neves A L, Chilloux J, Nicholson J K, Dumas M E (2016). Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med, 8(1): 1-12
https://doi.org/10.1186/s13073-016-0303-2 pmid: 27098727
11 Brunkwall L, Orho-Melander M (2017). The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia, 60(6): 943–951
https://doi.org/10.1007/s00125-017-4278-3 pmid: 28434033
12 Calças N, Mendonça L, Perez L, Ferreira R, Elisei C, Castro A (2017). Diet as a Therapy for Gut Dysbacteriosis. JSM Biochem Mol Biol, 4(1): 102, pp. 1–6.
13 Cani P D (2013). Gut microbiota and obesity: lessons from the microbiome. Brief Funct Genomics, 12(4): 381–387
https://doi.org/10.1093/bfgp/elt014 pmid: 23616309
14 Cani P D, Delzenne N M (2009). The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des, 15(13): 1546–1558
https://doi.org/10.2174/138161209788168164 pmid: 19442172
15 Cani P D, Knauf C, Iglesias M A, Drucker D J, Delzenne N M, Burcelin R (2006). Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes, 55(5): 1484–1490
https://doi.org/10.2337/db05-1360 pmid: 16644709
16 Cani P D, Lecourt E, Dewulf E M, Sohet F M, Pachikian B D, Naslain D, De Backer F, Neyrinck A M, Delzenne N M (2009). Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr, 90(5): 1236–1243
https://doi.org/10.3945/ajcn.2009.28095 pmid: 19776140
17 Cani P D, Neyrinck A M, Fava F, Knauf C, Burcelin R G, Tuohy K M, Gibson G R, Delzenne N M (2007). Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 50(11): 2374–2383
https://doi.org/10.1007/s00125-007-0791-0 pmid: 17823788
18 Catalán V, Gómez-Ambrosi J, Ramirez B, Rotellar F, Pastor C, Silva C, Rodríguez A, Gil M J, Cienfuegos J A, Frühbeck G (2007). Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes Surg, 17(11): 1464–1474
https://doi.org/10.1007/s11695-008-9424-z pmid: 18219773
19 Cénit M C, Matzaraki V, Tigchelaar E F, Zhernakova A (2014). Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochim Biophys Acta, 1842(10): 1981–1992
https://doi.org/10.1016/j.bbadis.2014.05.023 pmid: 24882755
20 Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O'Connor M, Harnedy N, O'Connor K, Henry C, O'Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O'Toole PW(2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA, 108(Suppl 1): 4586–4591
https://doi.org/10.1073/pnas.1000097107 pmid: 20571116
21 Clarke S F, Murphy E F, Nilaweera K, Ross P R, Shanahan F, O’Toole P W, Cotter P D (2012). The gut microbiota and its relationship to diet and obesity. Gut Microbes, 3(3): 186–202
https://doi.org/10.4161/gmic.20168 pmid: 22572830
22 Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, Huot L, Grandjean T, Bressenot A, Delanoye-Crespin A, Gaillot O, Schreiber S, Lemoine Y, Ryffel B, Hot D, Nùñez G, Chen G, Rosenstiel P, Chamaillard M (2013). NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest, 123(2): 700–711
https://doi.org/10.1172/JCI62236 pmid: 23281400
23 D’Argenio V, Salvatore F (2015). The role of the gut microbiome in the healthy adult status. Clin Chim Acta, 451(Pt A): 97–102
https://doi.org/10.1016/j.cca.2015.01.003 pmid: 25584460
24 D’Aversa F, Tortora A, Ianiro G, Ponziani F R, Annicchiarico B E, Gasbarrini A (2013). Gut microbiota and metabolic syndrome. Intern Emerg Med, 8(S1Suppl 1): 11–S15
https://doi.org/10.1007/s11739-013-0916-z pmid: 23468402
25 Dahiya D K, Renuka , Puniya M, Shandilya U K, Dhewa T, Kumar N, Kumar S, Puniya A K, Shukla P (2017). Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review. Front Microbiol, 8(April): Article-563, pp. 3-17
https://doi.org/10.3389/fmicb.2017.00563 pmid: 28421057
26 Delaere F, Duchampt A, Mounien L, Seyer P, Duraffourd C, Zitoun C, Thorens B, Mithieux G (2013). The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol Metab, 2(1): 47–53
https://doi.org/10.1016/j.molmet.2012.11.003 pmid: 24024129
27 Delzenne N M, Neyrinck A M, Bäckhed F, Cani P D (2011). Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol, 7(11): 639–646
https://doi.org/10.1038/nrendo.2011.126 pmid: 21826100
28 Devaraj S, Hemarajata P, Versalovic J (2013). The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem, 59(4): 617–628
https://doi.org/10.1373/clinchem.2012.187617 pmid: 23401286
29 Dominguez-Bello M G, Costello E K, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA, 107(26): 11971–11975
https://doi.org/10.1073/pnas.1002601107 pmid: 20566857
30 Donnet-Hughes A, Perez P F, Doré J, Leclerc M, Levenez F, Benyacoub J, Serrant P, Segura-Roggero I, Schiffrin E J (2010). Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc Nutr Soc, 69(03):407–415
https://doi.org/10.1017/S0029665110001898 pmid: 20633308
31 Donohoe D R, Wali A, Brylawski B P, Bultman S J (2012). Microbial regulation of glucose metabolism and cell-cycle progression in mammalian colonocytes. PLoS One, 7(9): e46589
https://doi.org/10.1371/journal.pone.0046589 pmid: 23029553
32 Elson C O, Cong Y (2012). Host-microbiota interactions in inflammatory bowel disease. Gut Microbes, 3(4): 332–344
https://doi.org/10.4161/gmic.20228 pmid: 22572873
33 Fessler M B, Rudel L L, Brown J M (2009). Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome. Curr Opin Lipidol, 20(5): 379–385
https://doi.org/10.1097/MOL.0b013e32832fa5c4 pmid: 19625959
34 Fluitman K S, Clercq N CD, Keijser B J F, Visser M, Nieuwdorp M, IJzerman R G (2017). The intestinal microbiota, energy balance, and malnutrition: emphasis on the role of short-chain fatty acids. Expert Rev Endocrinol Metab, 12(3): 215–226
https://doi.org/10.1080/17446651.2017.1318060
35 Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen H K, Arumugam M, Kristiansen K, Voigt A Y, Vestergaard H, Hercog R, Costea P I, Kultima J R, Li J, Jørgensen T, Levenez F, Dore J, MetaHIT consortium, Nielsen H B, Brunak S, Raes J, Hansen T, Wang J, Ehrlich S D, Bork P, Pedersen O, Almeida M, Antolin M, Artiguenave F, Batto JM, Bertalan M, Blottière H, Boruel N, Brechot C, Bruls T, Burgdorf K, Casellas F, Cultrone A, de Vos WM, Delorme C, Denariaz G, Derrien M, Dervyn R, Feng Q, Grarup N, Guarner F, Guedon E, Haimet F, Jamet A, Juncker A, Juste C, Kennedy S, KhaciG, Kleerebezem M, Knoll J, Layec S, Leclerc M, Leonard P, LePaslier D, M'Rini C, Maguin E, Manichanh C, Mende D, Mérieux A, Oozeer R, Parkhill J, Pelletier E, Pons N, Qin J, Rasmussen S, Renault P, Rescigno M, Sanchez N, Sicheritz-Ponten T, Tap J, Tims S, Torrejon A, Turner K, van de Guchte M, van Hylckama Vlieg JE, Vandemeulebrouck G, Varela E, Viega P, Weissenbach J, Winogradski Y, Yamada T, Zoetendal EG (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528(7581): 262–266
https://doi.org/10.1038/nature15766 pmid: 26633628
36 Frank D N, Amand A L St,Feldman R A, Boedeker E C, Harpaz N, Pace N R (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA, 104(34): 13780–13785
https://doi.org/10.1073/pnas.0706625104 pmid: 17699621
37 Furet J P, Kong L C, Tap J, Poitou C, Basdevant A, Bouillot J L, Mariat D, Corthier G, Doré J, Henegar C, Rizkalla S, Clément K (2010). Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes, 59(12): 3049–3057
https://doi.org/10.2337/db10-0253 pmid: 20876719
38 Gevers D, Knight R, Petrosino J F, Huang K, McGuire A L, Birren B W, Nelson K E, White O, Methé B A, Huttenhower C (2012). The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol, 10(8): e1001377
https://doi.org/10.1371/journal.pbio.1001377 pmid: 22904687
39 Hager C L, Ghannoum M A (2017). The mycobiome: Role in health and disease, and as a potential probiotic target in gastrointestinal disease. Dig Liver Dis, 49(11): 1171–1176
https://doi.org/10.1016/j.dld.2017.08.025 pmid: 28988727
40 Hansen R, Russell R K, Reiff C, Louis P, McIntosh F, Berry S H, Mukhopadhya I, Bisset W M, Barclay A R, Bishop J, Flynn D M, McGrogan P, Loganathan S, Mahdi G, Flint H J, El-Omar E M, Hold G L (2012). Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn’s but not in ulcerative colitis. Am J Gastroenterol, 107(12): 1913–1922
https://doi.org/10.1038/ajg.2012.335 pmid: 23044767
41 Hartstra A V, Bouter K E, Bäckhed F, Nieuwdorp M (2015). Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care, 38(1): 159–165
https://doi.org/10.2337/dc14-0769 pmid: 25538312
42 Heisel T, Montassier E, Johnson A, Al-Ghalith G, Lin Y W, Wei L N, Knights D, Gale C A (2017). High-fat diet changes fungal microbiomes and interkingdom relationships in the murine gut. MSphere, 2(5): e00351–17
https://doi.org/10.1128/mSphere.00351-17 pmid: 29034327
43 Hinzey E M, R D, L DN (2016). Firmicutes and Bacteroidetes. Nutrition 411, 8–11. Retrieved from:
44 Ho P, Ross D A (2017). More Than a Gut Feeling: The Implications of the Gut Microbiota in Psychiatry. Biol Psychiatry, 81(5): e35–e37
https://doi.org/10.1016/j.biopsych.2016.12.018 pmid: 28137375
45 Holleran G, Lopetuso L R, Ianiro G, Pecere S, Pizzoferrato M, Petito V, Graziani C, McNamara D, Gasbarrini A, Scaldaferri F (2017). Gut microbiota and inflammatory bowel disease: so far so gut! Minerva Gastroenterol Dietol, 63(4): 373–384
https://doi.org/10.23736/S1121-421X.17.02386-8 pmid: 28293937
46 Human Microbiome Project Consortium, Huttenhower C, Gevers D, Knight R, Abubucker S, Badger J H, Chinwalla A T, Creasy H H, Earl A M, FitzGerald M G, Fulton R S, Giglio M G, Hallsworth-Pepin K, Lobos E A, Madupu R, Magrini V, Martin J C, Mitreva M, Muzny D M, Sodergren E J, Versalovic J, Wollam A M, Worley K C, Wortman J R, Young S K, Zeng Q, Aagaard K M, Abolude O O, Allen-Vercoe E, Alm E J, Alvarado L, Andersen G L, Anderson S, Appelbaum E, Arachchi H M, Armitage G, Arze C A, Ayvaz T, Baker C C, Begg L, Belachew T, Bhonagiri V, Bihan M, Blaser M J, Bloom T, Bonazzi V, Paul Brooks J, Buck G A, Buhay C J, Busam D A, Campbell J L, Canon S R, Cantarel B L, Chain P S G, Chen I M A, Chen L, Chhibba S, Chu K, Ciulla D M, Clemente J C, Clifton S W, Conlan S, Crabtree J, Cutting M A, Davidovics N J, Davis C C, DeSantis T Z, Deal C, Delehaunty K D, Dewhirst F E, Deych E, Ding Y, Dooling D J, Dugan S P, Michael Dunne W, Scott Durkin A, Edgar R C, Erlich R L, Farmer C N, Farrell R M, Faust K, Feldgarden M, Felix V M, Fisher S, Fodor A A, Forney L J, Foster L, Di Francesco V, Friedman J, Friedrich D C, Fronick C C, Fulton L L, Gao H, Garcia N, Giannoukos G, Giblin C, Giovanni M Y, Goldberg J M, Goll J, Gonzalez A, Griggs A, Gujja S, Kinder Haake S, Haas B J, Hamilton H A, Harris E L, Hepburn T A, Herter B, Hoffmann D E, Holder M E, Howarth C, Huang K H, Huse S M, Izard J, Jansson J K, Jiang H, Jordan C, Joshi V, Katancik J A, Keitel W A, Kelley S T, Kells C, King N B, Knights D, Kong H H, Koren O, Koren S, Kota K C, Kovar C L, Kyrpides N C, La Rosa P S, Lee S L, Lemon K P, Lennon N, Lewis C M, Lewis L, Ley R E, Li K, Liolios K, Liu B, Liu Y, Lo C C, Lozupone C A, Dwayne Lunsford R, Madden T, Mahurkar A A, Mannon P J, Mardis E R, Markowitz V M, Mavromatis K, McCorrison J M, McDonald D, McEwen J, McGuire A L, McInnes P, Mehta T, Mihindukulasuriya K A, Miller J R, Minx P J, Newsham I, Nusbaum C, O’Laughlin M, Orvis J, Pagani I, Palaniappan K, Patel S M, Pearson M, Peterson J, Podar M, Pohl C, Pollard K S, Pop M, Priest M E, Proctor L M, Qin X, Raes J, Ravel J, Reid J G, Rho M, Rhodes R, Riehle K P, Rivera M C, Rodriguez-Mueller B, Rogers Y H, Ross M C, Russ C, Sanka R K, Sankar P, Fah Sathirapongsasuti J, Schloss J A, Schloss P D, Schmidt T M, Scholz M, Schriml L, Schubert A M, Segata N, Segre J A, Shannon W D, Sharp R R, Sharpton T J, Shenoy N, Sheth N U, Simone G A, Singh I, Smillie C S, Sobel J D, Sommer D D, Spicer P, Sutton G G, Sykes S M, Tabbaa D G, Thiagarajan M, Tomlinson C M, Torralba M, Treangen T J, Truty R M, Vishnivetskaya T A, Walker J, Wang L, Wang Z, Ward D V, Warren W, Watson M A, Wellington C, Wetterstrand K A, White J R, Wilczek-Boney K, Wu Y Q, Wylie K M, Wylie T, Yandava C, Ye L, Ye Y, Yooseph S, Youmans B P, Zhang L, Zhou Y, Zhu Y, Zoloth L, Zucker J D, Birren B W, Gibbs R A, Highlander S K, Methé B A, Nelson K E, Petrosino J F, Weinstock G M, Wilson R K, White O, and the (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402): 207–214
https://doi.org/10.1038/nature11234 pmid: 22699609
47 Hur K Y, Lee M S (2015). Gut Microbiota and Metabolic Disorders. Diabetes Metab J, 39(3): 198–203
https://doi.org/10.4093/dmj.2015.39.3.198 pmid: 26124989
48 Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fukase K, Inamura S, Kusumoto S, Hashimoto M, Foster S J, Moran A P, Fernandez-Luna J L, Nuñez G (2003). Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem, 278(8): 5509–5512
https://doi.org/10.1074/jbc.C200673200 pmid: 12514169
49 Jakobsson H E, Abrahamsson T R, Jenmalm M C, Harris K, Quince C, Jernberg C, Björkstén B, Engstrand L, Andersson A F (2014). Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut, 63(4): 559–566
https://doi.org/10.1136/gutjnl-2012-303249 pmid: 23926244
50 Jovel J, Patterson J, Wang W, Hotte N, O'Keefe S, Mitchel T, Perry T, Kao D, Mason AL, Madsen KL, Wong GK (2016). Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics. Front Microbiol, 7:459, 1–17
https://doi.org/10.3389/fmicb.2016.00459 PMID:27148170
51 Karlsson F H, Tremaroli V, Nookaew I, Bergström G, Behre C J, Fagerberg B, Nielsen J, Bäckhed F(2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 498(7452): 99–103
https://doi.org/10.1038/nature12198 PMID:23719380
52 Khor B, Gardet A, Xavier R J (2011). Genetics and pathogenesis of inflammatory bowel disease. Nature, 474(7351): 307–317
https://doi.org/10.1038/nature10209 pmid: 21677747
53 Khoruts A, Dicksved J, Jansson J K, Sadowsky M J (2010). Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol, 44(5): 354–360
https://doi.org/10.1097/MCG.0b013e3181c87e02 pmid: 20048681
54 Koenig J E, Spor A, Scalfone N, Fricker A D, Stombaugh J, Knight R, Angenent L T, Ley R E (2011). Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA, 108(Suppl 1): 4578–4585
https://doi.org/10.1073/pnas.1000081107 pmid: 20668239
55 Komaroff A L (2017). The microbiome and risk for obesity and diabetes. JAMA, 317(4): 355–356
https://doi.org/10.1001/jama.2016.20099 pmid: 28006047
56 Kumar R, Yi N, Zhi D, Eipers P, Goldsmith K T, Dixon P, Crossman D K, Crowley M R, Lefkowitz E J, Rodriguez J M, Morrow C D (2017). Identification of donor microbe species that colonize and persist long term in the recipient after fecal transplant for recurrentClostridium difficile. NPJ Biofilms Microbiomes, 3(1): 12
https://doi.org/10.1038/s41522-017-0020-7 pmid: 28649413
57 Larsson E, Tremaroli V, Lee YS, Koren O, Nookaew I, Fricker A, Nielsen J, Ley RE, Bäckhed F (2012). Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut, 61(8):1124–31
https://doi.org/10.1136/gutjnl-2011-301104 pmid: 22115825
58 Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M (2010). Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE 5:e9085
https://doi.org/10.1371/journal.pone.0009085
59 Le Barz M, Anhê F F, Varin T V, Desjardins Y, Levy E, Roy D, Urdaci M C, Marette A (2015). Probiotics as Complementary Treatment for Metabolic Disorders. Diabetes Metab J, 39(4): 291–303
https://doi.org/10.4093/dmj.2015.39.4.291 pmid: 26301190
60 Lederberg J, McCray A T (2001). ‘Ome Sweet ’Omics- A Genealogical Treasury of Words Genealogical Treasury of Words. Scientist, 15(7): 8. Available at:
61 Leeuwenhoek A Van (1683). An abstract of a Letter from Antonie van Leeuwenhoek, Sep. 12, 1683. About Animals in the scrurf of the Teeth. Philosophical Transactions of the Royal Society of London,14: 568–574.
62 Lepage P, Häsler R, Spehlmann M E, Rehman A, Zvirbliene A, Begun A, Ott S, Kupcinskas L, Doré J, Raedler A, Schreiber S (2011). Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology, 141(1): 227–236
https://doi.org/10.1053/j.gastro.2011.04.011 pmid: 21621540
63 Ley R E, Bäckhed F, Turnbaugh P, Lozupone C A, Knight R D, Gordon J I (2005). Obesity alters gut microbial ecology. Proc Natl Acad Sci USA, 102(31): 11070–11075
https://doi.org/10.1073/pnas.0504978102 pmid: 16033867
64 Ley R E, Turnbaugh P J, Klein S, Gordon J I (2006). Microbial ecology: human gut microbes associated with obesity. Nature, 444(7122): 1022–1023
https://doi.org/10.1038/4441022a pmid: 17183309
65 Li X, Qin L (2005). Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol, 23(11):539–43
https://doi.org/10.1016/j.tibtech.2005.08.006 pmid: 16154653
66 Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F, Verbeke K, Ferrante M, Verhaegen J, Rutgeerts P, Vermeire S (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63(8): 1275–1283
https://doi.org/10.1136/gutjnl-2013-304833 pmid: 24021287
67 Marchesi J R (2010). Prokaryotic and eukaryotic diversity of the human gut. Adv Appl Microbiol, 72, 43–62
https://doi.org/10.1016/S0065-2164(10)72002-5 pmid: 20602987
68 Matsuoka K, Kanai T (2015). The gut microbiota and inflammatory bowel disease. Semin Immunopathol, 37(1): 47–55
https://doi.org/10.1007/s00281-014-0454-4 pmid: 25420450
69 McIlroy J, Ianiro G, Mukhopadhya I, Hansen R, Hold G L (2018). Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management. Aliment Pharmacol Ther, 47(1): 26–42
https://doi.org/10.1111/apt.14384 pmid: 29034981
70 Methé B A, Nelson K E, Pop M, Creasy H H, Giglio M G, Huttenhower C, Gevers D, Petrosino J F, Abubucker S, Badger J H, Chinwalla A T, Earl A M, FitzGerald M G, Fulton R S, Hallsworth-Pepin K, Lobos EA, Madupu R, Magrini V, Martin J C, Mitreva M, Muzny D M, SodergrenE J, Versalovic J, Wollam A M, Worley K C, Wortman J R, Young S K, Zeng Q, Aagaard K M, Abolude O O, Allen-Vercoe E, Alm E J, Alvarado L, Andersen G L, Anderson S, Appelbaum E, Arachchi H M, Armitage G, Arze C A, Ayvaz T, Baker C C, Begg L, Belachew T, Bhonagiri V, Bihan M, Blaser M J, Bloom T, Bonazzi V R, Brooks P, Buck G A, Buhay C J, Busam D A, Campbell J L, Canon S R, Cantarel B L, Chain P S, Chen I M, Chen L, Chhibba S, Chu K, Ciulla D M, Clemente J C, Clifton S W, Conlan S, Crabtree J, Cutting M A, Davidovics N J, Davis C C, DeSantis T Z, Deal C, Delehaunty K D, Dewhirst F E, Deych E, Ding Y, Dooling D J, Dugan S P, Dunne W Jr, Durkin A, Edgar R C, Erlich R L, Farmer C N, Farrell R M, Faust K, Feldgarden M, Felix V M, Fisher S, Fodor A A, Forney L, Foster L, Di Francesco V, Friedman J, Friedrich D C, Fronick C C, Fulton L L, Gao H, Garcia N, Giannoukos G, Giblin C, Giovanni M Y, Goldberg J M, Goll J, Gonzalez A, Griggs A, Gujja S, Haas B J, Hamilton H A, Harris EL, Hepburn T A, Herter B, Hoffmann D E, Holder M E, Howarth C, Huang K H, Huse S M, Izard J, Jansson J K, Jiang H, Jordan C, Joshi V, Katancik J A, Keitel W A, Kelley S T, Kells C, Kinder-Haake S, King N B, Knight R, Knights D, Kong H H, Koren O, Koren S, Kota K C, Kovar C L, Kyrpides N C, La Rosa P S, Lee S L, Lemon K P, Lennon N, Lewis C M, Lewis L, Ley R E, Li K, Liolios K, Liu B, Liu Y, Lo C C, Lozupone C A, Lunsford R, Madden T, Mahurkar A A, Mannon P J, Mardis E R, Markowitz V M, Mavrommatis K, McCorrison J M, McDonald D, McEwen J, McGuire A L, McInnes P, Mehta T, Mihindukulasuriya K A, Miller J R, Minx P J, Newsham I, Nusbaum C, O'Laughlin M, Orvis J, Pagani I, Palaniappan K, Patel S M, Pearson M, Peterson J, Podar M, Pohl C, Pollard K S, Priest M E, Proctor L M, Qin X, Raes J, Ravel J, Reid J G, Rho M, Rhodes R, Riehle K P, Rivera M C, Rodriguez-Mueller B, Rogers Y H, Ross M C, Russ C, Sanka R K, Sankar P, Sathirapongsasuti J, Schloss J A, Schloss P D, Schmidt T M, Scholz M, Schriml L, Schubert A M, Segata N, Segre J A, Shannon W D, Sharp R R, Sharpton T J, Shenoy N, Sheth N U, Simone G A, Singh I, Smillie C S, Sobel J D, Sommer D D, Sommer P, Sutton G G, Sykes S M, Tabbaa D G, Thiagarajan M, Tomlinson C M, Torralba M, Treangen T J, Truty R M, Vishnivetskaya T A, Walker J, Wang L, Wang Z, Ward D V, Warren W, Watson M A, Wellington C, Wetterstrand K A, White J R, Wilczek-Boney K, Wu Y Q, Wylie K M, Wylie T, Yandava C, Ye L, Ye Y, Yooseph S, Youmans B P, Zhang L, Zhou Y, Zhu Y, Zoloth L, Zucker J D, Birren B W, Gibbs R A, Highlander S K, Weinstock G M, Wilson R K, White O (2012). A framework for human microbiome. Nature, 486(7402): 215-S
https://doi.org/10.1038/nature11209
71 Morgan X C, Tickle T L, Sokol H, Gevers D, Devaney K L, Ward D V, Reyes J A, Shah S A, LeLeiko N, Snapper S B, Bousvaros A, Korzenik J, Sands B E, Xavier R J, Huttenhower C (2012). Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol, 13(9): R79
https://doi.org/10.1186/gb-2012-13-9-r79 pmid: 23013615
72 O’Hara A M, Shanahan F (2006). The gut flora as a forgotten organ. EMBO Rep, 7(7): 688–693
https://doi.org/10.1038/sj.embor.7400731 pmid: 16819463
73 Ogura Y, Bonen D K, Inohara N, Nicolae D L, Chen F F, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr R H, Achkar J P, Brant S R, Bayless T M, Kirschner B S, Hanauer S B, Nuñez G, Cho J H (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature, 411(6837): 603–606
https://doi.org/10.1038/35079114 pmid: 11385577
74 Pace N R, Stahl D A, Lane D J, Olsen G J (1986). The Analysis of Natural Microbial Populations by Ribosomal RNA Sequences. Adv Microb Ecol, 9: 1–55
https://doi.org/10.1007/978-1-4757-0611-6_1
75 Palmer C, Bik E M, DiGiulio D B, Relman D A, Brown P O (2007). Development of the human infant intestinal microbiota. PLoS Biol, 5(7): e177
https://doi.org/10.1371/journal.pbio.0050177 pmid: 17594176
76 Park D Y, Ahn Y T, Park S H, Huh C S, Yoo S R, Yu R, Sung M K, McGregor R A, Choi M S (2013). Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One, 8(3): e59470
https://doi.org/10.1371/journal.pone.0059470 pmid: 23555678
77 Björkstén A E, Gosalbes M J, Friedrichs A, Knecht H, Artacho A, Eismann K, Otto W, Rojo D, Bargiela R, von Bergen M, Neulinger S C, Däumer C, Heinsen F A, Latorre A, Barbas C, Seifert J, dos Santos V M, Ott S J, Ferrer M, Moya A (2013). Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut, 62(11): 1591–1601
https://doi.org/10.1136/gutjnl-2012-303184 pmid: 23236009
78 Perry R J, Peng L, Barry N A, Cline G W, Zhang D, Cardone R L, Petersen K F, Kibbey R G, Goodman A L, Shulman G I (2016). Acetate mediates a microbiome-brain--cell axis to promote metabolic syndrome. Nature, 534(7606): 213–217
https://doi.org/10.1038/nature18309 pmid: 27279214
79 The NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, Guyer M (2009). The NIH Human Microbiome Project. Genome Res, 19(12): 2317–2323
https://doi.org/10.1101/gr.096651.109 pmid: 19819907
80 Petnicki-Ocwieja T, Hrncir T, Liu Y J, Biswas A, Hudcovic T, Tlaskalova-Hogenova H, Kobayashi K S (2009). Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci USA, 106(37): 15813–15818
https://doi.org/10.1073/pnas.0907722106 pmid: 19805227
81 Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J(2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418): 55–60
https://doi.org/10.1038/nature11450 pmid: 23023125
82 Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende D R, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J M, Hansen T, Le Paslier D, Linneberg A, Nielsen H B, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J; MetaHIT Consortium, Bork P, Ehrlich SD, Wang J, Antolin M, Artiguenave F, Blottiere H, Borruel N, Bruls T, Casellas F, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Forte M, Friss C, van de Guchte M, Guedon E, Haimet F, Jamet A, Juste C, Kaci G, Kleerebezem M, Knol J, Kristensen M, Layec S, Le Roux K, Leclerc M, Maguin E, Minardi RM, Oozeer R, Rescigno M, Sanchez N, Tims S, Torrejon T, Varela E, de Vos W, Winogradsky Y, Zoetendal E(2010).A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285): 59–65
https://doi.org/10.1038/nature08821 pmid: 20203603
83 Ridaura V K, Faith J J, Rey F E, Cheng J, Duncan A E, Kau A L, Ggriffin N W, Lombard V, Henrissat B, Bain JR, Muehlbauer M J, Ilkaveya O, Semenkovich C F, Funai K, Hayashi D K, Lyle B J, Martini M C, Ursell L K, Clemente J C, Treuren W V, Walters W A, Knight R, Newgard C B, Heath AC & Gordon JI (2013). Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice. Science, 341(6150): 1–22
https://doi.org/10.1126/science.1241214 pmid: 24009397
84 Roberfroid M, Gibson G R, Hoyles L, McCartney A L, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco M J, Léotoing L, Wittrant Y, Delzenne N M, Cani P D, Neyrinck A M, Meheust A (2010). Prebiotic effects: metabolic and health benefits. Br J Nutr, 104(S2Suppl 2): S1–S63
https://doi.org/10.1017/S0007114510003363 pmid: 20920376
85 Sartor R B (2008). Microbial influences in inflammatory bowel diseases. Gastroenterology, 134(2): 577–594
https://doi.org/10.1053/j.gastro.2007.11.059 pmid: 18242222
86 Savage D C (1977). Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol, 31(1): 107–133
https://doi.org/10.1146/annurev.mi.31.100177.000543 pmid: 334036
87 Scanlan P D, Shanahan F, O’Mahony C, Marchesi J R (2006). Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. J Clin Microbiol, 44(11): 3980–3988
https://doi.org/10.1128/JCM.00312-06 pmid: 16988018
88 Scott L J, Mohlke K L, Bonnycastle L L, Willer C J, Li Y, Duren W L, Erdos M R, Stringham H M, Chines P S, Jackson A U, Prokunina-Olsson L, Ding C J, Swift A J, Narisu N, Hu T, Pruim R, Xiao R, Li X Y, Conneely K N, Riebow N L, Sprau A G, Tong M, White P P, Hetrick K N, Barnhart M W, Bark C W, Goldstein J L, Watkins L, Xiang F, Saramies J, Buchanan T A, Watanabe R M, Valle T T, Kinnunen L, Abecasis G R, Pugh E W, Doheny K F, Bergman R N, Tuomilehto J, Collins F S, Boehnke M (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science, 316(5829): 1341–1345
https://doi.org/10.1126/science.1142382 pmid: 17463248
89 Sharon I, Morowitz M J, Thomas B C, Costello E K, Relman D A, Banfield J F (2013). Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. Genome Res, 23(1): 111–120
https://doi.org/10.1101/gr.142315.112 pmid: 22936250
90 Sheehan D, Shanahan F (2017). The Gut Microbiota in Inflammatory Bowel Disease. Gastroenterol Clin North Am, 46(1): 143–154
https://doi.org/10.1016/j.gtc.2016.09.011 pmid: 28164847
91 Slattery J, MacFabe D F, Frye R E (2016). The significance of the enteric microbiome on the development of childhood disease: A review of prebiotic and probiotic therapies in disorders of childhood. Clin Med Insights Pediatr, 10: CMPed.S38338–107
https://doi.org/10.4137/CMPed.S38338 pmid: 27774001
92 Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán L G, Gratadoux J J, Blugeon S, Bridonneau C, Furet J P, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière H M, Doré J, Marteau P, Seksik P, Langella P (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA, 105(43): 16731–16736
https://doi.org/10.1073/pnas.0804812105 pmid: 18936492
93 Sokol H, Seksik P (2010). The intestinal microbiota in inflammatory bowel diseases: time to connect with the host. Curr Opin Gastroenterol, 26(4): 327–331
https://doi.org/10.1097/MOG.0b013e328339536b pmid: 20445446
94 Tang W H W, Kitai T, Hazen S L (2017). Gut Microbiota in Cardiovascular Health and Disease. Circ Res, 120(7): 1183–1196
https://doi.org/10.1161/CIRCRESAHA.117.309715 pmid: 28360349
95 Tong M, Li X, Wegener Parfrey L, Roth B, Ippoliti A, Wei B, Borneman J, McGovern D P, Frank D N, Li E, Horvath S, Knight R, Braun J (2013). A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease. PLoS One, 8(11): e80702
https://doi.org/10.1371/journal.pone.0080702 pmid: 24260458
96 Turnbaugh P J, Bäckhed F, Fulton L, Gordon J I (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe, 3(4): 213–223
https://doi.org/10.1016/j.chom.2008.02.015 pmid: 18407065
97 Turnbaugh P J, Ley R E, Mahowald M A, Magrini V, Mardis E R, Gordon J I (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122): 1027– 1131
https://doi.org/10.1038/nature05414 pmid: 17183312
98 Tvede M, Rask-Madsen J (1989). Bacteriotherapy for chronic relapsing Clostridium difficile diarrhoea in six patients. Lancet, 333(8648): 1156–1160
https://doi.org/10.1016/S0140-6736(89)92749-9 pmid: 2566734
99 Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte R S, Bartelsman J F, Dallinga-Thie G M, Ackermans M T, Serlie M J, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg J E, Bloks V W, Groen A K, Heilig H G, Zoetendal E G, Stroes E S, de Vos W M, Hoekstra J B, Nieuwdorp M (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 143(4): 913–6.
https://doi.org/10.1053/j.gastro.2012.06.031 pmid: 22728514
100 Walsh C J, Guinane C M, O’Toole P W, Cotter P D (2014). Beneficial modulation of the gut microbiota. FEBS Lett, 588(22): 4120–4130
https://doi.org/10.1016/j.febslet.2014.03.035 pmid: 24681100
101 Wolf K J, Lorenz R G (2012). Gut Microbiota and Obesity. Curr Obes Rep, 1(1): 1–8
https://doi.org/10.1007/s13679-011-0001-8 pmid: 23106036
102 Woodworth M H, Carpentieri C, Sitchenko K L, Kraft C S (2017). Challenges in fecal donor selection and screening for fecal microbiota transplantation: A review. Gut Microbes, 8(3): 225–237
https://doi.org/10.1080/19490976.2017.1286006 pmid: 28129018
103 Yadav H, Lee J H, Lloyd J, Walter P, Rane S G (2013). Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem, 288(35): 25088–97
https://doi.org/10.1074/jbc.M113.452516 pmid: 23836895
104 Zhu W, Winter M G, Byndloss M X, Spiga L, Duerkop B A, Hughes E R, Büttner L, de Lima Romão E, Behrendt C L, Lopez C A, Sifuentes-Dominguez L, Huff-Hardy K, Wilson R P, Gillis C C, Tükel Ç, Koh A Y, Burstein E, Hooper L V, Bäumler A J, Winter S E (2018). Precision editing of the gut microbiota ameliorates colitis. Nature, 553(7687): 208–211
https://doi.org/10.1038/nature25172 pmid: 29323293
[1] Altea Rocchi,Congcong He. Emerging roles of autophagy in metabolism and metabolic disorders[J]. Front. Biol., 2015, 10(2): 154-164.
[2] Kristen DAVIS,Young-Jai YOU. Appetite control: why we fail to stop eating even when we are full?[J]. Front. Biol., 2014, 9(3): 169-174.
[3] Colette N. MILLER, Lynda M. BROWN, Srujana RAYALAM, Mary Anne DELLA-FERA, Clifton A. BAILE. Estrogens, inflammation and obesity: an overview[J]. Front Biol, 2012, 7(1): 40-47.
[4] Catherine C. Y. CHANG, Jie SUN, Ta-Yuan CHANG. Membrane-bound O-acyltransferases (MBOAT)[J]. Front Biol, 2011, 6(3): 177-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed